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Abstract

This paper presents the results of a computational model of
generalized phonological rule learning (Calamaro and Jarosz,
2012), which is used to model experimental studies on the
learning of phonotactic patterns governed by natural and
unnatural classes. | focus on two papers with conflicting
results on the learnability of natural and unnatural rules.
Saffran and Thiessen (2003) find that a phonotactic pattern of
positional voicing restrictions governed by a natural class of
segments is learned by infants, but a similar pattern governed
by an unnatural class is not learned. In contrast, Chambers,
Onishi, and Fisher (2003) find that infants can learn a
phonotactic pattern governed by an unnatural class of
segments. The computational model presented in this paper is
able to account for these seemingly conflicting results,
explaining both the learnability and unlearnability of rules
governed by unnatural classes.
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Computational Model; Statistical Learning

Introduction

Many artificial-language experiments have explored the
learnability of sound patterns in acquisition and how these
may reflect biases in the phonology. The interpretation of
experimental results can often be attributed to a number of
different theoretical models. In this paper, | explore the
results of experimental studies on the learnability of
unnatural rules and provide an analysis in a computational
model.

Experiments in language acquisition have found
conflicting results in the learnability of unnatural sound
patterns. In one study, Saffran and Thiessen (2003) found
that infants were able to learn phonotactic voicing
restrictions governed by a natural class of segments, but
were unable to learn the same pattern when governed by an
unnatural class. In contrast, Chambers, Onishi, and Fisher
(2003) have shown that phonotactic patterns governed by
unnatural classes may be learnable.

In this paper, | present a computational model of
generalized rule learning (Calamaro and Jarosz, 2012),
which offers an account of the results found by Saffran and
Thiessen (2003) and Chambers et al. (2003). This model
uses statistical regularities in the input, as well as linguistic
filters, to learn phonological alternations. It encodes these
patterns as generalized rules over natural classes of
segments, which can explain the inability to generalize
certain patterns that do not fall into a natural class.

The results of these computational experiments will help
to further clarify the nature of the results of the acquisition
studies. The preference for patterns governed by natural
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classes over unnatural classes may be explained by the
inability to generalize over certain classes of segments. This
preference is realized in the model through a generalization
bias, or preference for general rules. The learnability of
some types of unnatural rules is also explained by the
model, which can identify the robust patterns present in the
data and distinguish between them through the interaction of
complexity and competition.

Background

In their artificial-language experiments on phonological
acquisition, Saffran and Thiessen (2003) attempt to find the
types of patterns that are learnable by infants and identify
the types of pattern that are more difficult to learn. 9-month-
old infants were trained on a set of language data exhibiting
the specified pattern. They were then tested using the head-
turn preference procedure, in which listening times for
familiar and novel words were measured. A significant
difference in listening times would indicate which patterns
had been learned by the infants after a brief training period.

In one experiment, they looked at the learning of voicing
restrictions in different positions of a syllable. Using two
conditions, they restricted the types of consonants that could
appear in the onset, the position preceding the vowel, and
the coda, the position following the vowel. In one condition,
the onset position was restricted to the set of voiceless stops
[p.t,k], while the coda was restricted to voiced stops [b,d,g].
For example, words of the form pibtad were permitted, but
not *bipdat. In the second condition, the restrictions were
reversed, with voiced stops in the onset and voiceless stops
in the coda. The sets [p,t,k] and [b,d,g] each form a natural
class of stop consonants because they can be distinguished
using a single feature, [voice]. The results showed that
infants were indeed capable of learning this distinction, with
a significant difference in looking times between familiar
and novel words. In this experiment, the infants were able to
learn a phonotactic pattern governed by a natural class of
segments.

The next experiment investigated the learning of voicing
restrictions of unnatural classes in different prosodic
positions. Unlike the previous experiment, in which the sets
[p,t,k] and [b,d,g] could be distinguished by the [voice]
feature, the sets used in the second experiment cannot be
distinguished by any feature, making them unnatural. In one
condition, [p,d,k] appeared in the onset while [b,t,g]
appeared in the coda. The reverse was true in the second
condition, with [b,t,g] appearing in the onset and [p,dK]
occurring in the coda. The experimental results differed,
with no significant difference in looking times between the
familiar and novel words. In the experiment, the infants



failed to learn a phonotactic pattern governed by an
unnatural class of segments.

Overall, the Saffran and Thiessen (2003) results show that
infants are capable of learning patterns over a set of
segments that form a natural class and can be described by a
minimal number of features, and it is more difficult to learn
a pattern over an unnatural class of segments which cannot
be described by any set of features.

In contrast, Chambers et al. (2003) have shown that
infants are capable of learning phonotactic patterns
governed by an unnatural class of segments. In this
experiment, 16.5-month-old infants were tested using a
head-turn preference test. The training data consisted of
artificial CVC words in which the set of segments [b, k, m,
t, f] and [p, g, n, ¢, s] were restricted by position, appearing
in either the onset or coda. There is no combination of
features that can be used to define these segments, so these
sets of segments constitute an unnatural class. In the testing
phase of the experiment, infants were able to distinguish
between legal and illegal words, meaning they had learned
the phonotactic pattern they had been trained on.

The results found by Chambers et al. (2003) seem to be in
conflict with the results found by Saffran and Thiessen
(2003) on the learnability on rules governed by unnatural
classes. In addition to the distinction between natural and
unnatural classes, a learning model should also be able to
account for these different results on the learnability of
unnatural classes. In the next section, | present such a model
to account for these results.

Generalized Rule Learning Model

The Generalized Rule Learning model (GRL: Calamaro and
Jarosz 2012) presented here is used to test the learning of
the acquisition data in a computational setting. The GRL is a
statistical model with linguistic constraints and generalized
rule learning. The generalization component of the model is
motivated by experimental evidence showing that infants
are able to generalize rules using features (Maye, Weiss, and
Aslin 2008; Cristia and Seidl 2008). Given a set of
segmented data, the model learns general rules for
alternations in the data at the contexts in which they occur,
as well as a score reflecting the strength of the rule. The
original goal of the GRL model was the learning of
alternations, such as word-final devoicing in Dutch, but in
this paper it is applied to static phonotactic patterns. The
GRL model is based on an earlier model (PLND:
Peperkamp, Le Calvez, Nadal, and Dupoux, 2006) for
learning pairs of alternating segments by calculating their
statistical distribution in the data with an application of KL-
divergence (Kullback and Leibler, 1951) and linguistic
filters.

The GRL model maintains the use of the two linguistic
filters® from PLND, which remove spurious pairs that
should not be considered as alternating segments for
linguistic reasons. The first filter removes pairs which have

! See Appendix for formal definitions of the two filters.
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an intervening segment in the phonetic space based on their
features, which are represented by a vector with values for
place, sonority, voicing, nasality, rounding, and vocalic.?
The second filter removes pairs in which the allophone is
not more similar to its context than the default segment.
Overall, these filters are able to introduce phonological
knowledge not available to a purely statistical model.

The GRL model also maintains use of KL-divergence,
though the formulation is somewhat changed, with the new
calculation shown in (1) :

(1)  Scoresisz) = D (c,51,52) * Z?
Where:
_ P(c|s1) P(c|sz)
D (c,s1,52) = P(c|s1)log Pelsy) + P(c|sy) logP(clsl)

KL (c,s1, -
andz=%‘

The equation in (1) is used to calculate scores for pairs of
alternating pairs of segments at a context c, defined as the
following segment. The use of KL-divergence to find
alternating pairs captures the intuition that segments which
have highly distinct distributions in the data are likely to
governed by some phonological or phonotactic rule.

The model creates general rules by merging alternating
pairs which undergo an identical structural change, as
represented by a feature vector. For example, the alternating
pair (d,t) has a structural change of [0,-1,-1,0,0,0],
calculated as the difference between the feature vector of
segments t: [4,1,0,0,0,0] and d: [4,2,1,0,0,0]. This difference
vector represents the devoicing pattern of the (d,t) pair.

The scores of alternating pairs as calculated in (1) are
summed for all pairs whose change in features is the same,
giving a contextualized rule score. Each contextualized rule
is represented by a structural change vector, the context in
which it occurs, and a rule measuring its strength. The
calculation of contextualized rule scores is shown in (2):

@
2.

(s1,s2) where s1-s2= f

Score Score (¢s1 52)

h =

The output of the formula in (2) is a set of rules which
each apply at a single context. Many phonological rules
apply at multiple, related contexts, such as a vowel
nasalization rule that applies in the context of all nasal
segments. The contextualized rule scores can be further
generalized, by merging rules whose contexts are
phonologically related to each other and the change
undergone by the rule. The formal calculation of the rule
merging is defined in (3):

©)

Score p = Score

c € Cwhere SCC and SVC hold

()

2 See Appendix for the set of phonetic features.



Shared Change Condition (SCC): To merge, contexts

must share feature values for any non-zero values in 7
Shared Values Condition (SVC): To merge, contexts must
not differ along more than one feature.

The formula in (3) is used to calculate the score of a
generalized rule as the sum of all rules whose contexts meet
two conditions: the Shared Change Condition (SCC) and the
Shared Values Condition (SVC). Like the linguistic filters
from Peperkamp et al (2006), the merging conditions
provide linguistic information in assigning classes of sounds
that pattern together. The SCC requires that contexts must
be related to the rule change in the same way by restricting
merging to contexts which share non-zero values of the rule
vector. The SVC requires that contexts be related to each
other by restricting merging to contexts which only differ
along a single feature dimension, thus approximating a
natural class. The merging of contextualized rules into
generalized rules can capture generalizations about the data
as well as assign increased scores to more robust rules
occurring in a set of related contexts.

This model learns generalized rules as a difference vector
of features, a set of contexts of application, and a score
indicating the goodness of the rule. The rules learned by the
model will need to be interpreted somewhat differently from
the results of the Saffran and Thiessen (2003) and Chambers
et al. (2003) experiments, which measured successful
learning by significant differences in looking times in a
head-turn test. Instead, this model will need to look for rules
which reflect the regularities found in the training data.
Additionally, the model looks at alternations conditioned by
contexts defined as following segments and does not have
access to syllabic structure. Due to these limitations of the
model, this discussion will focus on the results as they relate
to the learning of the pattern in coda position, which is
defined by the following segment. With these restrictions in
mind, successful replication of results in the model will
mean the learning of a word-medial and word-final
voicing/devoicing rule in Experiment 1, no successful
learning of any such a rule in Experiment 2, and the learning
of meaningful rules in Experiment 3.

Experiment 1: Learning rules governed by
natural classes

In Experiment 1, | replicate the results of an experiment by
Saffran and Thiessen (2003), in which infants were able to
learn voicing restrictions by position.

Method

The Generalized Rule Learning Model, as described in the
previous section, was used.

Data

The same training data from Saffran and Thiessen (2003)
was used. Each condition in the training data consisted of 30
unique CVCCVC words for each condition, made from an
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alphabet with four vowels [a, i, o, u], three voiceless stops
[p, t, k], and three voiced stops [b, d, g]. In condition a,
voiced stops were restricted to coda position and voiceless
stops were restricted to onset position. The opposite was
true for condition b, with voiceless stops occurring in coda
position and voiceless stops occurring in onset position.

While the model does not specifically reference syllable
structure, successful learning of this data would find a rule
of voicing/devoicing in the word-final context and before
voiceless/voiced consonants.

Results

The results from experiment 1 are shown in Figure 1,
reflecting the highest scoring rules found by the model.
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Figure 1: Exp. 1 results

Each bar in Figure 1 shows the score of a generalized
rule. In Condition a, the highest scoring rule is the word-
final voicing rule, (# [0,1,1,0,0,0]), where # represents the
word-final context and [0,1,1,0,0,0] represents the structural
change vector. The two non-zero values in the vector
indicate a change in the sonority and voicing features in
pairs such as (t,d).2 The reverse rule is found in Condition b,
with a structural change vector [0,-1,-1,0,0,0] indicating
devoicing in pairs such as (d,t).

In each of the two conditions, the highest scoring rule is
the desired voicing or devoicing rule. This rule reflects the
change in voicing of the stops in coda position in the
training data. The voicing/devoicing rule is quite robust in
each of the two conditions, scoring much higher than the
next highest scoring rule. A similar rule for word-medial
codas is also found, which is the voicing/devoicing rule
occurring in {p,t,k} or {b,d,g} contexts.

A number of spurious rules were also found by the model.
These rules reflect a change in place of articulation, shown
as fronting and backing rules. While these rules are not
desired, they do reflect a generalization in the data, namely,
a possible alternation between pairs like [p,t] or [t,k], in
which the segments differ only in place of articulation.
These spurious rules are likely an artifact of the small

% See Appendix for the full set of feature values.



segment inventory, making a minor statistical regularity
appear to reflect a possible alternation. In artificial language
learning, these types of spurious statistical regularities have
the potential to affect the results to a greater extent than in
natural language learning, as will be seen in Experiment 3.

Overall, the results in Experiment 1 show learning of the
phonotactic pattern, aligning with the results found by
Saffran and Thiessen (2003). The model successfully
learned the voicing restrictions when they were governed by
a natural class of segments.

Experiment 2: Failure to learn rules governed
by unnatural classes

In experiment 2, | replicate the results of a second
experiment from Saffran and Thiessen (2003), in which
infants were not able to learn phonotactic restrictions of
unnatural classes of segments which are specified by voice
and place of articulation.

Method

The Generalized Rule Learning Model, as used in the
previous experiment.

Data

The same training data from the Saffran and Thiessen
(2003) experiment was used. The training data consisted of
30 CVCCVC words in each condition with the same
alphabet as experiment 1. In condition a, the set of coda
consonants was [b, t, g] and the set of onset consonants were
[p, d, k]. In condition b the voicing specifications were
reversed, with codas [p, d, K] and onsets [b, t, K].

Results

In Exp. 2, the model failed to learn voicing restrictions
governed by unnatural classes. These results are shown in
Figure 2, with the highest scoring rules represented.
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Figure 2: Exp. 2 results

The voicing and devoicing rules are no longer learned as
the highest scoring rules, as seen in Figure 2. The highest
scoring rule is now a spurious rule reflecting a change in the
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place of articulation. This rule would account for a possible
alternation between pairs such as (p,t) or (d,g), which can be
generalized from statistical regularities in the data.

The desired rules of voice alternations receive lower
scores than some of the spurious rules. The overall strength
of these desired rules has decreased, with the weight of each
voicing/devoicing rule being split into two lower weighted
rules. The reason for this decrease in the score is that the
patterns cannot be fully generalized because they belong to
an unnatural class. In experiment 1, the desired voicing rules
were supported by three pairs of segments, one for each
place of articulation. In this experiment, the scores were
split between two separate rules, each supported by one or
two pairs of segments, (t,d) or (b,p) and (g,k).

Both factors of decrease in rule rank and loss of rule
strength contribute to the increased difficulty of learning the
phonotactic pattern in experiment 2. This difficulty in
learning is a desired result because infants failed to learn
this same pattern in an experimental setting (Saffran and
Thiessen 2003).

In this case, the unnatural voicing pattern was not the
most robust pattern in the data. The model found other
patterns which were generalizable from the given data,
obscuring the desired patterns. From this result, a prediction
of the model is that it would be able to learn a rule governed
by unnatural classes, if the data did not contain any other
patterns which could be inferred. Such a case is used by
Chambers et al. (2003), which will be shown in the
following experiment.

Experiment 3: Learning rules governed by
unnatural classes

In a final experiment, | run the GRL model on the data from
Chambers et al. (2003), in which infants were able to learn
phonotactic patterns governed by an unnatural class of
segments.

Method

The Generalized Rule Learning Model, as used in the
previous experiments.

Data

The data used in this experiment were replicated from
Chambers et al. (2003). A set of CVC words were creating
using two groups of consonants belonging to an unnatural
class: [b, k, m, t, fl and [p, g, n, f, s]. The onsets were
drawn from one group and codas from another, creating a
phonotactic pattern governed by an unnatural class of
segments.

Results

While the data could not be generalized, the patterns were
learnable as separate rules, as shown in Figure 3:
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Figure 3: Exp. 3 results

The rules shown in Figure 3 are striking due to the
uniformity of the data. While the segments could not be
generalized by position, the model was able to find
relationships among between-group segments. For example,
the (b, p) pair is reflected by the word-final devoicing rule
(# [0,-1,-1,0,0,0]), while the (k, g) pair is reflected by the
word-final voicing rule (# [0,1,1,0,0,0]).

With a one-to-one mapping of segments to learned rules,
we would expect five rules, but instead find eight. While
each segment belongs to at least one rule, some segments
are learned as multiple rules. For example, ‘p’ is found in
both the devoicing rule (# [0,-1,-1,0,0,0]) with the pair (b,p),
but also in the fortition rule (# [-1,-2,0,0,0,0]) with (f,p).

While some of these are the same rules which were
unlearnable in Experiment 2, namely voicing and devoicing,
a potential difference here is the lack of interference from
spurious rules. While in the case demonstrating
unlearnability, the desired rules were dominated by spurious
rules. In this experiment, the desired rules were the highest
scoring rules.

Discussion

The computational experiments presented in this paper seek
to address two fundamental questions about the learnability
of phonotactic patterns: Why are patterns governed by
natural classes easier to learn than those governed by
unnatural ones? How can we explain results in which
unnatural patterns are learnable? The first question is
addressed by comparing the results of Experiments 1 and 2,
and the second by comparing the results of Experiments 2
and 3.

Natural vs. Unnatural Classes

In Experiments 1 and 2, the GRL replicated the results
found by Saffran and Thiessen (2003), that a phonotactic
pattern governed by a natural class is learned, while one
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governed by an unnatural class is not. Specifically, infants
can learn patterns which occur over a set of segments that
all agree in voicing and differ in place, they cannot learn
patterns which occur over a set of segments that differ in
both place and voicing.

The GRL finds an asymmetry in the learning of natural
and unnatural classes due to an inherent bias in the
generalization mechanism. Generalized rules receive higher
scores from the model because they have support from more
pairs of segments. The strength of general rules is computed
by summing the scores of rules governing alternations
between a single pair. Therefore, the more pairs of segments
contributing to a general rule, the higher its score will be. In
the case of the Saffran and Thiessen (2003) data, the rules
governed by natural classes are supported by more segments
than the unnatural ones. This inherent generalization bias
assigns higher scores to the natural rules in Exp.1 than the
unnatural rules in Exp. 2.

The asymmetry in the learning of natural and unnatural
rules has previously been explained by a Complexity Bias
(Moreton and Pater, 2011). Under this account, the more
complex set of features needed to describe unnatural classes
makes the learning of unnatural patterns more difficult.
Natural classes, which can be described with fewer features,
can be learned more easily.

The generalization mechanism in the GRL accounts for
the same patterns as the Complexity Bias, but for a different
reason. While the Complexity Bias asserts that unnatural
rules are more difficult to learn because they require the
encoding of additional feature values, the GRL attributes
this asymmetry to weaker statistical regularities due to the
more complex data. This prediction of the GRL can be seen
by the difference in rules scores in Exp. 1 versus Exp. 2.

The GRL model has an additional property that interacts
with complexity: competition. In the results from Exp.1, the
desired pattern was learned because of the high score
relative to other rules. In Exp. 2, the lower scoring unnatural
rules were dominated by competing spurious rules,
interfering with their learnability. This interaction between
complexity and competition allows the GRL to make
additional predictions beyond complexity alone, which will
play a role in the learning of different types of unnatural
classes.

Unnatural vs. Unnatural Classes

In Experiments 2 and 3, the learning data contained
phonotactic patterns governed by unnatural classes. In the
original experimental setting, infants did not learn the
unnatural pattern in Experiment 2 (Saffran and Thiessen
2003), but did learn the pattern in Experiment 3 (Chambers,
et al. 2003). Likewise, the GRL found a similar difference in
the learnability of the two unnatural patterns, as shown in
this paper. The distinction to be made between these two
unnatural patterns lies in the nature of the data.

Both experiments presented artificial data in which
syllable positions were restricted to a specific set of
consonants. In Saffran and Thiessen (2003) the sets were [p,



d, k] and [b, t, g]; in Chambers et al. (2003) they were [b, k,
m, t, f] and [p, g, n, §, s]. While both sets of data are
unnatural to some extent, there is a striking difference in the
segment inventories of the two experiments.

While the pattern presented in Saffran and Thiessen
(2003) is unnatural, the segment inventory is well-balanced
among the feature set it uses, with a voicing distinction
present for each place of articulation. In contrast, the
segment inventory of Chambers et al. (2003) is not as
balanced, with a mix of voicing, place and sonority
distinctions that do not apply across all pairs of segments.
For example, there is a voicing distinction for the pairs (p,b)
and (k,g), but there exists no pair (t,d).

The effects of the overall naturalness of the data are seen
directly in the computational results of Experiments 2 and 3.
In Experiment 2, the more balanced data allowed the GRL
to make a number of spurious generalizations, obscuring the
robustness of the desired unnatural rules. In Experiment 3,
the less balanced data could not be generalized by the
model, leaving the set of desired unnatural rules as the most
robust in the data.

In the distinction between these two sets of unnatural
patterns, the GRL is better able to predict these results than
a model using complexity alone. The Complexity Bias
(Moreton and Pater 2011) predicts difficulty in the learning
of both types of unnatural patterns, but would predict even
greater difficulty in Exp. 3 due to the greater number of
features needed to describe the unrelated set of segments.
However, the experimental evidence shows the opposite is
true, with the data in Exp. 3 being learned more easily. The
predictions of the GRL align with the experimental evidence
due to the interaction of competition and complexity in the
model. The unnatural pattern in Exp. 3 is learned more
easily than that in Exp.2 because the desired rules are not in
competition with any high scoring spurious rules as is the
case in Exp. 2.

Conclusion

The GRL is able to model the results of experimental data
showing the learning of phonotactic patterns by infants. It
can account for the preference for learning natural rules over
unnatural ones, as well as the distinction between the
learnability of different patterns of unnatural classes. This
preference for natural classes is an inherent property of the
model, due to the rule generalization component. While the
generalization component of the model does facilitate the
learning of natural rules, it does not exclude the learning of
rules governed by unnatural classes. Indeed, rules governed
by unnatural classes were learned by the model, when there
were no other more robust rules in the data.

These experiments provide some promising results for the
GRL model, with its ability to account for attested cases of
phonological learning. While there remains a possibility that
differences in infant learning can be attributed to differences
in experimental methodologies, these results show
compelling evidence for further exploration of this topic.
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Future work will explore other predictions made by the
model and extensions needed to account for additional data.

Appendix

Linguistic filters (Peperkamp et al. 2006)

Allophonic distributions of s, and sy are spurious if:
[Vi €{1,..,5},v;(s) < vi(s) < Vi(Sd)]
or v;(sq) < v;(s) < v;(sq)
With vj(s) the ith component of the vector representation of
S.
Allophonic distributions of s, and sy are spurious if:

3 ef1,..,5}, Z Wi(sa) — vi(s))

SEC[sq]

> wilsa) - wils)

SEC[Sq]

>

Feature values

Segments are represented as feature vectors with the
following values:

Place: bilabial 1, labio-dental 2, dental 3, alveolar 4, post-
alveolar 5, palatal 6, velar 7, uvular 8, glottal 9

Sonority: voiceless stop 1, voiced stop 2, voiceless
fricative 3, voiced fricative 4, nasal 5, lateral 6, rhotic 7,
glide 8, high vowel 9, mid vowel 10, low vowel 11

Voicing: voiceless 0, voiced 1

Nasality: oral 0, nasal 1

Rounding: unrounded 0, rounded 1

Vocalic: non-vowel 0, vowel 1
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