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Abstract

Accounts of category-based inductive reasoning can be
distinguished by the emphasis they place on associative
retrieval ~ processes  Versus structural knowledge
representation. Using an open-ended category-based
induction task with a secondary task manipulation, we
explored whether the relative importance of these two
processes in determining the reasoning output depends upon
the availability of mental resources. Regressing indices of
strength of association and measures of structured relation
against reasoners’ inferences showed that people’s inductions
generated under cognitive load were more strongly predicted
by associative strength between base and conclusion category.
In contrast, inferences made under no load were best
predicted by the measure of the existence of structural
relations between base and conclusion category. This suggests
that people make use of associative processes and recruit
structured knowledge to make inductive inferences, and that
the relative importance of these two forms of reasoning is
determined by the availability of mental resources.
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Knowledge and Category-Based Induction

Generalizing properties from one category to another is
known as category-based inductive reasoning. If people
learn that carrots have a certain disease, they might infer
that rabbits could also be affected. However, if people are
reasoning about shared cells, they might prefer to generalize
from carrots to parsnips rather than to rabbits.
Understanding how people select relevant knowledge has
become central to explaining the mental processes that
underlie category-based inductive reasoning (Shafto,
Baldwin and Coley, 2007). But is knowledge selection
based on a single process, such as the activation of
automatic associations in semantic memory (Rogers &
McCllelland, 2004) and the calculation of similarity
(Sloman, 1993; Sloutsky & Fisher, 2004) or the explicit
representation of structural relations between categories
(Osherson et al., 1990; Tenenbaum, Griffiths & Kemp,
2007), or does it depend on an interplay between such
processes? In this paper, we argue that how people reason is
determined by more domain-general factors, such as
available cognitive resources.
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Associative Processes in Inductive Reasoning

Associative processes can explain a host of phenomena in
category-based inductive reasoning. For example, Sloman’s
(1993) feature-based induction model assumes that
similarity represented by the degree to which premise and
conclusion categories activate common features determines
the strength of the conclusion. Similarly, Roger and
McClelland’s  application of the parallel-distributed
processing model to category-based inductions assumes that
generalizations from one instance to another will be strong
to the extent that the activated distributed representations of
the two instances overlap via their shared attributes. Several
predictions follow from the way in which the connectionist
model acquires semantic knowledge and makes
generalizations. As it acquires knowledge gradually based
on experiential input, the internal representations should
mirror the structure of the learning environment. For
example, if one repeatedly encounters two species in the
same context, the internal representations ought to reflect
this statistical co-occurrence. Inductive inferences between
categories should be stronger to the extent that the
categories have repeatedly been simultaneously activated in
semantic memory, forming strong associations

Structural Knowledge Representations

In contrast to models that emphasize associative
processes, structured knowledge representations might be
necessary to draw accurate inferences where the categories
have complex ecological, causal or taxonomic relations. The
seminal study by Heit and Rubinstein (1994) demonstrated
that people recruited differential knowledge depending upon
the type of property they were asked to generalize.
Similarly, structured Bayesian models (e.g., Kemp &
Tenenbaum 2009; Shafto et al., 2008) successfully explain
phenomena that arise from paying attention to the higher-
order interrelationships between categories. For example,
reasoning about causal transmission is best predicted by
inferences computed over a theoretical model of food web
relations, whereas inferences about physiological properties
seem to be based on an understanding about taxonomic
interrelationships. Use of structural representations can also
explain phenomena such as the causal asymmetry effect.



Thus, people believe that diseases are more likely to be
transmitted from prey to predator than vice versa (Medin,
Coley, Storms & Hayes, 2003; Shafto et al., 2008).

An interesting question is what factors determine the use
of such structural representations. Cross-cultural work and
research on experts (e.g. Lopez, Atran, Coley, Medin &
Smith, 1997; Proffitt, Coley & Medin, 2000) suggests that
to some extent, use of structural representations in inductive
reasoning depends upon having the appropriate background
knowledge. For example, Shafto and Coley (2003)
compared commercial fishermen’s inductive inferences
about marine life to those of US undergraduates. When
reasoning about novel diseases, only the fishermen drew on
causal/ecological relations between premise and target
categories to inform their inference. The undergraduates
tended to base all their inferences on similarity. However,
while such studies illustrate that people vary in the
sophistication of the structural representations they have
across different domains, the underlying mental processes
that prompt people to draw on these or instead fall back on
simple similarity during the reasoning process remain
unclear.

Two Types of Reasoning?

One possibility is that drawing on structural
representations is an effortful process, whereas the use of
simple associations and similarity requires fewer mental
resources. The relative importance of each strategy might be
determined by domain-general factors, such as available
time and mental resources. Support for this position comes
from a study looking at reasoning in music experts
(composers and musicians) and novices (Baraff & Coley,
2003; Coley & Barraff, 2003). Compared to novices, experts
tended to use more elaborate context-dependent relational
knowledge. However, when the induction task was carried
out under time pressure, thus decreasing available cognitive
processing time, experts’ reasoning was indistinguishable
from novice reasoning. This change in expert responding
suggests that drawing on structured knowledge
representations during reasoning is slow and effortful. Thus,
under time pressure, experts had to rely more on associative
similarity, the default for novices who lack relevant
structural knowledge representations.

A study by Bright and Feeney (2010) lends further
support to the suggestion that people reason differently
depending upon available mental resources. Thus, when
people made speeded inferences, argument strength was
predicted by associative strength between the two
categories, whereas causal and biological knowledge
predicted inference strength when people were not under
time pressure.

However, Coley et al. (2005) have argued that some
phenomena may be task-specific, especially if people are
unaware of the nature of the relation between categories.
Most findings are based on experimental paradigms in
which people evaluate the strength of an inductive argument
(Rabbits have property X, therefore, Foxes have property
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X), evaluate a series of conclusions (Rabbits have property
X. How likely is that Foxes have property X? Eagles?
Hares?), or are forced to choose between two alternative
conclusion categories (Rabbits have property X. Is it more
likely that Hares or Foxes have property X?). When people
are presented with pre-determined base and conclusion
categories, lack of structural knowledge representations that
highlight relevant relations between categories might force
people into adopting a default associative reasoning strategy
that they wouldn’t normally use. In contrast, open-ended
methodologies allow people to use background knowledge
in a more flexible manner. For example, Baker and Coley
(Baker & Coley, 2005; Coley & Baker, 2004) gave their
participants two related category pairs and asked them to
make inferences about which other categories might also
have a novel property. People tended to make inferences
based on complex ecological relations rather than on
taxonomic similarity, suggesting that they were recruiting
whatever relevant structural knowledge representations were
available to them.

In the following experiment, people were told that a base
category had a property and were asked to infer which other
category was most likely to also have that property. We
predicted that people who generated categories under
cognitive load would use a strategy that placed less demand
on cognitive resources, such as similarity or strength of
association. In contrast, we expected people to make use of
diverse structural knowledge representations when they
were not under cognitive load. Previous work using a
speeded response paradigm (Shafto, Coley & Baldwin,
2007) has suggested that taxonomic knowledge is more
available to reasoning processes than is ecological
knowledge. When they have sufficient time, people tend to
bring taxonomic knowledge to bear when reasoning about
intrinsic properties such as cells and ecological knowledge
to bear when reasoning about extrinsic properties such as
diseases (see Shafto et al., 2007). So that we could attempt
to replicate Shafto et al’s finding that taxonomic knowledge
is more available to reasoning processes, we asked people to
reason about cell and disease properties expecting that only
under light load would there be evidence of use of
ecological relations when people reasoned about diseases.

Methods

The experiment had three phases, the induction generation
phase 1, the associative rating phase 2 and the structured
relation rating phase 3.

Induction Generation Phase
The first phase had a 2 (load: heavy or light) by 2

(property: infection or cells) mixed design, with load as the
between-subjects manipulation.

Twenty-three students (M age = 24.2 years) from Durham
University (the reasoners) were presented with 20 base
categories and told that each category had a novel property,



either an infection (e.g. has infection Sy5Su) or cells (e.g. has
3-yu-cells). There were equal numbers of each property type
and the combination of property type and base category was
counterbalanced. Participants were then asked to generate
ONE other category that they believed was most likely to
also have the property. For example, people would read the
following generative induction problem:

Weasels have 40u-cells / infection 40u.
Which other category is most likely to also have 40Ou-
cells/ infection 40U?

Once people had written down their response, they rated
how likely they thought it was that the two categories shared
the property on a scale from 1 (very unlikely) to 9 (highly
likely).

Preceding each of the induction trials was a secondary
memory task. People were presented with a 4*4 dot matrix
with 4 randomly placed black dots for 2000 ms. Participants
remembered the location of the dots, completed the
induction task and then recalled the location of the dots in
an empty matrix. The configuration of the dots was different
for each of the 20 trials.

In the heavy load condition, the dots were completely
randomly placed, with the restriction that they could never
appear in a straight or diagonal line. In the light load control
condition, the dots always appeared in a straight or diagonal
line, placing minimal burden on working memory.

Association Rating Phase

In the second phase each individual reasoner’s 20
category pairs were transcribed onto an association rating
sheet and interspersed with 15 weakly associated distracter
items. A group of 92 participants (the raters) who had not
taken part in the first phase received one of 23 different
sheets (approximately 4 participants per sheet) and were
asked to rate the strength of association on a scale from 1
(unrelated) to 9 (very highly associated) between the 35
category pairs. They were instructed to respond as fast as
possible, based on the first intuitive answer that came to
mind.

Structured Relation Ratings

In order to determine the underlying structural relations
between the base and conclusion categories generated by
reasoners in phase 1, the experimenter and a second blind
coder rated whether there was a taxonomic and/or
interaction-based relationship between the 20 category pairs.
Table 1 below contains examples of the different types of
relation.

Thus, category pairs were awarded 0 if there was no
discernible link between the base and the generated category
(e.g. alligator — soil), 1 if they were taxonomically related
(e.g. zebra — horse), 1 if they were related through a causal
link or ecological interaction (e.g. hawk — mouse) and 2 if
there was both a taxonomic and interaction-based relation

between the categories (e.g. cod — shark). Concordance
rate across the two primary coders was 67%. Disagreements
were resolved through discussion with two further
colleagues.

Table 1: Coding Scheme for Structured Relations

Taxonomic Relationship

Category Both categories belong to the same class or
Membership category (e.g. carrot & parsnip)
Physiological | Both categories are similar with respect to
Similarity specific organs or systems (e.g. bat & bird)

Interaction-Based Relationship

Similar Both categories share similar or the same
Habitat habitat (e.g. trout & shrimp)
Behavioural Both Categories interact via some aspect
Interaction of behaviour (e.g. monkey & tree)
Food Chain B‘oth categories interact with respect to ‘

. diet or eating, i.e., one category eats or is
Interaction

eaten by the other (e.g. heron & fish)
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Results

Association Ratings

We averaged association ratings made by raters in phase 2
across all 20 category pairs generated by reasoners in phase
1. One rater in phase 2 failed to complete more than 50% of
the association ratings and was excluded from the analysis.

The mean association scores were analyzed with a 2
(load: heavy or light) by 2 (property: cells or infection)
mixed-design ANOVA, with load as the between-subjects
variable.

There was no main effect of property, F(, g9 = 1.08, p =
.30, effect size d = .22. People gave a mean association
rating of 6.23 (SE = 0.12) for category pairs which had been
generated about shared cells, and a mean association rating
of 6.15 (SE = 0.13) for category pairs generated about
infections.

As predicted though, there was a main effect of load, F;,
g9 = 4.03, p = .048, effect size d = .42, such that categories
generated under conditions of heavy load (M = 6.42, SE
=.16) were rated as more strongly associated than categories
generated by reasoners whose resources were minimally
taxed (M = 5.96, SE = .16).

Finally, there was no interaction between property and
load condition F(; g9y = .55, p = .46, effect size f=0.08.

Types of Structured Relations

We summed the taxonomic relationship ratings and the
interaction-based relationship ratings across the categories
for which reasoners had made inferences about diseases, and
likewise across the 10 category pairs that were generated for




shared cells. These were analyzed with a 2 (type of
relationship: taxonomic or interaction-based) by 2 (load:
heavy or light) by 2 (property: cells or infections) mixed-
design ANOVA, with load as the between subjects variable.
The crucial result was a three-way interaction between
property, relation and load, Fy 51y =5.43, p = .03, effect size
f=0.51, illustrated in Figure 1 below.
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Figure 1: Number of interaction-based and taxonomic relations
(and standard errors) across the two types of property for heavy
and light load conditions

Heavy Load

In the heavy load condition, there was a main effect of
property, F 1 19) = 26.94, p < .0005, d = 3.3. Thus, when
people reasoned about cells, the conclusion categories they
generated shared more structural relations with the base
categories (M = 5.50, SE = 0.19) than when they generated
categorical inferences about infections (M = 4.64, SE =
0.18).

There was also a significant main effect of type of
relation, F 19y = 68.15, p < .0005, d = 5.3. Thus, people
seemed to generate more taxonomically-related categories
(M = 8.05, SE = 0.41) than conclusion categories which
were related via an interaction (M = 2.09, SE = 0.39).

Finally, there was a significant two-way interaction
between property and relation F; 19y = 8.27, p = .017, effect
size f = 0.91. Bonferroni post-hoc tests showed that there
were no property effects for interaction-based responses.
Interaction-based responses were similarly low when
reasoning about cells (M = 1.82, SE = 0.38) and infections
(M =2.36, SE = 0.53, p = .29). In contrast, property effects
arose for taxonomic responses, showing that people gave
more taxonomic responses when reasoning about cells (M =
9.18, SE = 0.30) than when reasoning about infections (M =
6.91, SE =0.63, p =.002).

Light Load

The pattern of results was different in the light load
condition. Here, the only significant effect was for property,
Fa, 11y = 33.0, p < .0005, effect size d = 3.5. When people
reasoned about cells, the conclusion -categories they
generated shared more structural relations with the base
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categories (M = 6.58, SE = 0.20) than when they generated
categorical inferences about infections (M = 5.33, SE =
0.09).

Although the pattern of means suggests that people
generate more taxonomically related conclusion categories
(M = 7.54, SE = 0.77) than interaction-based conclusions
categories (M = 4.38, SE = 0.89), this main effect of type of
relation was not statistically significant, F; 1,y = 3.69, p =
.08, effect size d = 0.4. Finally, the most important
difference compared to the heavy load condition was an
absence of an interaction between property and type of
relation, F, 11y =0.128, p = .73, effect size f= 0.38.

Generative Inductive Strength Ratings

Inductive strength ratings for the categories the reasoners
had generated were analyzed with a 2 (load) by 2 (property)
mixed-design ANOVA with load as a between-subjects
variable. Inductive strength ratings did not differ between
the load conditions, F(; 2y < .001, p = .99, effect size d <
.01. Reasoners under heavy load gave a mean inductive
strength rating of 5.55 (SE = .40) whereas those under
minimal load rated the strength of their induction at 5.56
(SE = .42).

There was also no main effect of property, F(; 21y = 2.1, p
= .16, effect size d = .63. Inferences about cells (M =5.68,
SE = .32) were rated as strong as inferences about infections
(M =5.42, SE = .29).

The interaction between load and property was not
statistically significant, F; 51y =2.68, p = .12, effect size f=
.35.

Relations between Inductive Strength Ratings,
Structured Relations and Associative Strength

To explore whether reasoners place different emphasis on
associative processes and reasoning based on structured
knowledge representation in the two load conditions we
used an associative strength measure and the index of
structured relations described above to predict their
inductive strength ratings.

To create the associative strength measure we averaged
the mean strength of association scores attached to each
reasoner’s 20 category pairs across the four raters from
phase 2. We then calculated Cronbach’s Alpha for each of
the 23 reasoners across the association ratings. The mean
Cronbach’s Alpha across all reasoners was .71 (SD = .13),
showing that the association ratings had good inter-rater
reliability.

To «create the structured relation measure, the
experimenter and a second blind coder assessed in how
many ways the generated target could be related to the base.
0 was attached if there was no obvious structured link, 1 if
there was either a taxonomic or an interaction-based
connection, and 2 if they were related in more than one way.

For each reasoner who had taken part in phase 1, we used
the associative strength and structured relation measures to
predict his/her inductive strength ratings. The beta weights
were then subjected to a 2 (load: heavy or light) by 2 (type



of beta weight: associative versus structured relation)
mixed-design ANOVA, with type of beta weight as the
repeated-measures variable.

There was no significant main effect of type of beta
weight, F 2 = .068, p = .80, effect size d = .11 and no
main effect of load, F(;, 21y = 3.22, p = .09, effect size d =
.78. However, there was a significant interaction between
beta weight type and load, F(; 2;)= 6.53, p = .018, effect size
d = 1.1. This is illustrated below in Figure 2.
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Figure 2: Beta weights (and standard errors) across the two
load conditions

Bonferroni posthoc tests showed that when reasoners
were under heavy memory load, the associative strength
beta weight (M beta= .20, SE = .07) was larger than the
structured relation beta weight (M beta = .02, SE = .02),
although this difference was not quite statistically
significant due to the small number of participants in this
condition (p = .065, effect size d = 1.2). A one-sample t-test
confirmed that associative strength beta weight was
significantly above zero, t49) = 3.79, p = .004, but that the
structured relation beta weight was not significantly above
zero, tg) = 0.45, p = .66.

The pattern was reversed when reasoners were not under
a heavy memory load. Thus, the structured relation beta
weight (M beta = .28, SE = .05) was slightly but not
significantly larger in magnitude than associative strength
beta weight (M beta = .11, SE = .07, p =.11, effect size d =
.62). However, the one-sample t-test showed that whereas
the structured relation beta weight was significantly above
zero, tq; = 5.24, p <.0005, the associative strength beta
weight was not statistically different from zero, t;,= 1.56,
p=.15.

Across the two load conditions, the associative strength
beta weight was slightly but not significantly larger for
reasoners who generated their inferences under load
compared to those who were not cognitively compromised
(p = .44, effect size d = .32). In contrast, the mean structured
relation beta weights were significantly larger for reasoners
who generated their inferences under minimal cognitive
load compared to reasoners who were cognitively burdened
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by the complex dot matrix task (p = .001, effect size d =
1.6).

The results suggest that the reasoning process used to
arrive at a particular inference depends to some extent on
available cognitive resources. Whereas  structured
knowledge representations were influential when reasoners
were only under minimal cognitive load, associations
seemed to be more important to reasoners under a heavy
cognitive load.

Discussion

Our results suggest that the process people adopt to
generate category-based inductive inferences depends upon
available cognitive resources. Categories produced under
heavy load were rated as more strongly associated than
categories generated under a light load. Furthermore, under
heavy load conditions, those association ratings were better
predictors of inductive strength than an index of structured
relations. In contrast, in the light load condition the index of
structured relations was the better predictor of inductive
strength ratings. Furthermore, under heavy cognitive load,
people were less likely to generate categories that shared
more complex interaction-based relationships, whereas
generating taxonomically related categories was unaffected
by cognitive load.

The advantage of the open ended paradigm is that we can
be sure that participants possess knowledge about structured
relations between base and conclusion categories. Despite
using this more flexible reasoning paradigm, people who
were under cognitive load seemed less able to make use of
complex structural representations, and instead relied more
strongly on associative processes. This suggests that while
people do seem motivated to base their reasoning on
domain-specific knowledge representations such as
ecological/ causal structures, this comes at a cognitive cost.
If necessary, people can shift towards a more associative
strategy that might result in an inference that is different to
the one that would have been generated through the
activation of more complex structural knowledge
representations. Sloutsky and colleagues (2008) suggest that
structured knowledge can arise from simple associative
processes and co-occurrence. Thus, it is conceivable that
even once people possess more elaborate knowledge
structures, they may use associative strength as a useful
heuristic short-cut during reasoning, especially when time
and/or cognitive resources are sparse.

Interestingly, we found no differences in people’s
inductive strength ratings across the two load conditions,
suggesting that people were equally confident about
inferences generated using associative reasoning or a
reasoning strategy based on more complex structural
knowledge.

As well as allowing us to disentangle the relative effects
of associative and structured knowledge on reasoning, our
results replicate Shafto et al’s finding that taxonomic
knowledge is more available to reasoning processes than is



ecological knowledge. Although our results clearly show
that associative knowledge was a better predictor of
reasoning when participants were under load, they also
show that participants were much more likely to generate
conclusion categories that were taxonomically rather than
ecologically related to the base category when under load.
This was regardless of the property they were asked to
reason about. Large numbers of ecologically related
conclusion categories were seen only when participants
reasoned about disease properties under light load.

Conclusion

Our results suggest that apparently contradictory theories
of category-based inductive reasoning best explain inference
strategies under different domain-general processing
conditions. People’s reasoning might best be explained by
associative  approaches such as parallel-distributed
processing connectionist accounts (Rogers & McClelland,
2004) and featural similarity (Sloman, 1993) when they do
not have time or available mental resources to engage in
more elaborate reasoning.. In contrast, people with plenty of
time and cognitive capacity might recruit complex structural
knowledge representations (e.g. Kemp & Tenenbaum, 2009)
to derive their inferences.
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