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Abstract

The process of generating a new hypothesis often begins with
the recognition that all of the hypotheses currently under
consideration are wrong. While this sort of falsification is
straightforward when the observations are incompatible with
each of the hypotheses, an interesting situation arises when
the observations are implausible under the hypotheses but not
incompatible with them. We propose a formal account,
inspired by statistical model checking, as an explanation for
how people reason about these probabilistic falsifications. We
contrast this account with approaches such as Bayesian
inference that account for hypothesis comparison but do not
explain how a reasoner might decide that the hypothesis space
needs to be expanded.
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Introduction

Many modern scientific disciplines are characterized by
strange and unintuitive theories that previous generations of
scientists never would have imagined. On a less dramatic
scale, people often generate inventive explanations in their
everyday lives. The existence of these unintuitive theories
and inventive explanations raises an interesting question:
how are these new theories and explanations discovered?

In many cases, the process of generating a new hypothesis
starts when the reasoner decides that all of the hypotheses
currently under consideration are wrong. In some cases, the
available evidence is incompatible with every hypothesis
under consideration, and this decision is straightforward. In
other cases, however, the available evidence is implausible
under, but not strictly incompatible with, the hypotheses. In
cases like these, a reasoner may engage in hypothesis space
checking to decide whether the hypothesis space is adequate
or needs to be expanded.

Although psychologists have explored many approaches
to hypothesis testing, most of these approaches are unable to
account for hypothesis space checking. Bayesian accounts,
for instance, are able to specify the relative strength of a
hypothesis within the hypothesis space, but they do not
provide criteria for evaluating the hypothesis space itself.

Statisticians, however, have developed various measures
that quantify the extent to which observations are surprising
under a given hypothesis or hypothesis space. In this paper,
we investigate the possibility that formal measures of this
kind can help to explain how people decide that all of the
hypotheses in their current hypothesis space are probably
wrong.
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Hypothesis space checking

Figure 1 illustrates the kind of situation where hypothesis
space checking may be required. There is a universe U of
possible explanations for the given observations, but the
hypotheses available to the reasoner fall within a hypothesis
space H that is a proper subset of U. It is possible, of course,
that the true explanation is not in H; the ability to determine
whether this is the case would be useful.

Figure 1: The universe U includes all possible hypotheses,
and hypothesis H is the subset of these hypotheses that are
currently available to the reasoner.

In principle, the adequacy of H could be evaluated by
computing whether the available observations are better
explained by hypotheses that lie within or outside H.
Bayesian inference provides one way to formalize this sort
of comparative hypothesis testing. Bayes’ theorem
establishes that given the observed data d, the odds that H
contains the true explanation are:

P(H|d) _ P(d|H)P(H)
P(H|d)  P(d|H)P(H)

M

Equation 1 shows that the probability that H contains the
true explanation depends on (1) the relative probabilities of
the data under H and under its complement H and (2) the
relative prior probabilities of H and H.

Although Equation 1 is appealing in principle, it is
impossible to apply. Given that H consists of hypotheses
that are unavailable to the reasoner, the term P(d|H) will be
impossible to compute (Earman, 1990, Ch. 7; Salmon,
1990). Consider the problem faced by a Newtonian physicist
attempting to explain the anomalous precession of
Mercury’s perihelion. Although the physicist might be able
to estimate P(d|H) by considering various Newtonian
explanations, estimating P(d|H) has a paradoxical flavor:



how would the physicist compute probabilities with respect
to theories he cannot currently imagine?

The paradox just described applies to any account
(Bayesian or otherwise) that uses comparative hypothesis
testing to address the problem defined by Figure 1. We
therefore propose that this problem can only be addressed
by non-comparative accounts of hypothesis testing in which
the current hypothesis space is evaluated not in relation to
specific competitors but on its own merits. In statistical
practice, this sort of evaluation is often referred to as model
checking or goodness-of-fit testing, and it typically involves
comparing the actual observations to the expected
distribution of the observations given the current hypothesis
space. To the extent that the actual observations seem
surprising in this context, there is an incentive to search for
new hypotheses.

Comparative and non-comparative hypothesis testing
seem to address distinct problems in that comparative
hypothesis testing seems most useful for selecting among
the hypotheses in H and non-comparative hypothesis testing
seems most useful for checking H itself (for similar
proposals, see Bayarri & Berger, 1999; Gelman & Shalizi,
2013; Gillies, 2007). We propose that both kinds of
hypothesis testing are represented among people’s intuitive
inferences, but in this paper we deliberately focus on a
situation that calls for non-comparative hypothesis testing.

A model of non-comparative hypothesis testing

We propose that intuitive hypothesis space checking
resembles the process specified in Figure 2. Specifically, we
propose that people extract the salient or important features
of the available observations, assess the extent to which
those individual features are surprising under H, and then
compute a global measure of surprise. This global measure
of surprise provides a criterion for deciding whether to
initiate the search for new hypotheses.

feature,—— surprise(featu rel)\

—> —S

7

Figure 2: The reasoner extracts the salient features of the
observations d, calculates a measure of surprise for each
feature, and combines the surprise values into a global
measure Sy that captures the extent to which the data are
surprising given the current hypothesis space H.

H

feature,— surprise,(feature)

Statisticians have proposed various measures of surprise
(e.g., Bayarri & Berger, 1998; Weaver, 1948), but we focus
on statistical null hypothesis testing, which is the best-
known statistical procedure that can be used for hypothesis
space checking. To investigate null hypothesis testing in the
simplest possible setting, we focus on situations where the
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hypothesis space contains a single focal hypothesis h (i.e.,
where H = {h}), but various generalizations of our
approach are applicable to composite hypothesis spaces
(e.g., Bayarri & Berger, 1999; Gelman, Meng, & Stern,
1996). In null hypothesis testing, the statistician first defines
a real-valued test statistic T'(d) that measures some property
of the data; this test statistic can be viewed as one of the
features in Figure 2. To evaluate the surprise of the observed
value of the test statistic, the statistician then considers the
expected distribution of P(d™P) given h, where d™P is a
random variable representing the data that might be
observed if one were to replicate the “experiment” that
produced the data. By comparing the observed value of
T(d) to the expected distribution of T(d"™P) under h, the
statistician can assess whether T'(d) is surprising under h. If
the test statistic is defined such that greater values represent
greater deviations from h, the surprise of T(d) can be
summarized by a p-value:

pr(d) = P[T(d"P) = T(d) | h]. )

Intuitively, the p-value represents the probability that the
test statistic in the imagined replications would be at least as
extreme as what was actually observed. Small p-values
correspond to surprising results where the observations are
unusually extreme.

In the final step of Figure 2, the reasoner combines the
surprise measures for each feature into a global measure of
surprise. To avoid making assumptions about how people
integrate surprise ratings across different features, we focus
on situations where there is a single surprising feature. In
such situations, it seems reasonable to adopt the surprise
value for that feature as the global measure of surprise.

Method

To evaluate our proposed model of non-comparative
hypothesis testing, we conducted an experiment in which
participants learned about the ancient burial sites found on a
remote island chain. The burial sites were marked by
“cairns” (rock piles), and each island had been occupied by
one of two cultures that constructed the cairns using
different procedures: the “Chaotics” placed a random
number of boulders in each cairn and the “Numerologists”
placed a number of boulders in accordance with a
mathematical function. The instructions explained that the
Numerologists used different mathematical functions on
different islands but that the mathematical function was
always based on the number of people buried at the site. The
participants were asked to infer which cultural group
occupied an island from information about the burial sites
on the island.

Because the number of possible mathematical functions is
infinite, we expected that participants would not be able to
assess every possible explanation for the observations. We
expected that when faced with this impossible task,
participants would consider the hypothesis that the Chaotics
occupied the island as well as various hypotheses where the



Numerologists occupied the island and used some simple
mathematical function. Because the materials were designed
so that no simple mathematical function would explain the
observed number of boulders at the burial sites, we expected
that most participants would end up with a hypothesis space
that contained a single viable hypothesis: the hypothesis that
the Chaotics occupied the island. We expected that
participants would check this hypothesis through a
procedure resembling the one depicted in Figure 2. We
predicted that when the observations were sufficiently
surprising, participants would be willing to attribute
occupancy to the Numerologists. Critically, we expected
that participants would sometimes make this attribution
even when they could not identify a single mathematical
function that the Numerologists might have used. As we
discuss later, this finding would be difficult to explain as a
consequence of comparative hypothesis testing.

The experimental materials were based on three “test
statistics” that reflected the salient numerical concepts of
equality and magnitude (see Table 1). The equality test
statistic, for example, was defined as the count of the burial
sites that had the same number of people and boulders, and
we expected participants to be surprised when many of the
burial sites had the same number of people and boulders.

Table 1: Test statistics

Name Definition

Equality number of burial sites where b = p
Minimum  smallest observed value of b

Repetition  frequency count for the most frequent b

Note. p = the number of people at a burial site; b = the
number of boulders at a burial site.

Participants

Sixty-one undergraduates participated in the experiment for
course credit.

Materials

Table 2 displays the observations presented to the
participants. In the table and in the rest of the paper, we
represent burial sites by two numbers separated by a dash,
with the first and second numbers representing the number
of people buried and boulders, respectively. Each row of the
table corresponds to a different island. Twelve of the islands
were designed to be surprising according to exactly one of
the test statistics in Table 1 and four additional islands were
designed to have no surprising features (the ‘“None”
islands). All of the islands contained either three or six
burial sites, and the surprising islands were designed so that
the coincidence involving the test statistic would be either
moderately (.01 < p <.15) or highly (p < .01) surprising, as
calculated from Equation 2.

The rightmost column shows the p-values for each island,;
these p-values summarize how surprising the observations
would be if the Chaotics occupied the island. The p-values
were calculated under the assumption that the number of
boulders at a burial site could range from 1 to 100 (the

instructions informed participants that this was the case). To
illustrate, consider the calculation of the p-value for the first
island. The observed value of the equality test statistic for
this island was one: there was exactly one burial site that
had the same number of people and boulders. If the Chaotics
occupied the island, then the equality test statistic would
follow a binomial distribution with a probability parameter
of .01. Consequently, the probability that at least one of the
burial sites on a three-site island has the same number of
people and boulders is approximately .0297.

For the equality and minimum statistics, the four islands
represented the four possible combinations of surprise
condition and island size. For the repetition test statistic, we
did not include a high-surprise island with three burial sites;
instead, we included two moderate surprise islands with
three burial sites. The reason for this was that creating a
high-surprise “repetition” island with three burial sites
necessitated selecting an island where each burial site had
the same number of boulders. Because we were interested in
situations where the participants would not be able to find a
mathematical function to explain the observations, we chose
not to present such an island.

Table 2: Experimental materials
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Feature Srprs. Sz. Burial sites p-value
Equality M 3 20-94,39-39,85-78  .0297
Equality H 3 16-16, 65-65, 49-12 .0003
Equality M 6  7-62,33-85, 40-1, .0585
53-26, 59-59, 94-18
Equality H 6 12-100, 19-42, 21-21, .0015
32-14, 75-75, 93-56
Minimum M 3 15-86, 63-98, 84-75  .0176
Minimum H 3 16-92, 42-97,93-90  .0013
Minimum M 6 5-67, 24-81, 35-72, .0108
52-68, 57-93, 83-54
Minimum H 6 13-75, 32-95, 35-98,  .0003
37-80, 72-85, 96-94
Repetition M 3  3-19,27-84,74-19 .0299
Repetition M 3 11-75, 39-28, 80-75  .0299
Repetition M 6  2-5,6-97, 31-69, .1404
59-38, 62-52, 75-52
Repetition H 6 12-98, 15-98, 26-4, .0020
45-73, 60-53, 77-98
None - 3  23-18,40-69,93-55 -
None - 3  31-46,80-24,94-87 -
None - 6 1-78, 43-61, 45-12, -
52-35, 83-87, 91-46
None - 6 1-26, 8-92, 14-36, -
35-20, 40-11, 63-45
Note. Srprs. = surprise condition; Sz. = island size; M =

moderate surprise; H = high surprise.

All of the observations were designed so that at most one
of the test statistics in Table 1 would be surprising at a level
greater than p = .30. In addition, we controlled for the
distribution of even and odd numbers and for the correlation
between the number of people and number of boulders.



Procedure

Participants were provided with a cover story that described
their task and the Chaotics and Numerologists. Participants
then completed a familiarization trial. On both the
familiarization and experimental trials, the burial sites were
represented by ‘“cards” on a computerized display. Each
card listed one number next to a stick figure and another
number next to an illustration of a boulder pile. These
numbers represented the number of people buried at the site
and the number of boulders in the cairn, respectively.
Participants were encouraged to re-arrange the cards by
clicking and dragging them. The interface also provided
buttons to automatically sort the cards according to either
the number of people buried or the number of boulders. For
the practice trial, the three burial sites were 31-1, 48-5, and
90-4, and participants were told that the island was occupied
by Numerologists who placed a number of boulders equal to
the number of prime factors of the number of people buried
at the site (e.g., because 48 =3 * 2 * 2 * 2 * 2 the burial site
with 48 people had 5 boulders). This rule was intended to
establish that the Numerologists were sophisticated
mathematicians who had access to a wide variety of
mathematical properties and rules. In doing so, our goal was
to establish a universe of possible explanations that would
be too large to consider in full.

Participants reported their inferences about which cultural
group had occupied the island using a seven-point rating
scale where the leftmost point was labeled “definitely
Chaotics”, the rightmost point was labeled “definitely
Numerologists”, and the middle point was labeled “not
sure”. Responses were coded from -3 (“definitely
Chaotics”) to 3 (“definitely Numerologists™). Participants
who indicated that the Numerologists were more likely to
have occupied the island than the Chaotics were also asked
to indicate whether they had “discovered ANY function that
the Numerologists might have used to determine the number
of boulders.” Participants answering affirmatively were
asked to describe the function. Finally, at the end of each
trial, participants were asked to list “any features,
coincidences, or patterns in the burial sites that would have
been surprising if the Chaotics occupied the island.”
Participants were provided with three text input fields and
could identify up to three features, coincidences, or patterns.
The responses to this prompt were intended to measure
whether participants noticed the relevant features or any
other features of the observations.

After completing the familiarization trial, the participants
completed experimental trials for each of the 16 islands
listed in Table 2. The presentation order was randomized.

Results

A preliminary analysis confirmed that participants
frequently noticed the relevant features. For each feature, a
majority of the participants listed the feature as surprising
on at least one of the relevant trials; the proportions were
.59 for the minimum feature, .72 for the equality feature and
.66 for the repetition feature. A second preliminary analysis
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confirmed that the islands did not contain many surprising
features other than the intended relevant features.
Participants listed other features on only 16.8% of the
experimental trials. The proportion of participants listing
other features was similar across the experimental
conditions: a logistic regression with categorical predictors
corresponding to the surprise conditions, the relevant
features, and the island sizes did not explain a significant
proportion of the variance in the probability that participants
noticed other features, R? = .26, F(5, 8) = 0.55, p = .74.

To evaluate our formal approach we compared the model-
derived p-values and the mean culture ratings. Because
people often evaluate probabilities on a logarithmic scale
(e.g., Gonzalez & Wu, 1999), we adopted the logit (i.e., the
log-odds) of the island p-values as the model’s measure of
surprise (lesser values corresponded to greater surprise).
When calculating the mean culture ratings for each
condition, we excluded any culture ratings for which the
participant who provided the rating failed to identify the
relevant feature as surprising at any point during the
experiment. The rationale for this exclusion is that a
participant who did not notice the relevant feature could not
have been surprised by it.

1 A Equality
O Minimum
" 0.5 Repetition
.E
g 0
2
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E
&
-1
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0 8 -6 4 2 0
logit(p

Figure 3: The culture rating as a function of the logit of the
p-value. Different features are represented by different
marker shapes, different island sizes are represented by
different marker sizes (large markers correspond to islands
with six burial sites), and different surprise conditions are
represented by different shadings (black markers correspond
to high-surprise islands).

Figure 3 shows the comparison of the p-values and the
mean culture ratings. A linear regression confirmed that the
logit of the p-values explained a significant proportion of
the variance in the ratings, R? = .82, F(1, 10) = 44.2, p <
.001. This relationship was essentially unchanged even
when culture ratings were included for participants who
failed to notice the relevant features, R? = .77, F(1, 10) =
33.83, p < .001. Inspection of Figure 3 also suggests that
the islands with six burial sites may have been viewed as
less surprising than the islands with three burial sites. The
statistical significance of this finding was confirmed by a
multistep regression that showed that island size predicts
variance in the culture ratings above and beyond the
variance explained by the logit of the p-values, AR? = .14,



F(1, 9) = 25.7, p = .001. This finding may reflect a general
tendency to underestimate the extent to which deviations
from the mean become increasingly surprising for larger
samples (Kahneman & Tversky, 1972).

Although our participants compared hypotheses in the
sense that they reported whether the Chaotics or
Numerologists occupied an island, it seems difficult to
explain their inferences as the product of what we have
called comparative hypothesis testing. Consider, for
example, the difficulties that arise in explaining the culture
ratings by appealing to Equation 1, which in the context of
our experiment involves the comparison of P(d|Chaotics)
and P(d|Numerologists). Note that P(d|Chaotics)
depends only on the number of burial sites on the island: for
any island with three burial sites, for example,
P(d|Chaotics) is (1/100)3. Thus, if the participants’
inferences were indeed based on Equation 1, then the
differences in the culture ratings must have arisen primarily
because of differences in P(d|Numerologists).

If P(f|Numerologists) is a prior distribution over
specific functions f, then

P(d|Numerologists) = ff(d|f)P(f|Numerologists) 3)
The integral in Equation 3 will be large to the extent that
there are many functions that are plausible a priori
(P(f|Numerologists) is high) and consistent with the data
(P(d|f) > 0). Approximating this integral using sampling
or some other standard method would involve identifying
one or more functions f for which P(d|f) > 0. Our
participants, however, rarely identified even a single
function f for which P(d|f) > 0. Recall that participants
who claimed that the Numerologists occupied an island
were asked whether they had found any mathematical
function to explain the observations. Participants reported
finding a function on only 15.5% of these occasions.
Furthermore, the “functions” that these participants reported
were often not fully specified functions at all. One
representative participant claimed to have found a function
but then wrote that “I don't have a function, but when put
roughly on a graph it almost-kinda-sorta forms a wave.”
Summarizing his inference, the same participant later added,
“I'm grasping at straws though.” Figure 4, furthermore,
shows that the relationship between function finding and the
culture ratings is weak and, according to a linear regression,
non-significant, R? = .016, F(1, 12) = .19, p = .67.

Could participants have estimated P(d|Numerologists)
without identifying a single specific function f that might
have been used by the Numerologists? Might participants,
for example, have used some computational procedure that
approximates the integral in Equation 3 without actually
identifying any specific functions? We cannot exclude this
possibility, but we do not know of any such procedure. In
the absence of a known procedure that approximates the
integral in Equation 3 given some plausible specification of
the prior, it seems reasonable to conclude that our
participants did not rely on comparative hypothesis testing.
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Figure 4: The mean culture ratings as a function of the
proportion of participants who claimed to have identified a
mathematical function that explained the observations.

As a final test of our model, we investigated whether the
model-derived surprise predicted the culture ratings even
after excluding trials in which participants claimed to have
found a mathematical function. To do so, we recalculated
the mean culture ratings while excluding any culture rating
where either (1) the participant reported finding a
mathematical function or (2) the participant never noticed
the relevant feature (as in previous analyses). A linear
regression on these recalculated culture ratings confirmed
that the logit of the p-values remained strongly predictive of
the culture ratings, R? = .87, F(1, 10) = 69.43, p < .001.

M three sites
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six sites

I

0.50
0.00
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Culture rating

-1.00

unsurprising moderate
Surprise
Figure 5: Culture ratings as a function of surprise condition

and the number of burial sites. The error bars show standard
errors.

-1.50

high

Our analyses so far have focused on the islands that were
designed to be of “moderate” or ‘“high” surprise. We
compared these islands to the unsurprising “None” islands
by analyzing the mean culture ratings as a function of
surprise condition. Figure 5 shows that participants were
much more willing to attribute island occupancy to the
Numerologists in the high-surprise condition. The similarity
between the culture ratings for the unsurprising and
moderately-surprising condition was not expected, but it
may be that the culture ratings are only influenced by
observations once the surprise exceeds a certain threshold.
Figure 5 also suggests that island size might have influenced



the culture ratings, either on its own or in an interaction with
the surprise condition. A within-subjects ANOVA showed
that the culture ratings were influenced by both surprise
condition, F(2, 100) = 27.80, p < .001, and island size, F(1,
50) = 6.89, p = .01; the interaction between surprise
condition and island size was marginally significant, F(2,
100) = 2.89, p = .06. In post-hoc analyses, we confirmed
that the culture ratings in the unsurprising and moderately-
surprising conditions were not significantly different, t(50)
= .80, p = .43, and that the culture ratings in the high-
surprise condition were significantly different from those in
the unsurprising, t(50) = 5.66, p < .001, and moderately-
surprising, t(50) = 6.74, p <.001, conditions.

Discussion

The experimental findings suggest that people perform
hypothesis space checking using an intuitive version of non-
comparative hypothesis testing. The findings are not
naturally explained by comparative hypothesis testing. This
is not to say that comparative hypothesis testing is never
useful: recall that our experiment was deliberately designed
so that comparative hypothesis testing would be of limited
relevance, and comparative hypothesis testing undoubtedly
plays an important role in other settings. Moreover,
although comparative hypothesis testing cannot explain our
main experimental findings, there are reasons to believe that
it influenced our participants’ thinking to some extent.
Participants were often reluctant to fully commit to the idea
that the Numerologists occupied the island even after
observing very surprising observations: even in the most
surprising condition (p = .0001), the mean culture rating was
only 0.73. One interpretation of this finding is that people
are often unwilling to fully reject a hypothesis space until a
better explanation is discovered (see also Griffiths &
Tenenbaum, 2007).

Other researchers have proposed that people employ
methods such as sampling to approximate Bayesian
inference in situations where it is impossible for them to
evaluate the entire hypothesis space (e.g., Sanborn,
Griffiths, & Navarro, 2010). These methods, however, do
not address the problem posed by Figure 1. Sampling from
H may be useful if this hypothesis space is large, but this
approach does not explain how a reasoner might decide that
the true hypothesis lies outside H. Supporters of sampling
might respond that the problem of hypothesis space
checking never arises because the space of available
hypotheses is always equivalent to U. This position,
however, seems incompatible with the intuition that
scientists and others are sometimes able to generate
hypotheses and explanations that are genuinely new.

The justifications for comparative and non-comparative
testing remain controversial among statisticians and
philosophers (e.g., Howson & Urbach, 1989/1996; Mayo,
1996; see also Gigerenzer et al., 1990, Chapter 3), but both
kinds of hypothesis testing seem necessary to account for
the inferences that people make. Non-comparative
hypothesis testing is especially notable for the role it plays
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in the discovery of new hypotheses. These discovery
processes, while often mysterious and difficult to explain,
are involved in many of the most interesting inferences that
people make. Statistical model checking does not explain
where new hypotheses come from, but it can explain why
people initiate the search for new hypotheses.
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