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Abstract

Recent studies have shown that the involvement of semantic
information in visual lexical decision depends on the nature of
nonword foils with semantic effects increased as nonwords
become more word-like (Evans, Lambon Ralph &Woollams,
2012). Given that most models of lexical decision focus on
orthographic information (Coltheart, Rastle, Perry, Langdon
& Ziegler, 2001; Grainger & Jacobs, 1996; Seidenberg &
McClelland, 1989), the role of semantics and its interactions
with vision, orthography, and phonology has been
overlooked. We developed a recurrent connectionist model of
single word reading including visual, orthographic,
phonological, and semantic processing. The model
differentiated words from nonwords by integrating measures
of polarity across four key processing layers. The contribution
of semantics depended on the type of nonword foils. The
model was more reliant on semantic information when the
nonword foils were pseudowords and pseudohomophones
rather than consonant strings. The results support the view
that semantic involvement in lexical decision is graded by the
difficulty of the decision task.
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Introduction

Lexical decision (LD) has been widely used to study the
cognitive processes involved in visual word recognition.
Subjects are asked to judge whether a letter string is a word
or not. Measures of accuracy and response time are thought
to reflect the differences in lexical-semantic processing of
words and nonwords. There seems to be consistent evidence
that vision, orthography and phonology play roles in visual
lexical decision (Coltheart, Davelaar, Jonasson, & Besner,
1977; Grainger & Jacobs, 1996; Meyer, Schvanev, &
Ruddy, 1974), however the extent of the involvement of
semantics in lexical decision remains debateable (James,
1975; Joordens & Becker, 1997; Lupker & Pexman, 2010).
James (1975) showed a reliable concreteness effect during
lexical  decision when using pseudoword and
pseudohomophone foils, while the effect disappeared when
testing with consonant strings. He suggested subjects might
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be able to exploit semantic information to support efficient
LD. Although some subsequent studies have found reliable
semantic influences on lexical decision under different foil
conditions (Joordens & Becker, 1997), others have failed to
find such effect (Lupker & Pexman, 2010). Evans, Lambon
Ralph and Woollams (2012) demonstrated that semantic
involvement in lexical decision was graded by the difficulty
of the decision task as indexed by the word-likeness of the
foil. There were stronger semantic effects with
pseudohomophones than with pseudowords, and the effects
were stronger with pseudowords than with consonant
strings. Apart from the behavioural data, there is also
evidence of semantic involvement in lexical decision from
neuroimaging studies. Woollams, Silani, Okada, Patterson
and Price (2011) revealed that left anterior temporal
activation, increased for atypical relative to typical strings
when lexical decisions were made more difficult in the
context of pseudohomophone foils. The left anterior
temporal lobe has been considered as a region for
combining various types of sensory and motor information
to form amodal semantic representations (Patterson, Nestor,
& Rogers, 2007). The orthographic typicality effect in the
left anterior temporal lobe has also been found in a previous
electrophysiological (EEG) study. In a speeded lexical
decision task, atypical words were found to elicit stronger
source currents than did typical words at around 160 msec
in the left anterior temporal lobe (Hauk, Patterson,
Woollams, et al., 2006). These effects are consistent with
what has been observed in the neuropsychological studies of
patients with semantic dementia (SD), who have
asymmetrically bilateral atrophy degeneration of the
anterior temporal lobes. These patients show a progressive
degeneration of semantic knowledge (Hodges, Patterson,
Oxbury, & Funnell, 1992). When patients are asked to
perform two-alternative forced-choice visual lexical
decision, they can correctly choose orthographically typical
words from the relatively atypical nonwords but have
difficulty in the reverse condition (Rogers, Lambon Ralph,
Hodges, & Patterson, 2004). Taken together, this evidence
supports the view that semantic processing is involved in
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Models Based on Localist Views

In the literature, several theories of visual word recognition
have been proposed to explain the underlying mechanisms
of lexical decision (Coltheart, et al., 1977; Coltheart, et al.,
2001; Grainger & Jacobs, 1996; Plaut, 1997; Seidenberg &
McClelland, 1989). Some researchers argue that lexical
decision relies upon the orthographic lexicon (Coltheart, et
al., 1977). If there is a match, subjects would give a positive
response, otherwise, the negative response is made. On this
view, the locus of lexical decision is based on activation
within the orthographic lexicon. The involvement of
phonology is a relatively late process after the mental
lexicon search while the semantic system is generally not
involved in the recognition processes unless the
discrimination becomes extremely difficult (Coltheart, et al.,
2001). This orthographically based approach is shared with
Grainger and Jacobs (1996), who developed a
computational model of lexical decision. In their multiple
read-out model (MROM), a word response could be made
either when the particular word unit activation reached a
local criterion, M, or the overall activity in the word layer
reached a global criterion, X, before the temporal deadline
as T. The RT was based on the earliest moment where either
of criteria was met. If neither of the activation criteria was
met, a nonword response was given and the RT was the
value of the deadline criterion. Grainger and Jacobs (1996)
assumed that the M criterion should be fixed as a normal
recognition level and was set corresponding to individual
word units. While the global criterion 2 and the temporal
deadline T would vary according to the lexical frequency
status of the stimulus. The higher probability the stimulus
was a word, the lower global criterion and the longer
temporal deadline were used. By this, the MROM maodel
was able to simulate several standard effects seen in lexical
decision including the frequency effects, the orthographic
neighbourhood size effects, and their interactions (Grainger
and Jacobs, 1996). Other models of visual word recognition
such as the dual-route cascaded (DRC) model (Coltheart, et
al., 2001) and the connectionist dual process (CDP+) model
(Perry, Ziegler, & Zorzi, 2007) share similar decision
mechanisms to the MROM model.

Models Based on Distributed Views

An alternative theory of visual word recognition argues that
there is no mental lexicon for the store of word knowledge
in the recognition system (Dilkina, McClelland, & Plaut,
2010; Plaut, 1997; Seidenberg & McClelland, 1989). On
this view, the decision can be made on the basis of the
differential activations elicited by familiar words and
unfamiliar nonwords. When presenting a word, strong
activations are expected because the mappings between the
visual or orthographic representation of the word and its
phonological and semantic representations have been
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learned. Conversely, relatively weaker activations would be
expected for a nonword representation as it is a novel
stimulus. One important model of lexical decision was
developed by Plaut in 1997, who proposed that the measure
of how strongly units were activated, called stress or
polarity, could be used as a basis for making lexical
decisions. He built a feedforward model which consisted of
orthographic, phonological and semantic components and
demonstrated that words tended to produce higher stress
than nonwords at the semantic layer. With the proper
decision criteria, over 95 percent of words in the training
corpus could be discriminated from nonwords. In addition,
the network tended to produce higher semantic stress for
pseudohomophones than for pseudowords in line with the
behavioural data.

Accumulated Information for Lexical Decision

There are also other models which have emphasised the use
of accumulated information within the system for making
decisions. One of these is the diffusion model, developed by
Ratcliff, Gomez and Mckoon (2004). The central idea of the
diffusion model was that the speed (drift rate) at which
information was accumulated over time was affected by the
lexical status of the stimuli. They hypothesized that the drift
rate had a positive correlation with a measure of how word-
like a stimulus was. In their model, the decision was then
made when a random walk process driven by the drift rate
reached either a word criterion or nonword criterion.
Another model is the Bayesian reader model developed by
Norris (2009). The basic premise of this model was to
assume subjects would consistently compute the probability
of the stimulus being a word or a nonword on the basis of its
lexical status. In the simulations conducted in Norris (2009),
the recognition of a letter string being a word was made on
the basis of the sum of the probabilities of all possible letter
strings and this value was expected to be 1.0. Therefore, the
nonword likelihood could be computed simply by using 1
minus summed probability of letter strings corresponding to
words.

In summary, data from behavioural, neuroimaging and
patient studies, all point to the involvement of semantic
processing in lexical decision. Previous models either
postulate an exclusive role for semantics (Dilkina,
McClelland, & Plaut, 2010; Plaut, 1997) or no role for
semantics (Coltheart et al. 2001; Grainger & Jacobs, 1996;
Norris, 2009). Importantly none of the previous models
would be able to account for the data from Evans et al.
(2012), which indicates that the degree of semantic
involvement is flexible and can be modulated by the nature
of the nonwords foils. The goal of this paper was to use a
novel model of reading to explore to what extent semantics
is involved in lexical decision and how it interacts with
other processing layers. In addition we aimed to be able to
simulate the data from Evans et al. illustrating how changes
to the nature of the nonwords foils can bias lexical decision
tasks. Based on earlier work (Chang, Furber, & Welbourne,
2012a), we developed a fully implemented recurrent model



of visual word recognition. The model included a visual
processing stage along with the orthographic, phonological
and semantic processing stages. Importantly, the
orthographic representations were allowed to learn during
the training.

Method

Network Architecture

The architecture of the model is shown in Figure 1. The
model had two separate pathways for recognising words
from visual input: a phonological pathway and a semantic
pathway. The HO layer was functionally responsible for
visual processing while the OH layer was equivalent to the
orthographic layer in the triangle model except that the
orthographic representations were learned through the
course of training rather than being supplied as inputs. This
mimics the situation in human development where
orthographic representations emerge to support reading
acquisition in children. The word recognition process started
from the visual input layer and moved progressively to the
orthographic layer, and then progressed in separate
pathways to the phonological and semantic layers. The
phonological component consisted of 61 phonological units
which were all connected to a set of 20 clean up units. These
clean up units projected back onto the phonological units,
forming an attractor. Similarly, the semantic component
consisted of 200 semantic units. These units were all
connected to another set of 80 clean up units, which
projected back onto the semantic units. The context
component consisted of 3 units, which were used to provide
additional contextual information for discriminating
between homophones. The numbers of hidden units for each
layer were determined by pilot trials to ensure the model
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was trainable and that the performance of the model was
good on the production, comprehension and reading tasks.

There were also control units for each layer except input
and output layers. These acted to flexibly inhibit the
activation of the layer they were connected to. The control
units were important because they allowed the model learn
to manage its own temporal dynamics. In particular they
allowed the units at the latter layers to be suppressed until
the input to them had had time to ramp up to values that
reflected the influence of the visual input to the model.

The training corpus consisted of 2,971 words. The visual
representations used here were adapted from those used in
Chang et al.’s (2012a) study. The network was trained on
12-point lower case words in Arial font. Each word was
positioned with its vowel aligned on a fixed slot of the
image. Ten slots were used in all and the size of each slot
was 16x16 pixels. The scheme of phonological
representations was the same as that used in the Plaut et al.’s
(1996) model. The context units were used to differentiate
the meanings of homophones, which have same
pronunciations but different meanings. For those
pronunciations with only one possible word meaning, the
context units were all set to zero. For other pronunciations
corresponding to more than one word meanings, the context
units were all set to 0 for the first meaning; and one of the
context units from right to left was set to 1 to represent the
second, third and fourth meaning accordingly. The semantic
representations were generated using the same scheme as in
Chang, Furber, and Welbourne (2012b). The meaning of
each word was represented by a 200-dimensional semantic
vector. Each vector had 5 active units in the first half of the
vector converted from the top positive attributes and 15
active units in the second half of the vector converted from
the top negative attributes.
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‘."‘—_—-
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‘ Context (3)

Figure 1. The architecture of the model. The dashed lines indicate inhibitory connections.



Training Procedure

The training was separated into two phases. In phase 1 only
the phonology-semantics mappings were trained while in
phase 2 the full reading model was trained starting from the
trained weights obtained in phase 1. In phase 1, the
phonology-semantics model was first subdivided into two
parts: the production model learning the mappings from
semantics to phonology and context, and the comprehension
model learning the mappings from phonology and context to
semantics. The production and comprehension model were
trained separately. The presentation of each example lasted
for 6 intervals of time and each interval of time was divided
into 3 ticks. In each presentation, the input pattern of a word
was clamped onto the input units for the full 6 intervals of
time and the task was to produce the correct target
representation. For the last 2 intervals, the activations of
output units were compared to their targets. Error score, the
difference between the units’ outputs and their targets, was
used to calculate weight changes. No error was recorded if
the output unit’s activation and target were within 0.1 of
each other. At the end of phase 1 the accuracy rates of the
production and comprehension model were 99.97% and
99.43% for the phonological level and semantic level
respectively.

In phase 2, the weights obtained from the end of training
the phonology-semantics model were embedded and frozen
into the full reading model. The weight connections from
the visual layer to both phonological and semantic layers
were updated through training. There were local control
units for each layer except input and output layers. The
initial output of each control unit was set to 1. The weight
connections from its previous layer to each control unit were
free to be updated. The weight connections from each
control unit to those units that it was controlling were
trainable, but the values were limited to between -4 and 0.
The negative boundaries used here were to ensure that the
control unit acted to inhibit activation. The model was
allowed to update for 30 ticks of time. The visual
representation of a word was presented at the input units for
all 30 ticks. The task was to produce correct phonological
and semantic patterns. For the last 2 intervals, the output
units were compared with their corresponding phonological
or semantic targets and errors were computed. To encourage
more accurate learning, no error was computed when the
output unit’s activation and target were within 0.001.The
model was trained to produce 99.3% correct phonological
and 97.4% correct semantic patterns in the word reading
task.

Polarity Measures and Decision Criteria

Plaut (1997) proposed that parallel distributed models can
perform the lexical decision task based on the measure of
polarity, which is whether the units in the model have
learned to adopt a binary representation. To capture this
phenomenon, Plaut (1997) introduced a formula to compute
the index of unit binarization which was termed unit polarity
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as follows:
y=x-log,(x) +(1—x)-log,(1—x)+1

where x is the unit activation ranging from 0 to 1; log, (") is
the logarithmic function with the base of 2; y is the polarity
measure. When known words are presented, the units tend
to become binary, leading to high polarity values. However,
when nonwords are presented, the activities of the units tend
to be low and closer to 0.5, resulting in generally low
polarities. Two criteria were used for the model to make
word-nonword decisions: (1) word boundary: the 3 standard
deviation line above the average nonword polarity; (2)
nonword boundary: the 3 standard deviation line below the
average word polarity. The polarity for an item was
computed by combining the measures of polarity for that
item at the HO (visual processing), OH (orthographic
processing), phonological, and semantic layers. If an item
polarity crossed over the word boundary the item was
classified as a word. By contrast, if the item polarity crossed
over the nonword boundary, the item was determined as a
nonword. There were, however, a few item polarities that
remained between the two boundaries. In this case,
responses were made based on which boundary the polarity
was closest to at the last time tick. The response time was
the time tick when an item polarity first crossed over either
word or nonword boundary. In the situation where neither
boundary was crossed the response time was taken as 30
ticks.

Inverse Efficiency

To control for potential differences in speed-accuracy trade-
off caused by the arbitrary selection of standard deviation
lines, we adopted a measure of inverse efficiency, which is
considered to be a corrected reaction time (Roder,
Kusmierek, Spence, & Schicke, 2007). Inverse efficiency is
a combination of both reaction and accuracy (i.e., dividing
reaction time by accuracy). The lower the score, the more
efficiently the model performed the task.

Results

Semantic influences on lexical decision

Evans et al. (2012) suggested that the subjects needed to
access semantic information in the lexical decision task
particularly when words were tested with more word-like
nonwords such as pseudowords and pseudohomophones.
They showed a graded imageability effect in lexical
decision depending on the difficulty of the task. The
imageability effect was larger when words were tested
against with pseudohomophones than with pseudowords.
The effect disappeared in the context of consonant strings.
We tested the model to see whether it could produce the
similar pattern as seen in Evans et al.’s data. After removing
those words which were not in the training exemplars and
their matched nonword items, there were 70 words,
consisting of 35 high- and 35 low-imageability words. Their
matched nonword pairs for the three different foil
conditions, consonant string (CS), pseudoword (PW), and



pseudohomophone (PH) were also used in the current test.
To compare with Evans et al (2012)’s data, the scores of
inverse efficiency were normalised by the value obtained
from the low imageability pseudohomophone condition.
The same procedure was applied to Evans et al.’s (2012)
data. The results are shown in Figure 2. It is clear that the
simulation results (Figure 2, left) follow the pattern of
Evans et al.’s data (Figure 2, right). A 2x3 repeated
measures ANOVA was conducted with imageability
(High/Low) and foil condition (CS/PW/PH) as within
subject factors and the scores of inverse efficiency were
used as a dependent variable. There was a reliable main
effect of imageability, F(1, 19)=9.88, p<.01. The main effect
of foil condition was also significant, F(1.31, 24.85)=59.75,
p<.001 (with a Greenhouse-Geisser adjustment).
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Importantly, there was a significant interaction between
imageability and foil condition, F(2, 38)=3.60, p<.05,
showing that the size of imageability effect increased along
with the word-likeness of the foils. Note that we also ran the
statistical tests on the unnormalised scores with the same
pattern of results. This is what would be expected based on
Evans et al.’s (2012) data. The post-hoc analyses showed
that the imageability effect was not significant with
consonant strings (p>.05) while there were significant
imageability effects in the contexts of pseudowords, F(1,
19)=6.76, p<.05, and pseudohomophones, F(1, 19)=15.06,
p<.01. The results were consistent with the findings in
Evans et al.’s (2012) study, suggesting semantic effects vary
in lexical decision, depending on the foil type.
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Figure 2. Data are from simulation (Left) and from Evans et al. (2012). Normalised scores were computed by equating two
results based on the low imageability pseudohomophone condition.

General Discussion

The primary aim of this paper was to develop a large-scale
recurrent reading model containing visual, orthographic,
phonological, and semantic processing to support lexical
decision tasks. The model was used to explore the
involvement of semantics in lexical decision with other
processing components implemented in the system. This
approach is different to most existing models of lexical
processing which have focused on activity within a single
processing layer. Based on the measure of polarities at four
core processing layers (HO, OH, phonology and semantics),
the model was able to perform the lexical decision tasks and
account for the graded semantic effects found by Evans et
al. (2012), as shown in Figure 2. The magnitude of semantic
effects increased as nonwords became more word-like,
where the semantic effect was stronger with
pseudohomophones than with pseudowords and then with
consonant strings. This provides evidence supporting the
distributed view of lexical decision which proposes that
semantic access is important and automatic in lexical
decision (Plaut, 1997). The actual use of semantic
information is flexible and is largely dependent on the
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difficulty of the tasks (Evans, et al., 2012). That is in
contrast with the localist view arguing for no or little
involvement of semantics in lexical decision (Coltheart, et
al., 2001).

There are some existing lexical decision models
developed on the basis of the localist view of lexical
decision including the MROM model (Grainger & Jacobs,
1996) and the DRC model (Coltheart, et al., 2001) and the
CDP+ model (Perry, et al., 2007). These models can
simulate several effects in lexical decision and the strategic
influences on lexical decision by flexibly adjusting decision
criteria. However, their results are almost all based on
orthographic processing with little attention to other
processing components in particular the semantic system.
Thus the questions as to how these models implement the
involvement of semantics in lexical decision, which
presumably requires some feedback connections from
semantics to their orthographic lexicon (Coltheart, et al.,
2001) remain unclear. In particular, these localist models
would find it difficult to account for the graded changes in
the involvement of semantics depending on foil type. In the
current model this graded effect emerges naturally as a
consequence of increasing task difficulty.



In this paper we have followed Evans et al. (2012) by
talking the size of the imageability effect as an index of
semantic involvement, but future work could extend this in
the model by developing additional metrics to quantify the
involvement of semantics including a direct comparison of
performance with and without the contribution from the
semantic layer.

To summarise, this paper uses a model of human visual
word recognition to explore the role of semantics in lexical
decision. Crucially, the model was able to account for the
graded semantic influences on lexical decision
corresponding to the various types of foils, providing
evidence for semantic influences on lexical decision.

Acknowledgments

This research was supported by grants under the Cognitive
Foresight Initiative (jointly funded by EPSRC, MRC and
BBSRC - EP/F03430X/1) and the Neuroscience Research
Institute at the University of Manchester.

References

Chang, Y. N., Furber, S., & Welbourne, S. (2012a). "Serial"
Effects in Parallel Models of Reading. Cognitive
Psychology, 64(4), 267-291.

Chang, Y. N., Furber, S., & Welbourne, S. (2012b).
Generating Realistic Codes for Use in Neural Network
Models. In N. Miyake, D. Peebles, & R. P. Cooper (Eds.),
Proceedings of the 34th Annual Confrerence of the
Cognitive Science Society (pp. 198-203). Austin, Tx:
Cognitive Science Society.

Coltheart, M., Davelaar, E., Jonasson, J. T., & Besner, D.
(1977). Access to the Internal Lexicon. In S. Dornic (Ed.),
Attention and Performance Vi. Hillsdale, NJ: Lawrence
Erlbaum Associates.

Coltheart, M., Rastle, K., Perry, C., Langdon, R., & Ziegler,
J. (2001). Drc: A Dual Route Cascaded Model of Visual
Word Recognition and Reading Aloud. Psychological
Review, 108(1), 204-256.

Dilkina, K., McClelland, J. L., & Plaut, D. C. (2010). Are
There Mental Lexicons? The Role of Semantics in Lexical
Decision. Brain Research, 1365, 66-81.

Evans, G. A. L., Lambon Ralph, M. A., &Woollams, A. M.
(2012). What's in a Word? A Parametric Study of
Semantic Influences on Visual Word Recognition.
Psychonomic Bulletin & Review, 19(2), 325-331.

Grainger, J., & Jacobs, A. M. (1996). Orthographic
Processing in Visual Word Recognition: A Multiple Read-
out Model. Psychological Review, 103(3), 518-565.

Hauk, O., Patterson, K., Woollams, A., Watling, L.,
Pulvermuller, F., & Rogers, T. T. (2006). Q: When Would
You Prefer a Sossage to a Sausage? A: At About 100
Msec. Erp Correlates of Orthographic Typicality and
Lexicality in Written Word Recognition. Journal of
Cognitive Neuroscience, 18(5), 818-832.

Hodges, J. R., Patterson, K., Oxbury, S., & Funnell, E.
(1992). Semantic Dementia - Progressive Fluent Aphasia
with Temporal-Lobe Atrophy. Brain, 115, 1783-1806.

315

James, C. T. (1975). Role of Semantic Information in
Lexical Decisions. Journal of Experimental Psychology-
Human Perception and Performance, 104(2), 130-136.

Joordens, S., & Becker, S. (1997). The Long and Short of
Semantic Priming Effects in Lexical Decision. Journal of
Experimental  Psychology-Learning  Memory  and
Cognition, 23(5), 1083-1105.

Lupker, S. J., & Pexman, P. M. (2010). Making Things
Difficult in Lexical Decision: The Impact of
Pseudohomophones and Transposed-Letter Nonwords on
Frequency and Semantic Priming Effects. Journal of
Experimental  Psychology-Learning  Memory  and
Cognition, 36(5), 1267-1289.

Meyer, D. E., Schvanev, R. W., & Ruddy, M. G. (1974).
Functions of Graphemic and Phonemic Codes in Visual
Word-Recognition. Memory & Cognition, 2(2), 309-321.

Norris, D. (2009). Putting It All Together: A Unified
Account of Word Recognition and Reaction-Time
Distributions. Psychological Review, 116(1), 207-219.

Patterson, K., Nestor, P. J., & Rogers, T. T. (2007). Where
Do You Know What You Know? The Representation of
Semantic Knowledge in the Human Brain. Nature Reviews
Neuroscience, 8(12), 976-987.

Perry, C., Ziegler, J. C., & Zorzi, M. (2007). Nested
Incremental Modeling in  the Development of
Computational Theories: The Cdp+ Model of Reading
Aloud. Psychological Review, 114(2), 273-315.

Plaut, D. C. (1997). Structure and Function in the Lexical
System: Insights from Distributed Models of Word
Reading and Lexical Decision. Language and Cognitive
Processes, 12(5-6), 765-805.

Plaut, D. C., McClelland, J. L., Seidenberg, M. S., &
Patterson, K. (1996). Understanding Normal and Impaired
Word Reading: Computational Principles in Quasi-
Regular Domains. Psychological Review, 103(1), 56-115.

Ratcliff, R., Gomez, P., & McKoon, G. (2004). A Diffusion
Model Account of the Lexical Decision Task.
Psychological Review, 111(1), 159-182.

Roder, B., Kusmierek, A., Spence, C., & Schicke, T. (2007).
Developmental Vision Determines the Reference Frame
for the Multisensory Control of Action. Proceedings of the
National Academy of Sciences of the United States of
America, 104(11), 4753-4758.

Rogers, T. T., Lambon Ralph, M. A., Hodges, J. R., &
Patterson, K. (2004). Natural Selection: The Impactof
Semantic Impairment on Lexical and Object Decision.
Cognitive Neuropsychology, 21(2-4), 331-352.

Seidenberg, M. S., & McClelland, J. L. (1989). A
Distributed, Developmental Model of Word Recognition
and Naming. Psychological Review, 96(4), 523-568.

Woollams, A. M., Silani, G., Okada, K., Patterson, K., &
Price, C. J. (2011). Word or Word-Like? Dissociating
Orthographic Typicality from Lexicality in the Left
Occipito-Temporal  Cortex. Journal of Cognitive
Neuroscience, 23(4), 992-1002.



