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Abstract 

Category information is used to predict unknown properties 
of category members. Previous research has found that when 
categorization is uncertain, property predictions do not reflect 
integration of information across categories as normative 
principles and Bayesian models would suggest. Rather, 
people often base their predictions on only the most likely 
category and disregard information from less likely ones. 
Research in category-based induction tends to elicit explicit, 
verbal responses which may not readily allow for integration 
of information across categories. This paper explores whether 
changing response mode can promote more normative use of 
category information in induction. Experiment 1 used an 
implicit measure of prediction: eye movements. The results 
suggest that when making predictions implicitly people 
integrate information across categories. The results of 
Experiment 2 suggest that the integration of information 
found in Experiment 1 were not a result of explicit strategies. 

Keywords: category-based induction; reasoning; implicit 
processes. 

Introduction 
The ability to use category-level information to infer 
information about novel objects aids our reasoning, social 
interactions, communication and predictions. By placing an 
object into a category, we can make predictions about it 
even though we have never encountered that particular 
object before. Because you know about the category of 
Chinese food in general, when you see some Chinese food 
cartons in your refrigerator you know that there is some 
chance that the food is spicy, but it’s likely not. For our 
purposes, category-based induction refers to a process like 
the one described above (the extension of category 
information to a new item in that category). This process 
becomes more complicated when you are unsure what 
category an item belongs to. Imagine that your roommate 
has left unmarked cartons of leftover food in the 
refrigerator, and you can’t tell whether they hold bland 
Chinese or spicy Indian food. Do you take an acid reducer 
before eating? You must make a prediction about the food's 
spiciness based on the characteristics you can observe. 

To decide whether the food will be spicy, you should take 
into account both the possibility that it is Chinese food and 
the possibility that it is Indian food. This type of reasoning 

is consistent with Bayesian approaches to classification and 
prediction in which people weight different possibilities by 
their prior likelihoods. Anderson (1991) proposed such a 
model of category-based induction1 in which the probability 
that an object with observed features, F, has an unobserved 
feature, j, is the weighted sum of the probabilities across all 
categories, k (assuming they are mutually exclusive): 

 
                    P(j | F) = Σ P(k | F) x P(j | k).                     (1) 
                                     k 
 
Thus, if you were a Bayesian food thief you would take 

the probability that the unknown food is Chinese food and 
multiply that by the probability that Chinese food is spicy. 
Next you would take the probability that the food is Indian 
food and multiply that by the probability that Indian food is 
spicy. The sum of the two products is the probability that 
the food is spicy. This appears normatively correct, since it 
takes into account your uncertainty and weighs the strength 
of the prediction accordingly. If very certain that the food is 
Chinese food you should make a moderate prediction about 
the likelihood of it being spicy; if uncertain, you should 
make a stronger prediction. Surprisingly, however, previous 
research on induction with uncertain categories has provided 
evidence using both real-life and artificial categories that 
people usually base their induction on only a single category 
(Hayes & Newell, 2009; Malt, Ross, & Murphy, 1995; 
Murphy, Chen, & Ross, 2012; Murphy & Ross, 1994). 

These findings are in contrast to those of perception and 
motor control research that often find that people integrate 
information across possibilities in a Bayesian manner 
(Kersten, Mamassian, & Yuille, 2004; Tassinari, Hudson, & 
Landy, 2006; Trommershäuser, Landy, & Maloney, 2006; 
Trommershäuser, Maloney, & Landy, 2008). In perception, 
Bayesian models are used to explain how the visual system 
takes ambiguous inputs and returns percepts that are most 

                                                             
1 In all our experiments, the categories are novel and equally 

probable, so we omit the prior probability component of Bayesian 
reasoning. We continue to use the term Bayesian because of the 
common feature of Bayesian models of induction that predictions 
are integrated across multiple categories, weighted by their 
likelihood. 
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likely. People use knowledge about prior probabilities of 
states of the world and the likelihood of each state given the 
visual stimulus to arrive at the most probable interpretation 
of the stimulus (Kersten et al., 2004). In motor control, one 
action may be best suited to achieve a goal, given the state 
of the world. But since perception is not perfect, the state of 
the world is uncertain. Models of action propose that people 
integrate information about the likelihood of the possible 
states of the world to make near optimal actions (Haruno, 
2001). These actions are sensitive to the payoff structure of 
the task: Subjects make motor decisions that minimize 
costs, given the uncertainty of different motor outcomes and 
the costs and benefits associated with each action 
(Trommershäuser, Landy, & Maloney, 2006; 
Trommershäuser, Maloney, & Landy, 2008). 

Why might people be unable, or unwilling, to combine 
information about two categories in category-based 
induction tasks, but are able to integrate across possibilities 
and weigh costs and benefits in seemingly more complex 
perception-action tasks? We suggest that this discrepancy 
can, in part, be explained by the distinction between implicit 
and explicit processes (Sloman, 1996). Explicit processes 
are conscious and rule-based, while implicit processes are 
unconscious and associative. Explicit reasoning is subject to 
a reasoning heuristic called the singularity principle, which 
states that people generally only consider one possibility at a 
time (Evans, 2007). More specifically, we suggest that 
response mode is critical to whether information is 
integrated across categories. In category-based induction 
tasks, subjects often explicitly report what category they 
think an item belongs to prior to making a prediction. In 
contrast, perception and motor control experiments tend to 
depend on implicit responses. Subjects in these experiments 
are not asked to explicitly consider the potential possibilities 
(states of the world) but are instead prompted to act on this 
information (often, but not always, with a motor response). 

Chen, Ross, & Murphy (in press) provided evidence that 
implicit and explicit responding lead to different use of 
category information during induction. In one experiment, 
subjects learned artificial categories of moving geometric 
figures defined by two features: shape and direction. At test, 
subjects were presented with a shape and asked to predict its 
direction either implicitly or explicitly. The implicit test was 
a novel, game-like motor task that elicited a speeded 
prediction, and the explicit test was a formally identical 
verbal task that elicited a conscious, unspeeded prediction. 

The categories consisted of eight moving geometric 
figures (see Table 1). There were two critical shapes of 
interest: squares and hearts. Each of these shapes belonged 
to one of two categories, the target or secondary categories. 
The target category is the category that the shape is most 
likely to be in given its distribution in the categories. For 
example, there was a 66% chance that a square belonged to 
Category 1, the target category, and a 33% chance that it 
belonged to Category 2, the secondary category (that is, 
there were eight squares in Category 1 and four in Category 
2). In the target category, half of the squares moved in the 1 

o’clock direction and half moved in the 5 o’clock direction. 
In the secondary category, the critical shapes moved in only 
one direction. In Condition 1, the squares moved to 1 
o’clock; in Condition 2, which served to counterbalance the 
direction of the secondary category, they all moved to 5 
o’clock. Therefore, if people only attend to the target 
category in predicting the direction of a new square, they 
should be indifferent between predicting movement toward 
1 and 5 o’clock, and thus their average prediction should be 
around 3 o’clock. If they attended to both the target and 
alternative categories, they should have a preference, 
because the alternative category (Category 2) would break 
the tie (in different directions in the two conditions). 

This design was replicated for another stimulus and other 
directions: For hearts, the target category was Category 4, 
and half of the hearts moved in the 11 o’clock direction and 
half moved in the 7 o’clock direction. The secondary 
category was Category 3, and its hearts moved either toward 
11 or 7 o’clock, depending on condition (see Table 1). Thus, 
if people integrated information across categories they 
would shift their predictions depending on what condition 
they are in, that is, depending on the less likely, secondary 
category. All subjects went through an identical learning 
phase in which they learned all four categories, based on the 
objects’ shapes and direction of movement. 

For the implicit test, subjects saw each shape presented 
briefly in the center of the screen before it rapidly moved off 
the screen in one of the learned directions. The subjects’ 
task was to catch the shape with their cursor before it 
disappeared from the screen. Subjects were unable to catch 
the shapes in the middle of the screen, so they had to place 
their cursor towards the edge of the screen. Subjects 
controlled cursor placement and movement with the mouse. 

For the explicit test, subjects were presented with static 
shapes and asked three questions about them: what category 
the shape was most likely to belong to, the probability their 
categorization was correct, and what direction the shape was 
most likely to travel in. 

Subjects performed both the implicit and explicit 
induction tasks (order of tasks was counterbalanced). The 
results revealed that the exact same category knowledge led 
to significantly different inductions. Implicit inductions 
were, on average, shifted towards the secondary category, 
showing evidence of integration of information across 
categories. Explicit inductions showed no evidence of 
normative integration across categories. This pattern of 
results suggests that response mode is critical in determining 
how category information is used in induction. This is not to 
say that all things that make categories implicit lead to 
integration across categories. In Experiment 4 of Chen et al. 
(in press), subjects learned categories implicitly and made 
predictions explicitly. These predictions showed no 
evidence of integration of information across categories. 

While these results suggest that implicit response 
promotes integration of information across categories, they 
are in contrast to much research on category-based 
induction under uncertainty which has consistently found  
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that most people based their inferences on only a single 
category. In Experiment 1, we seek to replicate this result 
with a different implicit measure of induction: eye 
movements. In Experiment 2, we provide evidence that 
subjects are not consciously aware of the strategies used in 
this implicit induction task. 

Experiment 1 
To examine whether subjects would integrate information 
across categories when making predictions implicitly, 
Experiment 1 used a cover task, in which predicting 
movement was incidental. Subjects learned the four 
categories of moving shapes used in Chen et al. (in press). 
During test they performed a cover task (same/different 
task) in which they saw the shapes appear in the center of 
the screen. The shapes were the same as the ones subjects 
had learned, except they now had diagonal stripes that were 
either tilted right or left. After their initial presentation in the 
center, the shapes moved towards the edge of the computer 
screen but momentarily disappeared behind an annulus that 
was on the test screen such that subjects were unable to tell 
which direction the shape was going to move. Shapes 
briefly reappeared from behind the annulus and then 
disappeared off the edge of the screen. When the shapes 
reappeared from behind the annulus, their stripes may have 
reversed their tilt (e.g., from left to right). Subjects’ task was 
to report whether the tilt of the stripes was the same or 
different from when it appeared in the center of the screen. 

Thus, subjects were never asked to predict direction or 
category as they were only questioned about the stripes. 
However, since the shapes only reappeared briefly, looking 
close to where they reappeared improved performance (e.g, 
for squares, it would be beneficial to look near 1 o’clock or 
5 o’clock depending on where you thought it would go). 
Position of eye gaze just prior to the shape’s reappearance is 
the dependent measure as it is a proxy for subjects’ 
prediction of shape direction. If subjects integrate 
information across categories, fixations should, on average, 
be shifted towards the direction of the secondary category. 

 
 

Method 
Design Subjects were randomly assigned to one of two 
between-subjects conditions. The conditions served to 
counterbalance the direction of the secondary categories. 
Participants Subjects were 32 undergraduates at New York 
University who participated for course credit. Data from 
eight subjects were dropped for not fixating prior to the 
shape’s reappearance on at least five trials. One subject was 
dropped for not reaching the performance criterion during 
learning. 
Materials Stimuli for each category were 8 black shapes 
approximately 1.75 to 2.5 cm in length, as shown in Table 
1. The same shapes were used during test except they had 
stripes (see Figure 1). The category structure was the same 
as that used in Chen et al. (in press). See Table 1 for details. 

All stimuli were presented on the background of a light 
gray circle 30 cm in diameter centered on a black computer 
screen. Stimuli started in the center of the screen and then 
moved off the screen disappearing once they moved beyond 
the border of the circle. Eye movements were monitored 
with the SR Research (Ontario, Canada) EyeLink 1000. 
Procedure The experiment consisted of three phases: 1) 
observation, 2) learning, and 3) test. A Macintosh computer 
presented the instructions and controlled all three phases. 
Eye movements were recorded during the test phase only.  

Subjects were told that they would view four categories of 
moving shapes and were to learn what combination of 
shapes and directions belonged to each category for a 
memory test. During observation, all shapes from each 
category were presented singly. Each shape appeared in the 
center of the screen for 1 s, then moved horizontally 
(towards 3 o’clock for shapes in Categories 1 and 2, towards 
9 o’clock for Categories 3 and 4) for .4 s, and then moved 
towards its assigned clock direction for .95 s until it 
disappeared off the edge of the gray circle (see Table 1 for 
directions). Each shape’s category name appeared in the 
center of the screen for the entire time it was on the screen. 
All exemplars from Category 1 were presented, then all 
exemplars from Category 2, and so on. 

Subjects were next told that they would see the same 
items as in the observation phase. They were to classify 

Table 1: Category Structure used in Experiments 1 and 2 (and Chen et al., in press) 
 
  Category 1 

(target for squares) 
 Category 2 
(secondary for squares) 

 Category 3 
(secondary for hearts) 

 Category 4 
(target for hearts) 

Exemplar  Shape Direction  Shape Direction*  Shape Direction*  Shape Direction 
1  Square 1  Square 1/5  Heart 7/11  Heart 7 
2  Square 1  Square 1/5  Heart 7/11  Heart 7 
3  Square 1  Square 1/5  Heart 7/11  Heart 7 
4  Square 1  Square 1/5  Heart 7/11  Heart 7 
5  Square 5  Rectangle 1/5  Diamond 7/11  Heart 11 
6  Square 5  Rectangle 1/5  Diamond 7/11  Heart 11 
7  Square 5  Rectangle 1/5  Diamond 7/11  Heart 11 
8  Square 5  Rectangle 1/5  Diamond 7/11  Heart 11 
Note. The direction entries are clock directions (1 = 1 o’clock, etc.).  
*The first number refers to the direction in condition 1, the second to condition 2. 
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each shape into one of the four categories by pressing a 
number key on the keyboard. At the beginning of each trial, 
a white fixation cross appeared in the center of the screen 
for 1 s. The shape then moved as they did in the observation 
phase. There was no time limit on responding. After 
answering, the correct answer appeared for 1.25 s. After an 
error, subjects viewed a repeat display (without responding) 
of the moving shape with the correct category displayed. 
There were four learning blocks in which each of the 32 
items was tested in random order. Because of the category 
uncertainty of the critical items (e.g., a square could be in 
Categories 1 or 2), subjects could get no more than 75% 
correct, assuming they chose the most likely category for all 
presented stimuli. In all experiments subjects had to reach at 
least 50% correct during the final block of learning to be 
included in analysis. 

The final phase of the experiment consisted of a 64-trial 
test in which subjects had to perform the same/different task 
while their eye movements were tracked by the EyeLink 
1000. Subjects saw the same items they had seen in the 
previous phases except that the shapes would now move a 
little bit faster and have diagonal stripes on them. These 
shapes would appear in the center of the screen (for 1 s) and 
continue to move along the same path as in previous phases. 
However, there was now a black annulus on the screen such 
that the shape would move horizontally (for .25 s) and then 
disappear behind the annulus for .7 s. The shape would then 
reappear from behind the annulus just before it disappeared 
from the screen. (After the shape’s reappearance from 
behind the annulus it was visible for .15 s before it 
disappeared.) Recall that all stimuli were presented on a 
gray circle 30 cm in diameter. The annulus (24 cm in 
diameter) was centered on this image. Its center hole had a 
diameter of 8 cm (see Figure 2). 

The stripes on a test object were either tilted left or right 
when the shape initially appeared (see Figure 1). The 
subjects’ task was to report whether the direction of the 
stripes was the same or different when it reappeared. The 
direction of stripes remained the same for half of the trials 
and changed for the other half. Subjects saw a 1.25 s 
feedback message. There were five practice trials prior to 
the test phase. As shapes only briefly reappeared from 
behind the annulus, looking close to where shapes 
reappeared was beneficial. Thus, fixation location just prior 
to the shape’s reappearance was used as a proxy for 
prediction of direction and as the dependent measure. 
(Recall that horizontal movement for the critical shapes did 
not indicate its category as the horizontal direction was the 
same for Categories 1 and 2, and Categories 3 and 4.) 

 
 

Figure 1: Example of stimuli used in the test phase of 
Experiments 1 and 2. 

 

 
Figure 2: Illustration of the implicit induction task. The 

shape appeared in the center of the screen for 1s. It then 
moved horizontally for .25 s and disappeared behind the 
annulus while traveling on its path (learned in phase 1). 

Subjects reported whether the diagonal lines had changed 
when it reappeared. Arrows indicate the shape’s path when 

it was visible and did not appear in the experiment. 
 
Data Analysis Responses for critical shape trials were 
coded such that a position exactly in between the two 
possible directions of the shape was 0 degrees, and a shift 
from that point towards the direction reinforced by the 
secondary category was coded as positive. For example, for 
the squares in Condition 1 (which might move to 1 o’clock 
or 5 o’clock), the 3 o’clock position was 0 degrees, the 1 
o’clock position (the direction of the secondary category) 
was 60 degrees, and the 5 o’clock position was -60 degrees. 
In Condition 2, the latter values were reversed. We obtained 
the mean fixation position for each subject by averaging the 
mean fixation position for squares and hearts. Thus, use of a 
single category (i.e., use of only the target category) is 
evidenced by an average prediction of 0 deg. Normative use 
of categories is evidenced by a positive average prediction, 
as this represents a shift from 0 deg in the direction of the 
secondary category. 

Trials in which the fixation position was greater than 100 
degrees or less than -100 degrees were not included in the 
analysis because the subject was fixated on the opposite side 
of the screen from where the shape traveled, indicating that 
the subject either forgot where the shapes went, or did not 
see the shape correctly prior to its movement. Additionally, 
trials where fixation was within the hole of the annulus were 
excluded from analysis. When subjects looked at the center 
of the screen while doing the task, they were effectively not 
making a prediction about direction. 

 
Results & Discussion 
Subjects were on average 66.4% correct (chance = 25%) 
during their last training block, suggesting that they learned 
the categories quite well. (Recall that maximum 
performance was 75%, if subjects always classified 
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ambiguous items into the most likely category.) 
Performance on the same/difference task averaged 72%. 

As explained above, integration of information across 
categories is evidenced by a shift from 0 deg in the direction 
of the secondary category, which we coded as positive. This 
is indeed what we found. The mean fixation position for the 
critical shapes, (M = 7.5 deg, SD = 8.9), was significantly 
greater than 0 deg, t(23) = 4.1, p < .01, d = .84, indicating 
that people’s predictions of direction were integrated across 
the two categories. The mean fixation position was positive 
for 21 of the 24 subjects. These results are consistent with 
those of Chen et al. (in press) and suggest that implicit 
induction promotes integration of information across 
categories. A question for future research will be to examine 
how categories are used during implicit induction. The 
multiple category use found in Experiment 1 may be a result 
of a feature-level strategy (e.g., using information about 
only squares when making a prediction about where a 
square will go) rather than a category-level strategy like that 
described in Eq 1 (see Griffiths et al., 2011, for similar 
ideas). 

Perhaps subjects did not truly induce the objects’ 
direction but learned to change their eye movements via 
practice in doing the task. To examine this possibility we 
compared the mean fixation position for the first and second 
blocks of testing. The difference between the mean fixation 
positions for the first and second blocks was not significant 
(Ms = 6.2 and 8.8 deg, SDs = 9.1 and 11.9), t(23) = 1.0, p 
>.05, d = .25 suggesting that subjects’ normative use of 
categories was not a result of learning during test. The 
positive shift in eye movements was significant in block 1, 
t(23) = 3.3, p < .01, d = 6.8, and in block 2, t(23) = 3.6, p < 
.01, d = .76. 

Experiment 2 
Experiment 1 revealed that people use information from 
multiple categories when making inductions implicitly. 
However, it is possible that the placement of eye fixation 
was not the result of implicit processes but instead the result 
of a conscious strategy (i.e., after practice subjects could 
have realized that they would perform better when they 
looked closer to the direction reinforced by the secondary 
category). Experiment 2 tested this explanation. Subjects 
completed the full learning procedure of Experiment 1. 
They then saw a few example trials of the same/different 
task and then reported (using feedback from the eyetracker) 
where they would look to best perform the task. This 
question sampled subjects’ explicit beliefs about where they 
would look. If the results match those of Experiment 1, this 
would suggest that the fixations were the result of an 
explicit strategy. 

 
Method 
Participants Subjects were 21 New York University 
undergraduates who participated for course credit. Data 
from four subjects were dropped for not fixating on at least 

three trials. One more subject was dropped for not reaching 
the performance criterion during learning. 
Materials and Design Identical to Experiment 1. 
Procedure The procedures of the observation and learning 
phases were identical to those used in Experiment 1. As 
with Experiment 1, eye movements were only recorded 
during the test phase. The test phase consisted of a 16-trial 
test in which subjects were asked to report where they 
would look in order to best do the same/different task that 
subjects in Experiment 1 performed. Subjects saw the same 
five practice trials used in Experiment 1 and then were told 
that they would not be doing the task but rather reporting 
where they would look just prior to the shape’s 
reappearance from behind the annulus to best do the task. In 
order to keep the dependent measures of the two 
experiments similar, we used eye position to indicate this 
prediction. A white dot on the display indicated where the 
subjects were looking. The task was to look at the location 
on the screen that they thought would be best to do the 
same/different task they had just observed. They then saw a 
test screen (gray circle with the annulus) and were instructed 
to look around the screen to get a sense of how the white dot 
corresponded to their eye gaze. 

The test phase consisted of four blocks in which each 
shape was tested once in random order (except that shapes 
were not queried twice in a row). Each test trial started with 
the presentation of the shape in the center of the screen for 1 
s. It then moved horizontally for .25 s until it disappeared 
behind the annulus (the shape never reappeared). Subjects 
then saw the white dot that marked their eye gaze on the 
screen. To report their location, subjects moved their eyes 
until they were satisfied with the location of the white dot 
and then pressed the enter key. The white dot stayed on the 
screen for 1.25 s so that the subjects could see their answer. 
 
Results & Discussion 
Subjects were on average 68.2% correct (chance = 25%) 
during their last training block, near the 75% maximum, 
suggesting that they learned the categories quite well. 

As in the analysis of Experiment 1, subjects’ responses 
for the critical shapes were coded such that the time 
corresponding to the point exactly in between the two 
possible directions of the shape was 0 degrees (3 o’clock for 
squares and 9 o’clock for hearts, and a shift towards the 
direction reinforced by the secondary category was 
positive). To find the mean prediction (the amount of shift 
from 0 deg towards the secondary category) for each 
subject, we calculated the mean prediction for each shape 
and took the average of the two. The mean prediction (M = 
0.2 deg, SD = 2.9 deg) was not significantly different than 
the average observed direction for the shapes in their target 
category only (0 deg), t(15) = 0.2, p > .05, d = .07, 
suggesting that subjects were not basing their responses on 
multiple categories. Subjects chose locations around 0 deg 
the majority of the time. In fact, 84% of all responses were 
with within 10 deg of 0 deg. In contrast, in Experiment 1, 
only 25% were in this range. 
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These predictions from this experiment show no 
integration of information across categories. This suggests 
that the integration of information across categories found in 
Experiment 1 was not the result of a conscious decision or 
strategy and provides further evidence that response mode is 
critical to how category information is used in induction. 

General Discussion 
The results of Experiment 1 suggest that people integrate 
information across categories when making inductions 
implicitly. The results of Experiment 2 revealed that explicit 
prediction of eye fixation position in the same/different task 
showed no evidence of integration of information, 
suggesting that subjects were unaware of the strategies used 
to perform the task. Taken together, these results suggest 
that response mode is critical in determining when people 
integrate information across categories when making 
inductions and that the single category focus found in 
previous research on category-based induction may result 
from conscious reasoning strategies. These results are 
consistent with the findings of Chen et al. (in press), that 
speeded catching of a stimulus also showed integration 
across categories, but verbal predictions did not. These 
results also help explain the discrepancy between studies of 
induction in reasoning vs. perception and action. 

Our findings suggest that implicit responses can, at least 
sometimes, lead to greater use of available information than 
our conscious, explicit responses do. This is particularly 
important because many everyday predictions are about 
items whose categorizations we may be unsure of. Doctors 
may have to predict which treatment is most likely to work 
even though they are not certain what the correct diagnosis 
is. A person who is walking alone at night and sees an 
unknown person approaching may have to decide whether 
to avoid the person despite being unsure whether that person 
belongs to the category of mugger or pedestrian. The results 
of the present experiments help in understanding which 
situations and contexts people are most likely to consider 
alternative possibilities and make predictions based on 
relevant information from them. 

Additionally, many of these inferences can be made either 
implicitly or explicitly (e.g., one might run upon seeing an 
unknown person approaching, but given more time, one 
may exclude less likely possibilities and act as if certain that 
the unknown person is a pedestrian). In fact, in social 
psychology, a similar distinction has been made between 
automatic and controlled processes in prejudice. Automatic 
processes are often associated with stereotype activation (a 
type category-based induction) which, in low-prejudice 
people, conflicts with explicit attitudes and is inhibited in 
favor of explicit beliefs (Devine, 1989). Thus, the explicit 
system’s bias to disregard or avoid information from 
alternative categories (that made it less normative in our 
task) could, in other cases, lead to more normative 
responses. Our research shows that this distinction is crucial 
for understanding when category-based predictions are more 
likely to be accurate or inaccurate. 
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