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Abstract 

Accounts of category-based inductive reasoning can be 
distinguished by the emphasis they place on associative 
retrieval processes versus structural knowledge 
representation. Using an open-ended category-based 
induction task with a secondary task manipulation, we 
explored whether the relative importance of these two 
processes in determining the reasoning output depends upon 
the availability of mental resources. Regressing indices of 
strength of association and measures of structured relation 
against reasoners’ inferences showed that people’s inductions 
generated under cognitive load were more strongly predicted 
by associative strength between base and conclusion category. 
In contrast, inferences made under no load were best 
predicted by the measure of the existence of structural 
relations between base and conclusion category. This suggests 
that people make use of associative processes and recruit 
structured knowledge to make inductive inferences, and that 
the relative importance of these two forms of reasoning is 
determined by the availability of mental resources.  

Keywords: Category-Based Induction; Knowledge; 
Categorical Inferences; Reasoning. 

Knowledge and Category-Based Induction 

Generalizing properties from one category to another is 

known as category-based inductive reasoning. If people 

learn that carrots have a certain disease, they might infer 

that rabbits could also be affected. However, if people are 

reasoning about shared cells, they might prefer to generalize 

from carrots to parsnips rather than to rabbits.  

Understanding how people select relevant knowledge has 

become central to explaining the mental processes that 

underlie category-based inductive reasoning (Shafto, 

Baldwin and Coley, 2007). But is knowledge selection 

based on a single process, such as the activation of 

automatic associations in semantic memory (Rogers & 

McCllelland, 2004) and the calculation of similarity 

(Sloman, 1993; Sloutsky & Fisher, 2004) or the explicit 

representation of structural relations between categories 

(Osherson et al., 1990; Tenenbaum, Griffiths & Kemp, 

2007), or does it depend on an interplay between such 

processes? In this paper, we argue that how people reason is 

determined by more domain-general factors, such as 

available cognitive resources.   

 

Associative Processes in Inductive Reasoning 

Associative processes can explain a host of phenomena in 

category-based inductive reasoning. For example, Sloman’s 

(1993) feature-based induction model assumes that 

similarity represented by the degree to which premise and 

conclusion categories activate common features determines 

the strength of the conclusion. Similarly, Roger and 

McClelland’s application of the parallel-distributed 

processing model to category-based inductions assumes that 

generalizations from one instance to another will be strong 

to the extent that the activated distributed representations of 

the two instances overlap via their shared attributes. Several 

predictions follow from the way in which the connectionist 

model acquires semantic knowledge and makes 

generalizations. As it acquires knowledge gradually based 

on experiential input, the internal representations should 

mirror the structure of the learning environment. For 

example, if one repeatedly encounters two species in the 

same context, the internal representations ought to reflect 

this statistical co-occurrence. Inductive inferences between 

categories should be stronger to the extent that the 

categories have repeatedly been simultaneously activated in 

semantic memory, forming strong associations 

 

Structural Knowledge Representations 
In contrast to models that emphasize associative 

processes, structured knowledge representations might be 

necessary to draw accurate inferences where the categories 

have complex ecological, causal or taxonomic relations. The 

seminal study by Heit and Rubinstein (1994) demonstrated 

that people recruited differential knowledge depending upon 

the type of property they were asked to generalize. 

Similarly, structured Bayesian models (e.g., Kemp & 

Tenenbaum 2009; Shafto et al., 2008) successfully explain 

phenomena that arise from paying attention to the higher-

order interrelationships between categories. For example, 

reasoning about causal transmission is best predicted by 

inferences computed over a theoretical model of food web 

relations, whereas inferences about physiological properties 

seem to be based on an understanding about taxonomic 

interrelationships. Use of structural representations can also 

explain phenomena such as the causal asymmetry effect. 
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Thus, people believe that diseases are more likely to be 

transmitted from prey to predator than vice versa (Medin, 

Coley, Storms & Hayes, 2003; Shafto et al., 2008).  

An interesting question is what factors determine the use 

of such structural representations. Cross-cultural work and 

research on experts (e.g. Lopez, Atran, Coley, Medin & 

Smith, 1997; Proffitt, Coley & Medin, 2000) suggests that 

to some extent, use of structural representations in inductive 

reasoning depends upon having the appropriate background 

knowledge. For example, Shafto and Coley (2003) 

compared commercial fishermen’s inductive inferences 

about marine life to those of US undergraduates. When 

reasoning about novel diseases, only the fishermen drew on 

causal/ecological relations between premise and target 

categories to inform their inference. The undergraduates 

tended to base all their inferences on similarity. However, 

while such studies illustrate that people vary in the 

sophistication of the structural representations they have 

across different domains, the underlying mental processes 

that prompt people to draw on these or instead fall back on 

simple similarity during the reasoning process remain 

unclear.  

Two Types of Reasoning? 

One possibility is that drawing on structural 

representations is an effortful process, whereas the use of 

simple associations and similarity requires fewer mental 

resources. The relative importance of each strategy might be 

determined by domain-general factors, such as available 

time and mental resources.  Support for this position comes 

from a study looking at reasoning in music experts 

(composers and musicians) and novices (Baraff & Coley, 

2003; Coley & Barraff, 2003). Compared to novices, experts 

tended to use more elaborate context-dependent relational 

knowledge. However, when the induction task was carried 

out under time pressure, thus decreasing available cognitive 

processing time, experts’ reasoning was indistinguishable 

from novice reasoning. This change in expert responding 

suggests that drawing on structured knowledge 

representations during reasoning is slow and effortful. Thus, 

under time pressure, experts had to rely more on associative 

similarity, the default for novices who lack relevant 

structural knowledge representations.   

A study by Bright and Feeney (2010) lends further 

support to the suggestion that people reason differently 

depending upon available mental resources. Thus, when 

people made speeded inferences, argument strength was 

predicted by associative strength between the two 

categories, whereas causal and biological knowledge 

predicted inference strength when people were not under 

time pressure.  

However, Coley et al. (2005) have argued that some 

phenomena may be task-specific, especially if people are 

unaware of the nature of the relation between categories. 

Most findings are based on experimental paradigms in 

which people evaluate the strength of an inductive argument 

(Rabbits have property X, therefore, Foxes have property 

X), evaluate a series of conclusions (Rabbits have property 

X. How likely is that Foxes have property X? Eagles? 

Hares?), or are forced to choose between two alternative 

conclusion categories (Rabbits have property X. Is it more 

likely that Hares or Foxes have property X?). When people 

are presented with pre-determined base and conclusion 

categories, lack of structural knowledge representations that 

highlight relevant relations between categories might force 

people into adopting a default associative reasoning strategy 

that they wouldn’t normally use. In contrast, open-ended 

methodologies allow people to use background knowledge 

in a more flexible manner. For example, Baker and Coley 

(Baker & Coley, 2005; Coley & Baker, 2004) gave their 

participants two related category pairs and asked them to 

make inferences about which other categories might also 

have a novel property. People tended to make inferences 

based on complex ecological relations rather than on 

taxonomic similarity, suggesting that they were recruiting 

whatever relevant structural knowledge representations were 

available to them.  

In the following experiment, people were told that a base 

category had a property and were asked to infer which other 

category was most likely to also have that property. We 

predicted that people who generated categories under 

cognitive load would use a strategy that placed less demand 

on cognitive resources, such as similarity or strength of 

association. In contrast, we expected people to make use of 

diverse structural knowledge representations when they 

were not under cognitive load. Previous work using a 

speeded response paradigm (Shafto, Coley & Baldwin, 

2007) has suggested that taxonomic knowledge is more 

available to reasoning processes than is ecological 

knowledge. When they have sufficient time, people tend to 

bring taxonomic knowledge to bear when reasoning about 

intrinsic properties such as cells and ecological knowledge 

to bear when reasoning about extrinsic properties such as 

diseases (see Shafto et al., 2007). So that we could attempt 

to replicate Shafto et al’s finding that taxonomic knowledge 

is more available to reasoning processes, we asked people to 

reason about cell and disease properties expecting that only 

under light load would there be evidence of use of 

ecological relations when people reasoned about diseases. 

Methods 

The experiment had three phases, the induction generation 

phase 1, the associative rating phase 2 and the structured 

relation rating phase 3.  

Induction Generation Phase 

The first phase had a 2 (load: heavy or light) by 2 

(property: infection or cells) mixed design, with load as the 

between-subjects manipulation.  

Twenty-three students (M age = 24.2 years) from Durham 

University (the reasoners) were presented with 20 base 

categories and told that each category had a novel property, 

240



either an infection (e.g. has infection 5y5u) or cells (e.g. has 

3-yu-cells). There were equal numbers of each property type 

and the combination of property type and base category was 

counterbalanced. Participants were then asked to generate 

ONE other category that they believed was most likely to 

also have the property. For example, people would read the 

following generative induction problem:  

 

Weasels have 4Ou-cells / infection 4Ou. 

Which other category is most likely to also have 4Ou-

cells/ infection 4OU? 

 

Once people had written down their response, they rated 

how likely they thought it was that the two categories shared 

the property on a scale from 1 (very unlikely) to 9 (highly 

likely).  

Preceding each of the induction trials was a secondary 

memory task. People were presented with a 4*4 dot matrix 

with 4 randomly placed black dots for 2000 ms. Participants 

remembered the location of the dots, completed the 

induction task and then recalled the location of the dots in 

an empty matrix. The configuration of the dots was different 

for each of the 20 trials.  

In the heavy load condition, the dots were completely 

randomly placed, with the restriction that they could never 

appear in a straight or diagonal line. In the light load control 

condition, the dots always appeared in a straight or diagonal 

line, placing minimal burden on working memory. 

Association Rating Phase 

In the second phase each individual reasoner’s 20 

category pairs were transcribed onto an association rating 

sheet and interspersed with 15 weakly associated distracter 

items. A group of 92 participants (the raters) who had not 

taken part in the first phase received one of 23 different 

sheets (approximately 4 participants per sheet) and were 

asked to rate the strength of association on a scale from 1 

(unrelated) to 9 (very highly associated) between the 35 

category pairs. They were instructed to respond as fast as 

possible, based on the first intuitive answer that came to 

mind. 

Structured Relation Ratings 

In order to determine the underlying structural relations 

between the base and conclusion categories generated by 

reasoners in phase 1, the experimenter and a second blind 

coder rated whether there was a taxonomic and/or 

interaction-based relationship between the 20 category pairs. 

Table 1 below contains examples of the different types of 

relation.  

Thus, category pairs were awarded 0 if there was no 

discernible link between the base and the generated category 

(e.g. alligator → soil), 1 if they were taxonomically related 

(e.g. zebra → horse), 1 if they were related through a causal 

link or ecological interaction (e.g. hawk → mouse) and 2 if 

there was both a taxonomic and interaction-based relation 

between the categories (e.g. cod → shark). Concordance 

rate across the two primary coders was 67%. Disagreements 

were resolved through discussion with two further 

colleagues. 

 

Table 1: Coding Scheme for Structured Relations 

Taxonomic Relationship  

Category 

Membership 

Both categories belong to the same class or 

category (e.g. carrot & parsnip)  

Physiological 

Similarity 

Both categories are similar with respect to 

specific organs or systems (e.g. bat & bird) 

Interaction-Based Relationship 

Similar 

Habitat 

Both categories share similar or the same 

habitat (e.g. trout & shrimp) 

Behavioural 

Interaction 

Both Categories interact via some aspect 

of behaviour (e.g. monkey & tree) 

Food Chain 

Interaction 

Both categories interact with respect to 

diet or eating, i.e., one category eats or is 

eaten by the other (e.g. heron & fish) 

 

Results 

Association Ratings 

We averaged association ratings made by raters in phase 2 

across all 20 category pairs generated by reasoners in phase 

1. One rater in phase 2 failed to complete more than 50% of 

the association ratings and was excluded from the analysis. 

The mean association scores were analyzed with a 2 

(load: heavy or light) by 2 (property: cells or infection) 

mixed-design ANOVA, with load as the between-subjects 

variable.  

There was no main effect of property, F(1, 89) = 1.08, p = 

.30, effect size d = .22. People gave a mean association 

rating of 6.23 (SE = 0.12) for category pairs which had been 

generated about shared cells, and a mean association rating 

of 6.15 (SE = 0.13) for category pairs generated about 

infections.  

As predicted though, there was a main effect of load, F(1, 

89) = 4.03, p = .048, effect size d = .42, such that categories 

generated under conditions of heavy load (M = 6.42, SE 

=.16) were rated as more strongly associated than categories 

generated by reasoners whose resources were minimally 

taxed (M = 5.96, SE = .16).  

Finally, there was no interaction between property and 

load condition F(1, 89) =  .55, p = .46, effect size f = 0.08. 

 

Types of Structured Relations 

We summed the taxonomic relationship ratings and the 

interaction-based relationship ratings across the categories 

for which reasoners had made inferences about diseases, and 

likewise across the 10 category pairs that were generated for 
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shared cells. These were analyzed with a 2 (type of 

relationship: taxonomic or interaction-based) by 2 (load: 

heavy or light) by 2 (property: cells or infections) mixed-

design ANOVA, with load as the between subjects variable. 

The crucial result was a three-way interaction between 

property, relation and load, F(1, 21) = 5.43, p = .03, effect size 

f = 0.51, illustrated in Figure 1 below.  

 

 

 
 

Figure 1: Number of interaction-based and taxonomic relations 

(and standard errors) across the two types of property for heavy 

and light load conditions 

 

Heavy Load 
In the heavy load condition, there was a main effect of 

property, F (1, 10) = 26.94, p < .0005, d = 3.3. Thus, when 

people reasoned about cells, the conclusion categories they 

generated shared more structural relations with the base 

categories (M = 5.50, SE = 0.19) than when they generated 

categorical inferences about infections (M = 4.64, SE = 

0.18).   

There was also a significant main effect of type of 

relation, F (1, 10) = 68.15, p < .0005, d = 5.3. Thus, people 

seemed to generate more taxonomically-related categories 

(M = 8.05, SE = 0.41) than conclusion categories which 

were related via an interaction (M = 2.09, SE = 0.39). 

Finally, there was a significant two-way interaction 

between property and relation F(1, 10) = 8.27, p = .017, effect 

size f = 0.91. Bonferroni post-hoc tests showed that there 

were no property effects for interaction-based responses. 

Interaction-based responses were similarly low when 

reasoning about cells (M = 1.82, SE = 0.38) and infections 

(M = 2.36, SE = 0.53, p = .29). In contrast, property effects 

arose for taxonomic responses, showing that people gave 

more taxonomic responses when reasoning about cells (M = 

9.18, SE = 0.30) than when reasoning about infections (M = 

6.91, SE = 0.63, p = .002).  

 

Light Load 

The pattern of results was different in the light load 

condition. Here, the only significant effect was for property, 

F(1, 11) = 33.0, p < .0005, effect size d = 3.5.  When people 

reasoned about cells, the conclusion categories they 

generated shared more structural relations with the base 

categories (M = 6.58, SE = 0.20) than when they generated 

categorical inferences about infections (M = 5.33, SE = 

0.09).  

Although the pattern of means suggests that people 

generate more taxonomically related conclusion categories 

(M = 7.54, SE = 0.77) than interaction-based conclusions 

categories (M = 4.38, SE = 0.89), this main effect of type of 

relation was not statistically significant, F(1, 11) = 3.69, p = 

.08, effect size d = 0.4. Finally, the most important 

difference compared to the heavy load condition was an 

absence of an interaction between property and type of 

relation, F(1, 11) = 0.128, p = .73, effect size f = 0.38.  

Generative Inductive Strength Ratings 

 Inductive strength ratings for the categories the reasoners 

had generated were analyzed with a 2 (load) by 2 (property) 

mixed-design ANOVA with load as a between-subjects 

variable. Inductive strength ratings did not differ between 

the load conditions, F(1, 21) <  .001, p = .99, effect size d < 

.01. Reasoners under heavy load gave a mean inductive 

strength rating of 5.55 (SE = .40) whereas those under 

minimal load rated the strength of their induction at 5.56 

(SE = .42).  

There was also no main effect of property, F(1, 21) = 2.1, p 

= .16, effect size d = .63. Inferences about cells (M =5.68, 

SE = .32) were rated as strong as inferences about infections 

(M =5.42, SE = .29). 

The interaction between load and property was not 

statistically significant, F(1, 21) = 2.68, p = .12, effect size f = 

.35.  

Relations between Inductive Strength Ratings, 

Structured Relations and Associative Strength 

To explore whether reasoners place different emphasis on 

associative processes and reasoning based on structured 

knowledge representation in the two load conditions we 

used an associative strength measure and the index of 

structured relations described above to predict their 

inductive strength ratings.  

To create the associative strength measure we averaged 

the mean strength of association scores attached to each 

reasoner’s 20 category pairs across the four raters from 

phase 2. We then calculated Cronbach’s Alpha for each of 

the 23 reasoners across the association ratings. The mean 

Cronbach’s Alpha across all reasoners was .71 (SD = .13), 

showing that the association ratings had good inter-rater 

reliability.  

To create the structured relation measure, the 

experimenter and a second blind coder assessed in how 

many ways the generated target could be related to the base. 

0 was attached if there was no obvious structured link, 1 if 

there was either a taxonomic or an interaction-based 

connection, and 2 if they were related in more than one way. 

For each reasoner who had taken part in phase 1, we used 

the associative strength and structured relation measures to 

predict his/her inductive strength ratings. The beta weights 

were then subjected to a 2 (load: heavy or light) by 2 (type 

1

2

3

4

5

6

7

8

9

10

Infection Cell Infection Cell

Light Load Heavy Load

Interact

Tax
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of beta weight: associative versus structured relation) 

mixed-design ANOVA, with type of beta weight as the 

repeated-measures variable.  

There was no significant main effect of type of beta 

weight, F(1, 21) = .068, p = .80, effect size d = .11 and no 

main effect of load, F(1, 21) = 3.22, p = .09, effect size d = 

.78. However, there was a significant interaction between 

beta weight type and load, F(1, 21) = 6.53, p = .018, effect size 

d = 1.1. This is illustrated below in Figure 2.  
 

 
 

 

 

Bonferroni posthoc tests showed that when reasoners 

were under heavy memory load, the associative strength 

beta weight (M beta= .20, SE = .07) was larger than the 

structured relation beta weight (M beta = .02, SE = .02), 

although this difference was not quite statistically 

significant due to the small number of participants in this 

condition (p = .065, effect size d = 1.2). A one-sample t-test 

confirmed that associative strength beta weight was 

significantly above zero, t(10) = 3.79, p = .004, but that the 

structured relation beta weight was not significantly above 

zero, t(10) = 0.45, p = .66.  

The pattern was reversed when reasoners were not under 

a heavy memory load. Thus, the structured relation beta 

weight (M beta = .28, SE = .05) was slightly but not 

significantly larger in magnitude than associative strength 

beta weight (M beta = .11, SE = .07, p =.11, effect size d = 

.62). However, the one-sample t-test showed that whereas 

the structured relation beta weight was significantly above 

zero, t(11) = 5.24, p <.0005, the associative strength beta 

weight was not statistically different from zero, t(11) = 1.56, 

p = .15. 

Across the two load conditions, the associative strength 

beta weight was slightly but not significantly larger for 

reasoners who generated their inferences under load 

compared to those who were not cognitively compromised 

(p = .44, effect size d = .32). In contrast, the mean structured 

relation beta weights were significantly larger for reasoners 

who generated their inferences under minimal cognitive 

load compared to reasoners who were cognitively burdened 

by the complex dot matrix task (p = .001, effect size d = 

1.6). 

The results suggest that the reasoning process used to 

arrive at a particular inference depends to some extent on 

available cognitive resources. Whereas structured 

knowledge representations were influential when reasoners 

were only under minimal cognitive load, associations 

seemed to be more important to reasoners under a heavy 

cognitive load. 

Discussion  

Our results suggest that the process people adopt to 

generate category-based inductive inferences depends upon 

available cognitive resources. Categories produced under 

heavy load were rated as more strongly associated than 

categories generated under a light load. Furthermore, under 

heavy load conditions, those association ratings were better 

predictors of inductive strength than an index of structured 

relations. In contrast, in the light load condition the index of 

structured relations was the better predictor of inductive 

strength ratings. Furthermore, under heavy cognitive load, 

people were less likely to generate categories that shared 

more complex interaction-based relationships, whereas 

generating taxonomically related categories was unaffected 

by cognitive load.  

The advantage of the open ended paradigm is that we can 

be sure that participants possess knowledge about structured 

relations between base and conclusion categories. Despite 

using this more flexible reasoning paradigm, people who 

were under cognitive load seemed less able to make use of 

complex structural representations, and instead relied more 

strongly on associative processes. This suggests that while 

people do seem motivated to base their reasoning on 

domain-specific knowledge representations such as 

ecological/ causal structures, this comes at a cognitive cost. 

If necessary, people can shift towards a more associative 

strategy that might result in an inference that is different to 

the one that would have been generated through the 

activation of more complex structural knowledge 

representations. Sloutsky and colleagues (2008) suggest that 

structured knowledge can arise from simple associative 

processes and co-occurrence. Thus, it is conceivable that 

even once people possess more elaborate knowledge 

structures, they may use associative strength as a useful 

heuristic short-cut during reasoning, especially when time 

and/or cognitive resources are sparse. 

Interestingly, we found no differences in people’s 

inductive strength ratings across the two load conditions, 

suggesting that people were equally confident about 

inferences generated using associative reasoning or a 

reasoning strategy based on more complex structural 

knowledge.  

As well as allowing us to disentangle the relative effects 

of associative and structured knowledge on reasoning, our 

results replicate Shafto et al’s finding that taxonomic 

knowledge is more available to reasoning processes than is 

-0.1

0

0.1
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0.4

Light Load Heavy Load

Associative

Beta

Structured

Relation
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Figure 2: Beta weights (and standard errors) across the two 

load conditions  
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ecological knowledge. Although our results clearly show 

that associative knowledge was a better predictor of 

reasoning when participants were under load, they also 

show that participants were much more likely to generate 

conclusion categories that were taxonomically rather than 

ecologically related to the base category when under load. 

This was regardless of the property they were asked to 

reason about. Large numbers of ecologically related 

conclusion categories were seen only when participants 

reasoned about disease properties under light load.  

Conclusion 

Our results suggest that apparently contradictory theories 

of category-based inductive reasoning best explain inference 

strategies under different domain-general processing 

conditions.  People’s reasoning might best be explained by 

associative approaches such as parallel-distributed 

processing connectionist accounts (Rogers & McClelland, 

2004) and featural similarity (Sloman, 1993) when they do 

not have time or available mental resources to engage in 

more elaborate reasoning.. In contrast, people with plenty of 

time and cognitive capacity might recruit complex structural 

knowledge representations (e.g. Kemp & Tenenbaum, 2009) 

to derive their inferences.   
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