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Abstract 

Generating explanations and making comparisons have both 
been shown to improve learning. While each process has been 
studied individually, the relationship between explanation and 
comparison is not well understood. Three experiments 
evaluated the effectiveness of explanation and comparison 
prompts in learning novel categories. In Experiment 1, 
participants explained items’ category membership, 
performed pairwise comparisons between items (listed 
similarities and differences), did both, or did a control task. 
The explanation task increased the discovery of rules 
underlying category membership; however, the comparison 
task decreased rule discovery. Experiments 2 and 3 showed 
that (1) comparing all four category exemplars was more 
effective than either within-category or between-category 
pairwise comparisons, and that (2) “explain” participants 
reported higher levels of both spontaneous explanation and 
comparison than “compare” participants. This work provides 
insights into when explanation and comparison are most 
effective, and how these processes can work together to 
maximize learning.  

Keywords: Explanation; comparison; categorization; 
learning. 

Introduction 
Explanation (i.e., answering “why” questions) and 
comparison (i.e., describing the similarities and differences 
between entities) are both powerful learning processes. 
Although they have typically been studied independently, 
they are often interconnected. Asking people to generate 
explanations can invite implicit comparison, and the 
patterns that people discover by comparing can motivate a 
search for explanations. For example, explaining why 
someone prefers coffee versus tea might lead one to identify 
similarities and differences between the two beverages, and 
comparing coffee and tea might provide insights into why a 
person would prefer one over the other. Explanation and 
comparison can also support similar ends: both promote 
abstraction and generalization, and both facilitate the 
discovery of patterns that are deep in a system’s underlying 
structure (for reviews, see Gentner, 2010, on analogy and 
comparison; Lombrozo, 2012, on explanation). 

Although explanation and comparison can generate 
similar effects, these two processes might rely on different 
cognitive mechanisms and exert different constraints on 
learning. Explanation has been hypothesized to improve 
learning through a variety of mechanisms, including an 

increase in metacognitive awareness (Chi, 2010) and an 
increase in attention and engagement (e.g., Siegler, 2002), 
among others. In the context of category learning, 
generating explanations also enables learners to generalize 
beyond a specific set of observed data. In particular, 
Williams and Lombrozo (2010, 2013) proposed a 
subsumptive constraints account of how explanation 
impacts learning, whereby explaining leads people to 
interpret individual cases as part of a general pattern. As a 
result, explanation can help people unify multiple 
observations and focus on patterns with broader scope, 
increasing the discovery of rules that account for 100% of 
the data versus only 75% (Williams & Lombrozo, 2010). 

One mechanism by which comparison has been 
hypothesized to support learning is by promoting explicit 
structural alignment, leading people to focus on alignable 
differences between two entities (i.e., differences that are 
embedded in a common relational structure) (Gentner, 1983; 
Gentner & Markman, 1997). Since comparison causes 
people to analyze these differences in the context of the 
common structure, comparison can illuminate deeper 
similarities and support the formation of an abstract 
relational schema, even (and especially) when the items 
being compared have surface differences (Gentner et al., 
2009). For example, the analogy “an atom is like a solar 
system” highlights the fact that an atom consists of electrons 
orbiting around a nucleus, whereas a solar system consists 
of planets orbiting around the sun. Across a number of 
domains, comparing two examples that are superficially 
dissimilar but share a common relational structure supports 
transfer more effectively than studying the same examples 
separately (e.g., Kurtz, Miao, & Gentner, 2001; 
Loewenstein, Thompson, & Gentner, 2003). 

Despite the abundance of research showing that 
explanation and comparison can (individually) enhance 
learning, few studies have investigated the effects of both 
explanation and comparison on the same experimental task. 
Kurtz, Miao, and Gentner (2001) found that comparing two 
analogous examples of heat flow helped participants 
discover similarities between the two examples more 
effectively than describing and explaining the same 
examples sequentially. Additionally, comparison was most 
effective when participants performed a task that involved 
listing which elements of the second scenario corresponded 
to specific elements of the first scenario. In another study, 
Nokes-Malach et al. (2012) found that introductory physics 
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students who explained the solutions to worked examples of 
physics problems achieved greater “near” transfer than 
participants who compared pairs of problems, but both 
groups performed similarly on “far” transfer and 
outperformed participants in a control condition. While 
these studies provide valuable insights into the conditions 
under which explanation and comparison are most effective, 
many questions remain open. 

The present studies examine whether and how 
explanation and comparison interact to support learning 
novel categories. Previous work using similar materials 
(alien robots) has found that relative to control conditions, 
participants prompted to explain why individual robots 
belong to particular categories are more likely to discover a 
categorization rule that accounts for all cases (Williams & 
Lombrozo, 2010, 2013). The present studies extend this 
work by investigating whether having participants compare 
robots also facilitates category learning, and whether 
participants who perform both explanation and comparison 
tasks are more likely to discover categorization rules than 
participants who perform only one of these tasks.  

We hypothesize that comparison and explanation play 
complementary roles in category learning. Comparison may 
be crucial for identifying similarities among members of the 
same category and differences between members of 
different categories. In contrast, explanation should 
encourage learners to seek broad patterns within and across 
categories, potentially drawing upon the similarities and 
differences identified through comparison. Very broadly, 
these hypotheses predict that participants should be more 
effective in discovering categorization rules to the extent 
that they both compare and explain, with explanation being 
especially important in discovering broad patterns. 

Three experiments evaluated these predictions. In 
Experiment 1, participants were randomly assigned to study 
the robots in one of four ways: (1) explain why individual 
robots are members of a particular category, (2) compare 
pairs of robots that belong to the same category, (3) perform 
both the explanation and comparison tasks, or (4) engage in 
a “free study” control task. Experiments 2 and 3 evaluated 
the effectiveness of different types of comparison prompts: 
between-category pairwise comparison and “group” 
comparison, respectively. We included a “group” 
comparison prompt to see whether it would be more 
effective at improving participants’ ability to integrate 
pairwise comparisons and detect broad patterns. 
 

Experiment 1 
 

Method 
 
Participants One-hundred-sixty-one adults participated 
through the Amazon Mechanical Turk marketplace. An 
additional 56 participants were tested, but excluded because 
they failed a catch trial or had previously completed a 
similar experiment. Participants were paid for participation. 
 

Materials The stimuli (see Fig. 1) were eight robots adapted 
from Williams and Lombrozo (2010, 2013). Four robots (A-
D) were classified as Glorp robots and the other four robots 
(E-H) were classified as Drent robots. 
 

 
 

Figure 1: Robots used in Exp. 1-3 
 

Four rules could be used to categorize robots as either 
Glorp robots or Drent robots. Two rules were “100% rules” 
that could be used to categorize all eight robots and two 
rules were “75% rules” that could be used to categorize six 
of the eight robots (i.e., two robots were anomalous with 
respect to each 75% rule). The four rules were as follows:  

(1) Foot rule (100%): All Glorp robots have feet with 
pointy bottoms; all Drent robots have feet with flat bottoms. 

(2) Antenna rule (100%): All Glorp robots have a right 
antenna (from the robot’s perspective) that is longer than the 
left antenna; all Drent robots have a left antenna that is 
longer than the right antenna. 

(3) Elbows/knees rule (75%): Three out of four Glorp 
robots (A, B, D) have elbows but no knees; three out of four 
Drent robots (F, G, H) have knees but no elbows. One Glorp 
robot (C) has knees but no elbows and one Drent robot (E) 
has elbows but no knees. 

(4) Body shape rule (75%): Three out of four Glorp robots 
(A, B, C) have a rectangular body; three out of four Drent 
robots (E, F, H) have a round body. One Glorp robot (D) 
has a round body and one Drent robot (G) has a rectangular 
body. 

The robots also differed in body color; however, there 
were no systematic category differences in body color. 
 
Procedure The procedure consisted of a study phase 
followed by a rule-reporting phase. 

In the study phase, each participant was assigned to one 
of four study conditions: (1) comparison only, (2) 
explanation only, (3) both explanation and comparison, or 
(4) free study. In every condition, all eight robots appeared 
on screen for the duration of the study phase, as shown in 
Figure 1. The total study time (640 seconds) was equal 
across conditions. The study prompts and procedures for 
each condition were as follows. 

Comparison only condition: “What are the similarities 
and differences between Glorp [Drent] robot X and Glorp 
[Drent] robot Y?” Participants were given 160 seconds to 
perform each comparison. The comparisons were presented 
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in the following order: A and B, F and H, C and D, E and G. 
This order was chosen so that the four robots that were 
consistent with respect to both 75% rules were studied 
before the four robots that were anomalous with respect to 
one of those rules, making it more likely that participants 
would learn the 75% rules in addition to the 100% rules. 

Explanation only condition: “Try to explain why robot X 
is a Glorp [Drent] robot.” Participants were given 80 
seconds to provide an explanation. The explanations were 
requested in the following order: A, B, F, H, C, D, E, G. 
This matched the order in the comparison condition.  

Both explanation and comparison condition: Participants 
responded to both the explanation and comparison prompts 
above. To ensure that all the conditions were matched for 
study time, participants were given 40 seconds to respond to 
each explanation prompt and 80 seconds to respond to each 
comparison prompt. The order of the explanation and 
comparison prompts was counterbalanced across 
participants. Participants performed both tasks sequentially 
for each pair (e.g., explain A, explain B, compare A and B) 
before moving on to study the next pair of robots. The study 
order was otherwise the same as in the other conditions. 

Free study condition: “Write out your thoughts below as 
you learn to categorize Glorp [Drent] robot X.” Participants 
were given 80 seconds to study each robot. The study order 
was the same as in the other conditions. 

At the end of each study period, the screen automatically 
advanced to the next robot or pair of robots. Participants 
could not advance before the study period had elapsed. 

After each 160 seconds, participants solved a simple math 
exercise (e.g., “9 + 7”). These exercises were included as a 
“catch trial” to verify that participants’ attention was not 
diverted to other tasks. Response time was recorded and 
participants who took more than one minute to answer a 
question were excluded from analysis. 

In the rule-reporting phase, participants listed the patterns 
they noticed “that might help differentiate Glorps and 
Drents.” These responses were classified by a coder who 
was blind to experimental condition. Twenty-five percent of 
the data was independently coded for reliability by a second 
blind coder; agreement for each experiment exceeded 95%. 
For each pattern that participants discovered, they also 
indicated (1) how many of the eight study robots could be 
categorized using that pattern and (2) how many new Glorp 
and Drent robots (out of 100) could be categorized using 
that pattern. Because answers to these two questions were 
contingent on the participant having discovered a particular 
rule, the sample sizes were relatively small and these data 
are not discussed further. 

After completing the rule-reporting phase, participants 
answered debriefing questions regarding the extent to which 
they (1) generated explanations and (2) made comparisons, 
regardless of the task instructions, using a numerical 
response on a 1-7 scale, where 1 indicated “not at all” and 7 
indicated “all of the time.” Participants were then asked 
whether they had previously completed a similar study and 
answered a “catch trial” adapted from Oppenheimer, 

Meyvisb, and Davidenkoc (2009) to find out whether they 
were reading the instructions. Participants who reported 
previously doing a similar study and participants who failed 
the catch trial were excluded from analysis. 

Results and Discussion 
We first considered whether study task influenced the total 
number of rules discovered. A 2 × 2 ANOVA with explain 
prompt (yes/no) and compare prompt (yes/no) as between-
subjects factors and total number of rules discovered (0-4) 
as a dependent measure revealed no effects of condition (ps 
> .15). We thus considered whether discovery of the 100% 
and 75% rules varied across study conditions (see Fig. 2). 

A log-linear analysis of explain prompt (yes/no) × 
compare prompt (yes/no) × discovered a 100% rule (yes/no) 
revealed that performing the explanation task made 
participants significantly more likely to discover at least one 
of the two 100% rules, χ2(1) = 21.4, p < .001. Performing 
the comparison task had the opposite effect: participants 
were less likely to discover a 100% rule, χ2(1) = 5.90, p = 
.015. There was no significant interaction (p = .67). A 
comparable analysis on discovery of a 75% rule (yes/no) 
found that performing the explanation task made 
participants less likely to report a 75% rule, χ2(1) = 11.3, p 
< .001, with no effect of the comparison task, p = .75.  

 
Figure 2: Rule discovery by study condition in Exp. 1, 

showing the percent of participants discovering at least one 
rule of each type. 

 
These findings challenge our predictions in that a 

comparison prompt actually impaired 100% rule discovery, 
and that explanation and comparison did not have additive 
benefits. The findings do support the idea that explanation 
and comparison exert distinct constraints on learning, but 
raise an important puzzle: why didn’t comparison – which 
has been shown to have robust and beneficial effects in 
other domains – improve performance on this task? We 
analyzed participants’ self-reported explanation and 
comparison to better understand why the comparison task 
impaired performance, and in particular, whether the study 
prompts were effective at promoting explanation and 
comparison processes as intended. 

A 2 × 2 ANOVA with explanation task (yes/no) and 
comparison task (yes/no) as between-subjects factors and 
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amount of self-reported explanation as the dependent 
variable showed that participants who performed the 
explanation task reported more explanation (M = 5.83, SD = 
1.46) than participants who did not (M = 4.36, SD = 2.09), 
F(1, 154) = 27.7, p < .001. Additionally, participants who 
performed the comparison task reported doing less 
explanation (M = 4.75, SD = 2.06) than participants who did 
not (M = 5.49, SD = 1.73), F(1, 154) = 7.26, p = .008. Self-
reported explanation was positively correlated with the 
number of 100% rules discovered, r = .34, p < .001. 

A 2 × 2 ANOVA with explanation task (yes/no) and 
comparison task (yes/no) as between-subjects factors and 
amount of self-reported comparison as the dependent 
variable showed that participants who performed the 
explanation task reported doing more comparison (M = 
5.62, SD = 1.64) than participants who did not (M = 4.69, 
SD = 2.05), F(1, 155) = 10.2, p = .002. However, 
performing the comparison task did not affect the amount of 
reported comparison (Comparison: M = 5.13, SD = 1.92; No 
comparison: M = 5.21, SD = 1.89). Self-reported 
comparison was positively correlated with the number of 
100% rules discovered, r = .22, p = .006, but the effect was 
not significant after controlling for reported explanation.  

Two factors might help explain why the comparison task 
did not support discovery of the 100% rules. First, the 
comparison prompt failed to boost overall comparison (as 
reflected in self-reports), and additionally decreased self-
reported explanation, which was beneficial to learning. 
Second, the comparison prompt may have constrained the 
particular types of comparisons that participants performed 
in unhelpful ways, restricting them to within-category, 
pairwise comparisons at the expense of between-category 
comparisons or category-wide comparisons. In particular, 
previous work has shown that between-category pairwise 
comparison can be more effective than within-category 
pairwise comparison for learning feature-based categories 
(Higgins & Ross, 2011). The subsequent experiments 
evaluated these hypotheses by investigating whether 
between-category comparison (Experiment 2) or “group” 
comparison (Experiment 3) would support greater rule 
discovery than within-category pairwise comparison. 

Experiment 2 

Method 
Participants One-hundred-sixty-one adults participated in 
the study through the Amazon Mechanical Turk 
marketplace. An additional 54 participants were tested, but 
were excluded because they failed a catch trial or because 
they had previously completed a similar experiment. 
Participants were paid for their participation. 
 
Materials The stimuli were those in Experiment 1.  
 
Procedure As in Experiment 1, the procedure consisted of a 
study phase followed by a rule-reporting phase.  

The study phase was identical to Experiment 1 with the 
following changes. First, the total study time was reduced 
from 640 seconds to 360 seconds, with the time allotted for 
each study prompt reduced proportionally. Second, each 
participant was assigned to one of four study conditions: (1) 
the Experiment 1 explanation task, (2) the Experiment 1 
within-category pairwise comparison task, (3) a between-
category pairwise comparison task, or (4) an explanation 
task in which participants alternated explaining Glorp and 
Drent robots. Conditions (3) and (4) are described below. 

Between-category pairwise comparison task: “What are 
the similarities and differences between Glorp robot X and 
Drent robot Y?” The comparisons were performed in the 
following order: A and H, B and F, C and G, D and E. 

Between-category explanation task: This task was 
identical to the Experiment 1 explanation task except that 
the robot study order matched the between-category 
pairwise comparison task. 

The rule-reporting phase was identical to Experiment 1. 
After the rule-reporting phase, but before the debriefing 
questions, participants completed a recognition memory 
task. However, performance was very poor and did not 
differ across conditions; this task is not discussed further. 

After completing the memory task, participants answered 
debriefing questions regarding the extent to which they (1) 
generated explanations, (2) made within-category 
comparisons, (3) made between-category comparisons, and 
(4) described the features of individual robots, all regardless 
of the task instructions. As in Experiment 1, participants 
were asked if they had previously completed a similar 
experiment and answered a “catch trial” question. 

Results and Discussion 
We first analyzed the total number of rules discovered (0-4) 
in a 2 × 2 ANOVA with study task (explain/compare) and 
study order (between/within) as between-subjects factors. 
The explanation task resulted in a marginal increase in the 
total number of rules discovered, F(1, 157) = 3.62, p = .059. 

Figure 3: Rule Discovery by Condition in Exp. 2 
 

A log-linear analysis of study task (explain/compare) × 
study order (between/within) × discovered a 100% rule 
(yes/no) found that participants who performed the 
explanation task were more likely to discover a 100% rule 
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than participants who performed the comparison task, χ2(1) 
= 10.0, p = .002 (see Fig. 3), with no effect of study order. 
An equivalent analysis on discovery of a 75% rule (yes/no) 
found no effect of condition, χ2(1) = .57, p = .45. 

As in Experiment 1, we found that the explain prompt 
was successful in boosting self-reported explanation 
(relative to compare), F(1, 149) = 26.9, p < .001, but that the 
compare prompt was not effective in boosting self-reported 
comparison (between-category comparison + within-
category comparison). In fact, participants prompted to 
explain reported significantly higher levels of total 
comparison that participants prompted to compare, p = .005. 

These results suggest that the poor performance of 
participants prompted to compare in Experiment 1 was not 
due to the restriction to within-category comparisons. 
Experiment 3 thus considers whether a broader within-
category comparison, one that focuses on all four items at 
once, might lead to better learning. 

Experiment 3 

Method 
Participants One-hundred-ninety-three adults participated 
in the study through the Amazon Mechanical Turk 
marketplace. An additional 60 participants were tested, but 
were excluded because they failed a catch trial or because 
they had previously completed a similar experiment. 
Participants were paid for their participation. 
 
Materials The stimuli were those in Experiments 1-2.  
 
Procedure As in Experiments 1-2, the procedure consisted 
of a study phase followed by a rule-reporting phase.  

The study phase was identical to Experiment 2 except that 
the four study conditions were as follows: (1) the 
explanation task from Experiments 1-2, (2) the within-
category pairwise comparison task from Experiments 1-2, 
(3) a group comparison task in which participants 
simultaneously compared all four robots in each category, 
or (4) a group explanation task. Conditions (3) and (4) are 
described below. As in Experiment 2, the total study time in 
each condition was 360 seconds. 

Group comparison task: “What are the similarities and 
differences between the Glorp robots (Robots A-D)?” After 
participants responded to this prompt, they received a 
similar prompt for the Drent robots. 

Group explanation task: “Try to explain why robots A-D 
are Glorp robots.” After participants responded to this 
prompt, they received a similar prompt for the Drent robots. 

The rule-reporting phase was identical to Experiments 1 
and 2. After completing the rule-reporting phase, 
participants received the same debriefing questions as in 
Experiment 2. No memory task was included in this study. 

 
Results and Discussion 
We first analyzed the total number of rules discovered (0-4) 
across each of the four study conditions. A one-way 

ANOVA revealed a significant difference in number of 
rules discovered, F(3, 189) = 4.74, p = .003. A Tukey post-
hoc analysis showed that participants who performed 
pairwise comparisons discovered significantly fewer rules 
than participants who performed individual explanations (p 
= .013) or group explanations (p = .005), and marginally 
fewer rules than participants who performed group 
comparisons (p = .068). 

 
Figure 4: Rule Discovery by Study Condition in Exp. 3 

 
We next analyzed whether the proportion of participants 

who discovered at least one 100% rule varied across 
conditions (see Fig. 4). A log-linear analysis of study task × 
discovery of at least one 100% rule (yes/no) found a 
significant effect of study task on whether participants 
discovered a 100% rule, χ2(3) = 26.4, p < .001. Additional 
log-linear analyses found no difference in performance 
between the group comparison, group explanation, and 
individual explanation conditions, χ2(1) = 4.12, p = .13; 
however, the pairwise-comparison prompt was significantly 
less effective than the other three, χ2(1) = 22.3, p < .001, 
including the group-comparison condition, χ2(1) = 6.86, p = 
.009. A log-linear analysis of study task × discovered a 75% 
categorization rule (yes/no) found that the study task did not 
affect whether participants discovered a 75% rule, χ2(3) = 
.54, p = .91. 

These results suggest that the pairwise comparison 
condition was relatively ineffective not because comparison 
is an ineffective category learning strategy more generally, 
but instead because participants in the pairwise comparison 
condition focused on a prescribed set of comparisons 
involving two items at a time. When it comes to category 
learning, it may be important to consider the global structure 
of categories to effectively assess the cue and category 
validities of different features.  

General Discussion 
The present study investigated whether generating 
explanations and making comparisons would improve 
people’s ability to discover rules that could be used to 
categorize a set of novel objects. All three experiments 
found that performing an explanation task enhanced 
discovery of categorization rules that could account for all 
cases; however, the effects of the comparison tasks were 
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more varied. Performing either within-category or between-
category pairwise comparisons did not support rule 
discovery. However, comparing all the category exemplars 
in each group did increase 100% rule discovery.  

Our results are consistent with previous work 
demonstrating that engaging in explanation supports 
learning. In particular, we replicate the results of studies that 
have used similar materials (Williams & Lombrozo, 2010, 
2013). In the present study, the explanation task succeeded 
in helping participants discover abstract patterns that unified 
each of the categories. Furthermore, the explanation task 
stimulated spontaneous comparison, allowing participants to 
reap the benefits of comparison even if they were not 
explicitly asked to compare. 

Surprisingly, we find that under some conditions 
engaging in a pairwise comparison task can impair learning. 
However, other types of comparison, such as comparing all 
the exemplars in each category, did promote learning, 
suggesting that comparison can be an effective strategy for 
learning novel categories. But importantly, some 
comparison prompts are more effective than others (see also 
Rittle-Johnson & Star, 2009), and comparison prompts may 
be most effective when they stimulate a broad range of 
comparison processes. One question for future research is 
whether the combination of within-category and between-
category pairwise comparisons can in fact be beneficial, or 
whether “group” comparison provides unique advantages. 

It is also worth pointing out some of the limitations of this 
study. Overall, the eight robots were highly similar and 
easily alignable. This might explain why spontaneous 
comparison was so common among participants who 
completed the explanation task. The high rates of 
spontaneous comparison make it difficult to differentiate 
effects of explanation from effects of comparison; the 
question of whether explanation and comparison exert 
unique constraints on learning may be easier to address with 
a task that more effectively isolates each process. 

In future work, we hope to explore whether explanation 
and comparison have additive effects in more difficult 
learning tasks, where we also anticipate benefits to 
comparing (to align features) before explaining (to identify 
patterns). More research is needed, but the present studies 
provide important steps towards understanding the 
relationship between explanation and comparison and how 
these processes can most effectively support learning. 
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