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Abstract 

Recent studies have shown that the involvement of semantic 
information in visual lexical decision depends on the nature of 
nonword foils with semantic effects increased as nonwords 
become more word-like (Evans, Lambon Ralph &Woollams, 
2012). Given that most models of lexical decision focus on 
orthographic information (Coltheart, Rastle, Perry, Langdon 
& Ziegler, 2001; Grainger & Jacobs, 1996; Seidenberg & 
McClelland, 1989), the role of semantics and its interactions 
with vision, orthography, and phonology has been 
overlooked. We developed a recurrent connectionist model of 
single word reading including visual, orthographic, 
phonological, and semantic processing. The model 
differentiated words from nonwords by integrating measures 
of polarity across four key processing layers. The contribution 
of semantics depended on the type of nonword foils. The 
model was more reliant on semantic information when the 
nonword foils were pseudowords and pseudohomophones 
rather than consonant strings. The results support the view 
that semantic involvement in lexical decision is graded by the 
difficulty of the decision task. 

Keywords: semantic effects; lexical decision; reading; 
computational modelling; visual word recognition. 

Introduction 

Lexical decision (LD) has been widely used to study the 

cognitive processes involved in visual word recognition. 

Subjects are asked to judge whether a letter string is a word 

or not. Measures of accuracy and response time are thought 

to reflect the differences in lexical-semantic processing of 

words and nonwords. There seems to be consistent evidence 

that vision, orthography and phonology play roles in visual 

lexical decision (Coltheart, Davelaar, Jonasson, & Besner, 

1977; Grainger & Jacobs, 1996; Meyer, Schvanev, & 

Ruddy, 1974), however the extent of the involvement of 

semantics in lexical decision remains debateable (James, 

1975; Joordens & Becker, 1997; Lupker & Pexman, 2010). 

James (1975) showed a reliable concreteness effect during 

lexical decision when using pseudoword and 

pseudohomophone foils, while the effect disappeared when 

testing with consonant strings. He suggested subjects might 

be able to exploit semantic information to support efficient 

LD. Although some subsequent studies have found reliable 

semantic influences on lexical decision under different foil 

conditions (Joordens & Becker, 1997), others have failed to 

find such effect (Lupker & Pexman, 2010). Evans, Lambon 

Ralph and Woollams (2012) demonstrated that semantic 

involvement in lexical decision was graded by the difficulty 

of the decision task as indexed by the word-likeness of the 

foil. There were stronger semantic effects with 

pseudohomophones than with pseudowords, and the effects 

were stronger with pseudowords than with consonant 

strings.  Apart from the behavioural data, there is also 

evidence of semantic involvement in lexical decision from 

neuroimaging studies. Woollams, Silani, Okada, Patterson 

and Price (2011) revealed that left anterior temporal 

activation, increased for atypical relative to typical strings 

when lexical decisions were made more difficult in the 

context of pseudohomophone foils. The left anterior 

temporal lobe has been considered as a region for 

combining various types of sensory and motor information 

to form amodal semantic representations (Patterson, Nestor, 

& Rogers, 2007). The orthographic typicality effect in the 

left anterior temporal lobe has also been found in a previous 

electrophysiological (EEG) study. In a speeded lexical 

decision task, atypical words were found to elicit stronger 

source currents than did typical words at around 160 msec 

in the left anterior temporal lobe (Hauk, Patterson, 

Woollams, et al., 2006). These effects are consistent with 

what has been observed in the neuropsychological studies of 

patients with semantic dementia (SD), who have 

asymmetrically bilateral atrophy degeneration of the 

anterior temporal lobes. These patients show a progressive 

degeneration of semantic knowledge (Hodges, Patterson, 

Oxbury, & Funnell, 1992). When patients are asked to 

perform two-alternative forced-choice visual lexical 

decision, they can correctly choose orthographically typical 

words from the relatively atypical nonwords but have 

difficulty in the reverse condition (Rogers, Lambon Ralph, 

Hodges, & Patterson, 2004). Taken together, this evidence 

supports the view that semantic processing is involved in 
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lexical decision in particular when the words are 

orthographically atypical and the foils are 

pseudohomophones. 

Models Based on Localist Views 

In the literature, several theories of visual word recognition 

have been proposed to explain the underlying mechanisms 

of lexical decision (Coltheart, et al., 1977; Coltheart, et al., 

2001; Grainger & Jacobs, 1996; Plaut, 1997; Seidenberg & 

McClelland, 1989). Some researchers argue that lexical 

decision relies upon the orthographic lexicon (Coltheart, et 

al., 1977). If there is a match, subjects would give a positive 

response, otherwise, the negative response is made. On this 

view, the locus of lexical decision is based on activation 

within the orthographic lexicon. The involvement of 

phonology is a relatively late process after the mental 

lexicon search while the semantic system is generally not 

involved in the recognition processes unless the 

discrimination becomes extremely difficult (Coltheart, et al., 

2001). This orthographically based approach is shared with 

Grainger and Jacobs (1996), who developed a 

computational model of lexical decision. In their multiple 

read-out model (MROM), a word response could be made 

either when the particular word unit activation reached a 

local criterion, M, or the overall activity in the word layer 

reached a global criterion, Σ, before the temporal deadline 

as T. The RT was based on the earliest moment where either 

of criteria was met. If neither of the activation criteria was 

met, a nonword response was given and the RT was the 

value of the deadline criterion. Grainger and Jacobs (1996) 

assumed that the M criterion should be fixed as a normal 

recognition level and was set corresponding to individual 

word units. While the global criterion Σ and the temporal 

deadline T would vary according to the lexical frequency 

status of the stimulus. The higher probability the stimulus 

was a word, the lower global criterion and the longer 

temporal deadline were used. By this, the MROM model 

was able to simulate several standard effects seen in lexical 

decision including the frequency effects, the orthographic 

neighbourhood size effects, and their interactions (Grainger 

and Jacobs, 1996). Other models of visual word recognition 

such as the dual-route cascaded (DRC) model (Coltheart, et 

al., 2001) and the connectionist dual process (CDP+) model 

(Perry, Ziegler, & Zorzi, 2007) share similar decision 

mechanisms to the MROM model. 

Models Based on Distributed Views 

An alternative theory of visual word recognition argues that 

there is no mental lexicon for the store of word knowledge 

in the recognition system (Dilkina, McClelland, & Plaut, 

2010; Plaut, 1997; Seidenberg & McClelland, 1989). On 

this view, the decision can be made on the basis of the 

differential activations elicited by familiar words and 

unfamiliar nonwords. When presenting a word, strong 

activations are expected because the mappings between the 

visual or orthographic representation of the word and its 

phonological and semantic representations have been 

learned. Conversely, relatively weaker activations would be 

expected for a nonword representation as it is a novel 

stimulus. One important model of lexical decision was 

developed by Plaut in 1997, who proposed that the measure 

of how strongly units were activated, called stress or 

polarity, could be used as a basis for making lexical 

decisions. He built a feedforward model which consisted of 

orthographic, phonological and semantic components and 

demonstrated that words tended to produce higher stress 

than nonwords at the semantic layer. With the proper 

decision criteria, over 95 percent of words in the training 

corpus could be discriminated from nonwords. In addition, 

the network tended to produce higher semantic stress for 

pseudohomophones than for pseudowords in line with the 

behavioural data. 

Accumulated Information for Lexical Decision  

There are also other models which have emphasised the use 

of accumulated information within the system for making 

decisions. One of these is the diffusion model, developed by 

Ratcliff, Gomez and Mckoon (2004). The central idea of the 

diffusion model was that the speed (drift rate) at which 

information was accumulated over time was affected by the 

lexical status of the stimuli. They hypothesized that the drift 

rate had a positive correlation with a measure of how word-

like a stimulus was. In their model, the decision was then 

made when a random walk process driven by the drift rate 

reached either a word criterion or nonword criterion. 

Another model is the Bayesian reader model developed by 

Norris (2009). The basic premise of this model was to 

assume subjects would consistently compute the probability 

of the stimulus being a word or a nonword on the basis of its 

lexical status. In the simulations conducted in Norris (2009), 

the recognition of a letter string being a word was made on 

the basis of the sum of the probabilities of all possible letter 

strings and this value was expected to be 1.0. Therefore, the 

nonword likelihood could be computed simply by using 1 

minus summed probability of letter strings corresponding to 

words. 

In summary, data from behavioural, neuroimaging and 

patient studies, all point to the involvement of semantic 

processing in lexical decision. Previous models either 

postulate an exclusive role for semantics (Dilkina, 

McClelland, & Plaut, 2010; Plaut, 1997) or no role for 

semantics (Coltheart et al. 2001; Grainger & Jacobs, 1996; 

Norris, 2009). Importantly none of the previous models 

would be able to account for the data from Evans et al. 

(2012), which indicates that the degree of semantic 

involvement is flexible and can be modulated by the nature 

of the nonwords foils. The goal of this paper was to use a 

novel model of reading to explore to what extent semantics 

is involved in lexical decision and how it interacts with 

other processing layers. In addition we aimed to be able to 

simulate the data from Evans et al. illustrating how changes 

to the nature of the nonwords foils can bias lexical decision 

tasks. Based on earlier work (Chang, Furber, & Welbourne, 

2012a), we developed a fully implemented recurrent model 
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of visual word recognition. The model included a visual 

processing stage along with the orthographic, phonological 

and semantic processing stages. Importantly, the 

orthographic representations were allowed to learn during 

the training.  

Method 

Network Architecture 

The architecture of the model is shown in Figure 1. The 

model had two separate pathways for recognising words 

from visual input: a phonological pathway and a semantic 

pathway. The H0 layer was functionally responsible for 

visual processing while the OH layer was equivalent to the 

orthographic layer in the triangle model except that the 

orthographic representations were learned through the 

course of training rather than being supplied as inputs. This 

mimics the situation in human development where 

orthographic representations emerge to support reading 

acquisition in children. The word recognition process started 

from the visual input layer and moved progressively to the 

orthographic layer, and then progressed in separate 

pathways to the phonological and semantic layers. The 

phonological component consisted of 61 phonological units 

which were all connected to a set of 20 clean up units. These 

clean up units projected back onto the phonological units, 

forming an attractor. Similarly, the semantic component 

consisted of 200 semantic units. These units were all 

connected to another set of 80 clean up units, which 

projected back onto the semantic units. The context 

component consisted of 3 units, which were used to provide 

additional contextual information for discriminating 

between homophones. The numbers of hidden units for each 

layer were determined by pilot trials to ensure the model 

was trainable and that the performance of the model was 

good on the production, comprehension and reading tasks.  

There were also control units for each layer except input 

and output layers. These acted to flexibly inhibit the 

activation of the layer they were connected to. The control 

units were important because they allowed the model learn 

to manage its own temporal dynamics. In particular they 

allowed the units at the latter layers to be suppressed until 

the input to them had had time to ramp up to values that 

reflected the influence of the visual input to the model.  

The training corpus consisted of 2,971 words. The visual 

representations used here were adapted from those used in 

Chang et al.’s (2012a) study. The network was trained on 

12-point lower case words in Arial font. Each word was 

positioned with its vowel aligned on a fixed slot of the 

image. Ten slots were used in all and the size of each slot 

was 16x16 pixels. The scheme of phonological 

representations was the same as that used in the Plaut et al.’s 

(1996) model. The context units were used to differentiate 

the meanings of homophones, which have same 

pronunciations but different meanings. For those 

pronunciations with only one possible word meaning, the 

context units were all set to zero. For other pronunciations 

corresponding to more than one word meanings, the context 

units were all set to 0 for the first meaning; and one of the 

context units from right to left was set to 1 to represent the 

second, third and fourth meaning accordingly. The semantic 

representations were generated using the same scheme as in 

Chang, Furber, and Welbourne (2012b). The meaning of 

each word was represented by a 200-dimensional semantic 

vector. Each vector had 5 active units in the first half of the 

vector converted from the top positive attributes and 15 

active units in the second half of the vector converted from 

the top negative attributes. 

 

 
Figure 1. The architecture of the model. The dashed lines indicate inhibitory connections. 
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Training Procedure 
The training was separated into two phases. In phase 1 only 

the phonology-semantics mappings were trained while in 

phase 2 the full reading model was trained starting from the 

trained weights obtained in phase 1. In phase 1, the 

phonology-semantics model was first subdivided into two 

parts: the production model learning the mappings from 

semantics to phonology and context, and the comprehension 

model learning the mappings from phonology and context to 

semantics. The production and comprehension model were 

trained separately. The presentation of each example lasted 

for 6 intervals of time and each interval of time was divided 

into 3 ticks. In each presentation, the input pattern of a word 

was clamped onto the input units for the full 6 intervals of 

time and the task was to produce the correct target 

representation. For the last 2 intervals, the activations of 

output units were compared to their targets. Error score, the 

difference between the units’ outputs and their targets, was 

used to calculate weight changes. No error was recorded if 

the output unit’s activation and target were within 0.1 of 

each other. At the end of phase 1 the accuracy rates of the 

production and comprehension model were 99.97% and 

99.43% for the phonological level and semantic level 

respectively. 

In phase 2, the weights obtained from the end of training 

the phonology-semantics model were embedded and frozen 

into the full reading model. The weight connections from 

the visual layer to both phonological and semantic layers 

were updated through training. There were local control 

units for each layer except input and output layers. The 

initial output of each control unit was set to 1. The weight 

connections from its previous layer to each control unit were 

free to be updated. The weight connections from each 

control unit to those units that it was controlling were 

trainable, but the values were limited to between -4 and 0. 

The negative boundaries used here were to ensure that the 

control unit acted to inhibit activation. The model was 

allowed to update for 30 ticks of time. The visual 

representation of a word was presented at the input units for 

all 30 ticks. The task was to produce correct phonological 

and semantic patterns. For the last 2 intervals, the output 

units were compared with their corresponding phonological 

or semantic targets and errors were computed. To encourage 

more accurate learning, no error was computed when the 

output unit’s activation and target were within 0.001.The 

model was trained to produce 99.3% correct phonological 

and 97.4% correct semantic patterns in the word reading 

task. 

Polarity Measures and Decision Criteria 

Plaut (1997) proposed that parallel distributed models can 

perform the lexical decision task based on the measure of 

polarity, which is whether the units in the model have 

learned to adopt a binary representation. To capture this 

phenomenon, Plaut (1997) introduced a formula to compute 

the index of unit binarization which was termed unit polarity 

 as  follows: 

        ( )  (   )      (   )    

where   is the unit activation ranging from 0 to 1;     ( ) is 

the logarithmic function with the base of 2;   is the polarity 

measure. When known words are presented, the units tend 

to become binary, leading to high polarity values. However, 

when nonwords are presented, the activities of the units tend 

to be low and closer to 0.5, resulting in generally low 

polarities. Two criteria were used for the model to make 

word-nonword decisions: (1) word boundary: the 3 standard 

deviation line above the average nonword polarity; (2) 

nonword boundary: the 3 standard deviation line below the 

average word polarity. The polarity for an item was 

computed by combining the measures of polarity for that 

item at the H0 (visual processing), OH (orthographic 

processing), phonological, and semantic layers. If an item 

polarity crossed over the word boundary the item was 

classified as a word. By contrast, if the item polarity crossed 

over the nonword boundary, the item was determined as a 

nonword. There were, however, a few item polarities that 

remained between the two boundaries. In this case, 

responses were made based on which boundary the polarity 

was closest to at the last time tick. The response time was 

the time tick when an item polarity first crossed over either 

word or nonword boundary. In the situation where neither 

boundary was crossed the response time was taken as 30 

ticks. 

Inverse Efficiency 

To control for potential differences in speed-accuracy trade-

off caused by the arbitrary selection of standard deviation 

lines, we adopted a measure of inverse efficiency, which is 

considered to be a corrected reaction time (Roder, 

Kusmierek, Spence, & Schicke, 2007). Inverse efficiency is 

a combination of both reaction and accuracy (i.e., dividing 

reaction time by accuracy). The lower the score, the more 

efficiently the model performed the task.  

Results 

Semantic influences on lexical decision 

Evans et al. (2012) suggested that the subjects needed to 

access semantic information in the lexical decision task 

particularly when words were tested with more word-like 

nonwords such as pseudowords and pseudohomophones. 

They showed a graded imageability effect in lexical 

decision depending on the difficulty of the task. The 

imageability effect was larger when words were tested 

against with pseudohomophones than with pseudowords. 

The effect disappeared in the context of consonant strings. 

We tested the model to see whether it could produce the 

similar pattern as seen in Evans et al.’s data. After removing 

those words which were not in the training exemplars and 

their matched nonword items, there were 70 words, 

consisting of 35 high- and 35 low-imageability words. Their 

matched nonword pairs for the three different foil 

conditions, consonant string (CS), pseudoword (PW), and 
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pseudohomophone (PH) were also used in the current test. 

To compare with Evans et al (2012)’s data, the scores of 

inverse efficiency were normalised by the value obtained 

from the low imageability pseudohomophone condition. 

The same procedure was applied to Evans et al.’s (2012) 

data. The results are shown in Figure 2. It is clear that the 

simulation results (Figure 2, left) follow the pattern of 

Evans et al.’s data (Figure 2, right). A 2x3 repeated 

measures ANOVA was conducted with imageability 

(High/Low) and foil condition (CS/PW/PH) as within 

subject factors and the scores of inverse efficiency were 

used as a dependent variable. There was a reliable main 

effect of imageability, F(1, 19)=9.88, p<.01. The main effect 

of foil condition was also significant, F(1.31, 24.85)=59.75, 

p<.001 (with a Greenhouse-Geisser adjustment). 

Importantly, there was a significant interaction between 

imageability and foil condition, F(2, 38)=3.60, p<.05, 

showing that the size of imageability effect increased along 

with the word-likeness of the foils. Note that we also ran the 

statistical tests on the unnormalised scores with the same 

pattern of results. This is what would be expected based on 

Evans et al.’s (2012) data. The post-hoc analyses showed 

that the imageability effect was not significant with 

consonant strings (p>.05) while there were significant 

imageability effects in the contexts of pseudowords, F(1, 

19)=6.76, p<.05, and pseudohomophones, F(1, 19)=15.06, 

p<.01. The results were consistent with the findings in 

Evans et al.’s (2012) study, suggesting semantic effects vary 

in lexical decision, depending on the foil type. 

 

 

  
 

Figure 2.  Data are from simulation (Left) and from Evans et al. (2012). Normalised scores were computed by equating two 

results based on the low imageability pseudohomophone condition. 

 

General Discussion 

The primary aim of this paper was to develop a large-scale 

recurrent reading model containing visual, orthographic, 

phonological, and semantic processing to support lexical 

decision tasks. The model was used to explore the 

involvement of semantics in lexical decision with other 

processing components implemented in the system. This 

approach is different to most existing models of lexical 

processing which have focused on activity within a single 

processing layer. Based on the measure of polarities at four 

core processing layers (H0, OH, phonology and semantics), 

the model was able to perform the lexical decision tasks and 

account for the graded semantic effects found by Evans et 

al. (2012), as shown in Figure 2. The magnitude of semantic 

effects increased as nonwords became more word-like, 

where the semantic effect was stronger with 

pseudohomophones than with pseudowords and then with 

consonant strings. This provides evidence supporting the 

distributed view of lexical decision which proposes that 

semantic access is important and automatic in lexical 

decision (Plaut, 1997). The actual use of semantic 

information is flexible and is largely dependent on the 

difficulty of the tasks (Evans, et al., 2012). That is in 

contrast with the localist view arguing for no or little 

involvement of semantics in lexical decision (Coltheart, et 

al., 2001). 

There are some existing lexical decision models 

developed on the basis of the localist view of lexical 

decision including the MROM model (Grainger & Jacobs, 

1996) and the DRC model (Coltheart, et al., 2001) and the 

CDP+ model (Perry, et al., 2007). These models can 

simulate several effects in lexical decision and the strategic 

influences on lexical decision by flexibly adjusting decision 

criteria. However, their results are almost all based on 

orthographic processing with little attention to other 

processing components in particular the semantic system. 

Thus the questions as to how these models implement the 

involvement of semantics in lexical decision, which 

presumably requires some feedback connections from 

semantics to their orthographic lexicon (Coltheart, et al., 

2001) remain unclear. In particular, these localist models 

would find it difficult to account for the graded changes in 

the involvement of semantics depending on foil type. In the 

current model this graded effect emerges naturally as a 

consequence of increasing task difficulty.  
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In this paper we have followed Evans et al. (2012) by 

talking the size of the imageability effect as an index of 

semantic involvement, but future work could extend this in 

the model by developing additional metrics to quantify the 

involvement of semantics including a direct comparison of 

performance with and without the contribution from the 

semantic layer.   

To summarise, this paper uses a model of human visual 

word recognition to explore the role of semantics in lexical 

decision. Crucially, the model was able to account for the 

graded semantic influences on lexical decision 

corresponding to the various types of foils, providing 

evidence for semantic influences on lexical decision. 
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