Analyzing Students' Metacognitive Strategies in Open-Ended Learning Environ-
ments

Gautam Biswas (gautam.biswas@vanderbilt.edu)
Department of EECS/ISIS, 1025 16" Ave South
Nashville, TN 37212 USA

John S. Kinnebrew (john.s.kinnebrew@ vanderbilt.edu)
Department of EECS/ISIS, 1025 16™ Ave South
Nashville, TN 37212 USA

James R. Segedy (james.segedy@ vanderbilt.edu)
Department of EECS/ISIS, 1025 16" Ave South
Nashville, TN 37212 USA

Abstract

Novices often lack metacognition and self-regulation
skills that are important for effective learning. Betty's Brain,
an open-ended computer-based learning environment helps
students practice and develop metacognitive strategies as
they learn science topics. We extend previous work on se-
quence mining methods to discover students' frequently-
used behavior patterns from their activity sequences. Our re-
sults show that it is possible to interpret aspects of students'
learning strategies and their effectiveness by taking into ac-
count the context of their activities in the system.

Keywords: open-ended learning environments, metacogni-
tion, measuring metacognition, scaffolding, sequence mining.

Introduction

Cognitive scientists have established that metacognition
and self-regulation are essential for developing effective
learning strategies in the classroom and beyond (Bransford
et al, 2000; Zimmerman, 2001). However, novice learners
often have ineffective self-regulation profiles, which may be
attributed to their lacking the well-organized domain
knowledge structures of experts. This affects their ability to
break down their learning and problem solving into distinct
task understanding, planning and solution generation, moni-
toring and evaluation phases, leading them to use subopti-
mal learning and problem solving strategies (Chi et al, 1988;
VanLehn, 1996).

Our research group has developed Betty's Brain, an open-
ended learning environment (OELE), to study how students
develop metacognitive strategies that include constructing
information and monitoring as they learn science topics
(Leelawong and Biswas, 2008). Our approach utilizes trace
methodologies derived from students' actions and activity
patterns in the environment to infer aspects of their meta-
cognitive abilities (Aleven et al, 2006; Azevedo, et al.,
2012; Hadwin et al, 2007). This is based on a metacognition
as events hypothesis, which theorizes that the use of meta-
cognitive strategies manifests as continually unfolding
events that can be inferred from learners' behaviors.

In this paper, we extend our previous work on using se-
guence mining methods to discover students’ frequently-
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used behavior patterns from their activity sequences as they
work in the Betty’s Brain system (Kinnebrew & Biswas,
2012). In particular, we extend our techniques for analyzing
students’ action sequences by (i) interpreting and character-
izing behavior patterns using a cognitive/metacognitive
model of the task, (ii) mapping students’ frequently ob-
served cognitive and metacognitive process patterns back
into their overall activity sequences, and (iii) using metrics
to evaluate the effectiveness of these processes. The results
in this paper represent a post hoc analysis of student behav-
iors, but our longer term goal is to use such results to moni-
tor and measure students’ cognitive and metacognitive pro-
cesses online as they work on their learning and problem-
solving tasks, and use these results to develop adaptive scaf-
folding mechanisms that support student learning.

Background

Metacognition is often described as being made up of two
constituent parts (Flavell et al, 1985; Veenman, 2012): (1)
Metacognitive knowledge, which is declarative and deals
with the interplay between knowledge of one's abilities to
perform tasks, the nature of the task, and the strategies one
can employ to successfully perform the task; and (2) Meta-
cognitive monitoring and regulation, which includes activi-
ties related to planning, monitoring, and evaluating one’s
cognitive processes in order to better regulate those process-
es in the future.

Researchers have established strong links between learn-
ers' metacognitive abilities and their effectiveness in execut-
ing cognitive processes. Winne (1996) characterizes cogni-
tion as dealing with knowledge of objects and operations on
objects (the object level) while characterizing metacognition
as the corresponding meta-level that contains information
about cognitive processes. Metacognitive monitoring brings
the two levels together, as it describes the process of observ-
ing one's own execution of cognitive processes at the object
level and exerting control over the object level using meta-
cognitive knowledge and strategies.

An important implication of the interplay between cogni-
tion and metacognition relates to the dependence of meta-
cognition on cognition (Land, 2000). In other words, meta-
cognitive knowledge may not be sufficient for achieving



success in learning and problem solving, especially for
learners who lack the cognitive skills and background
knowledge necessary for interpreting, understanding, and
organizing critical aspects of the problem under study
(Bransford et al, 2000). Learners may also lack knowledge
of effective strategies (e.g., the ability to extract relevant in-
formation when reading a science text), and, therefore, re-
sort to suboptimal strategies in performing their tasks
(Azevedo, 2005; Kinnebrew & Biswas, 2012). Poor self-
judgment abilities result in difficulties for monitoring and
evaluating one's own effectiveness and progress, which can
be a significant stumbling block in selecting and implement-
ing relevant strategies in a timely manner.

However, research studies have shown that with proper
scaffolding, middle school students can improve their meta-
cognitive awareness and develop effective metacognitive
strategies (Kramarski & Mevarech, 2003). Our system, Bet-
ty's Brain is designed to help middle school students devel-
op metacognitive knowledge and strategies as they learn
about science topics. Other systems with similar goals in-
clude MetaTutor (Azevedo, et al., 2012) and Crystal Island
(Rowe, et al., 2011).

Betty's Brain

Betty's Brain (Figure 1) is an open-ended learning envi-
ronment (Land, 2000) that provides students with a learning
context and a set of tools for pursuing authentic and com-
plex learning tasks. Students teach a virtual agent, Betty,
about science topics by constructing a causal map. The goal
for students using Betty's Brain is to teach Betty a map,
whose correctness is determined in relation to a hidden, ex-
pert causal map.

The students' learning and teaching tasks are organized
around three activities: (1) reading hypertext resources to
learn the domain material, (2) building and refining a causal
map, which represents the domain material, and (3) asking
Betty to take a quiz. Students explicitly teach Betty by con-
structing a causal map. For example, they may draw a caus-
al link between garbage and landfills and methane to repre-
sent the relationship garbage and landfills increase methane
(a greenhouse gas). Students can check what Betty knows
by asking her questions, e.g., if garbage and landfills de-
crease, what effect does it have on polar sea ice? To answer
questions, Betty uses qualitative reasoning that operates
through chains of links from the source concept to the target
concept (Leelawong & Biswas, 2008). The learner can fur-
ther probe Betty's understanding by asking her to explain
her answer. Betty illustrates her reasoning by explaining her
thinking and animating her explanation by highlighting con-
cepts and links on the map as she mentions them.

Learners can assess Betty's (and, therefore, their own)
progress in two ways. After Betty answers a question, learn-
ers can ask Mr. Davis, a pedagogical agent that serves as a
mentor, to evaluate the answer. Learners can also have Betty
take a quiz on one or all of the sub-topics in the resources.
Quiz questions are selected dynamically to reflect the cur-
rent state of the student's map; questions are chosen (in pro-

portion to the completeness of the map) for which Betty will
generate correct answers. The remaining questions produce
incorrect answers, and they direct the student's attention to
incorrect and missing links.

After Betty takes a quiz, her results, including the causal
map she used to answer the questions appear on the screen
as shown in Figure 1. The quiz questions, Betty's answer,
and the Mentor's assigned grade, i.e., correct, correct but in-
complete, or incorrect appear on the top of the window.
Clicking on a question will highlight the causal links that
Betty used to answer that question. To help students keep
track of correct and incorrect links, the system allows stu-
dents to annotate them with a green check-mark (correct), a
red X (incorrect), or a gray question mark (not sure).

4 Setty’s Brain . —
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Figure 1: Betty's Brain Interface with Quiz Window

Cognitive/Metacognitive Process Model

To interpret students learning behaviors on the system, we
have developed a model that takes into account the tight
connection between the cognitive and metacognitive pro-
cesses needed to address the learning task effectively. Over-
all, this model includes four primary processes that students
are expected to engage in while using Betty's Brain: (1)
Goal Setting & Planning, (2) Knowledge Construction
(KC), (3) Monitoring (Mon), and (4) Help Seeking. In this
work we focus on the KC and Mon process models.

Knowledge construction includes metacognitive strategies
for (1) information seeking, i.e., determining when and how
to locate needed information in the resources, and (2) in-
formation structuring, i.e., organizing one's developing un-
derstanding of the domain knowledge into structural com-
ponents (e.g., causal links). In executing these metacogni-
tive processes, learners have to apply relevant cognitive
processes listed under information seeking and structuring.
Seeking information, for example, requires that students to
identify the causal information by reading the resources and
making sense of the content. Similarly, information structur-
ing captures the process of successfully converting the ac-
quired information into causal links and adding them to the
causal map.




Monitoring processes include (1) model assessment, i.e.,
assessing the correctness of all or a part of the causal model,
and (2) progress recording, i.e., making explicit annotations
to mark parts of the causal model as correct, which makes it
easier to focus on parts of the map that need more work.
Successful execution of monitoring metacognitive processes
relies on students' abilities to execute cognitive processes
for assessing the causal model (via questions, explanations,
quizzes, and question evaluations) and recording progress
(via note taking and annotating links with correctness in-
formation). The cognitive and metacognitive process model
provides a framework for interpreting students learning ac-
tivities and behaviors (activity sequences) on the system.

Measuring Cognition and Metacognition

We have developed a set of data mining methods for ana-
lyzing students' learning activity sequences and assessing
their learning processes as they work in Betty’s Brain. In
addition, we have developed visualization methods for
measuring how student behaviors evolve during the course
of the intervention depending on the type of feedback and
support that they received from the Mentor agent. In par-
ticular, we were interested in studying whether students'
suboptimal behaviors were replaced by more optimal strate-
gies as the intervention progressed.

To assess student activities with respect to our cogni-
tive/metacognitive model, we calculate four measures: map
edit effectiveness, map edit support, monitoring effective-
ness, and monitoring support. Map edit effectiveness is cal-
culated as the percentage of causal link additions, removals,
and modifications that improve Betty’s causal map. Map ed-
it support is defined as the percentage of causal map edits
that are supported by previous reading of pages in the re-
sources that discuss the concepts connected by the manipu-
lated causal link. Monitoring effectiveness is calculated as
the percentage of quiz questions and explanations that gen-
erate specific correctness information about one or more
causal links. For example, all of the links used in a quiz
question whose answer is marked correct, must be correct. If
the answer to a question is incorrect, at least one of the links
used in the answer must be incorrect. Finally, monitoring
support is defined as the percentage of causal link annota-
tions that are supported by previous quiz questions and ex-
planations. For support metrics, a further constraint is add-
ed: an action can only support another action if both actions
occur within the same time window, and we calculated sup-
port for a ten minute time window.

The information for calculating the measures and deriving
student behavior using sequence mining is extracted from
log files. For example, if a student accesses a page in the re-
sources, this is logged as a Read action that includes addi-
tional information, e.g., the page accessed. In this work,
students’ activity sequences contain six categories of ac-
tions: (1) Read, (2) Link Edit, (3) Query, (4) Quiz, (5) Ex-
planation, and (6) Link Annotation. Actions were further
distinguished by context details, such as the correctness of a
link edit. Sequence mining techniques are applied to discov-
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er frequent behavior patterns for students in a given group
(Kinnebrew, et al., 2013; Kinnebrew & Biswas, 2012). Stu-
dents’ use of metacognitive processes was determined by in-
terpreting the patterns using the cognitive and metacognitive
model.

Method

The present analysis used data from a recent classroom
study with Betty's Brain in which students learned about the
greenhouse effect and climate change. The study tested the
effectiveness of two support modules designed to scaffold
students' understanding of cognitive and metacognitive pro-
cesses important for success in Betty's Brain. The
knowledge construction (KC) module provided support on
how to identify causal relations in the resources, and the
monitoring (Mon) support module helped students under-
stand how to use Betty’s quizzes to identify correct and in-
correct causal links on the causal map. Participants were di-
vided into three treatment groups. The KC group (KC-G)
used a version of Betty's Brain that included the KC support
module and a causal link tutorial that they could access at
any time during learning. The tutorial allowed students to
practice identifying causal relations in short text passages.
The Mon group (Mon-G) used a version of Betty's Brain
that included the Mon support module and a marking links
correct tutorial that they could access at any time during
learning. The tutorial presented practice problems in which
students used the results of graded quiz questions and the
causal map used to answer those questions to select the links
that could be marked as correct. Finally, the control group
(Con-G) used a version of Betty's Brain that included nei-
ther the tutorials nor the support modules.

The KC module was activated when three out of a stu-
dent's last five map edits were incorrect, at which point Mr.
Davis would begin suggesting strategies for identifying
causal links during reading. Should students continue to
make incorrect map edits despite this feedback, the KC
module activated a second tier of support: guided practice.
During guided practice, students were moved to the causal
link tutorial where they read short text passages and ex-
pressed the primary idea in the passage as a causal relation.
When they worked on the tutorial, students were not permit-
ted to access any other portion of the program. Students
completed the tutorial session once they solved five prob-
lems correctly without making a mistake.

The Mon module was activated after the third time stu-
dents did not use evidence from quizzes and explanations to
annotate links on their map. At this time, Mr. Davis began
suggesting strategies for using quizzes and explanations to
identify and keep track of which links were correct. Addi-
tionally, Mr. Davis discouraged students from annotating
links as being correct without using the suggested strategies.
Should students continue to use quizzes and explanations
without annotating links correctly, the Mon module provid-
ed students with guided practice. Like the KC tutorial, stu-
dents had to complete five problems correctly on the first try
to complete the tutorial session.



Seventy-three seventh grade students from four middle
Tennessee science classrooms, taught by the same teacher,
participated in the study. Because use of Betty's Brain relies
on students' ability to independently read and understand the
resources, the system is not suited to students with limited
English proficiency or cognitive-behavioral problems.
Therefore, data from English as a Second Language (ESL)
and special education students were not analyzed. Similarly,
we excluded the data of students who missed more than two
class periods of work on the system. Our experimental anal-
ysis used data collected from fifty-two students who partici-
pated in the study.

Learning was assessed using a pre-post test design. Each
written test consisted of five questions that asked students to
consider a given scenario and explain its causal impact on
climate change. Scoring was based on the causal relations
that students used to explain their answers to the questions,
which were then compared to the chain of causal relations
used to derive the answer from the expert map. One point
was awarded for each causal relationship in the student's an-
swer that came from or was closely related to an expert
causal link. The maximum combined score for the five
questions was 16. Two coders independently scored a subset
of the pre- and post-tests with at least 85% agreement, at
which point the coders split the remaining tests and individ-
ually coded the answers and computed the scores.

Performance on the system was assessed by calculating a
score for the causal map that students created while teaching
Betty. This score was computed as the number of correct
links (the links in the student's map that appeared in the ex-
pert map) minus the number of incorrect links in the stu-
dent's final map. We also used the log data collected from
the system to derive students’ behavior patterns, interpret
them using our cognitive/metacognitive model, and study
the temporal evolution of the observed KC and Mon strate-
gies over the period of the intervention.

Study duration was 9 school days. During the first 60 mi-
nute class period, students completed the pre-test. During
the second and third class periods, researchers introduced
students to causal modeling and reasoning with causal mod-
els, and how to identify causal relations in text passages.
During this time, students completed paper-and-pencil
group exercises involving causal reasoning and identifying
causal relations. During the fourth class period, students
were provided with hands-on system training by the re-
searchers. Students then spent four class periods using their
respective versions of Betty's Brain with minimal interven-
tion by the teachers and the researchers. On the ninth day,
students completed the post-test.

Results

Figure 2 presents the overall learning and performance re-
sults for each condition in the intervention. Repeated
measures ANOVA performed on the data revealed a signifi-
cant effect of time on test scores (F=28.66, p <0.001). Pair-
wise comparison of the three groups revealed that the Mon-
G had marginally better learning gains than KC-G, which
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had better learning gains than the Con-G group. The Mon-G
learning gains were significantly better than the Con-G
gains at the 0.1 significance level (p < .075), indicating the
two interventions may have resulted in better understanding
of the science content. The small sample size and the large
variations in performance within groups made it difficult to
achieve statistical significance in these results. However,
one positive aspect of this finding is that while students in
the Mon-G and KC-G spent an average of 10% and 17% of
their time in guided practice, respectively, they learned, on
average, just as much, if not more, than the Con-G students.
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Figure 2: Pre-post Test Results (mean (std dev)) and Final
Map Score

To assess students’ overall behaviors, we calculated the
effectiveness and support measures, which are illustrated in
Table 1. The KC-G students had the highest scores on both
map editing effectiveness and support, suggesting that the
KC feedback did help students more effectively and system-
atically read and construct their causal maps (however, only
the map edit support showed a statistically significant dif-
ference, KC-G > Con-G, p = 0.02, and the map edit effec-
tiveness illustrated a trend, KC-G > Con-G, p = 0.08). How-
ever, the monitoring support did not help the Mon-G stu-
dents do better than the other two groups for monitoring ef-
fectiveness or support. The Mon-G students did have the
highest monitoring effectiveness, but it was not statistically
significant. Further, the Con-G students had the monitoring
support average (p < 0.10, when comparing with other
groups). It is not clear why the Mon or KC support and tuto-
rials resulted in students performing less supported monitor-
ing activities tan the Con-G students.

Table 1: Effectiveness & Support Measures
((mean (std dev)) by Group

Measure Con-G KC-G Mon-G
0.46 0.52 0.5
Map edit effectiveness (0.13) (0.07) (0.12)
0.43 0.64 0.55
Map edit support (0.25) (0.19) (0.23)
0.3 0.32 0.4
Monitoring effectiveness (0.22) (0.21) (0.20)
0.61 0.32 0.33
Monitoring support (0.30) (0.4) (0.32)




In order to investigate student learning behavior in more
detail, we employed sequence mining analyses to identify
143 different action patterns that were observed in the ma-
jority of students. Table 2 lists the 10 most frequent patterns
that employed at least two actions and could be interpreted
as a metacognitive strategy in our cognitive/metacognitive
model. Each pattern is defined by two or more primary ac-
tions, and each action is qualified by one or more attributes.
For example, a [Read] — [Add correct link, relevant to re-
cent actions] pattern describes a KC behavior, where the
student added a correct causal link to the map after a [Read]
action where the student read a page that discussed the add-
ed link. In contrast, the action labeled [Read] — [Add incor-
rect link, relevant to recent actions] implies the student add-
ed an incorrect link even after reading a page that contained
information about the link. The — symbol implies that the
action to the left of the arrow preceded the action to the
right of the arrow.

The average frequency represents the average number of
times students used a particular behavior pattern when they
worked on the system. These numbers are broken down for
the three conditions. The last column represents our inter-
pretation of the type of strategy a particular behavior repre-
sents. In this study, the strategy corresponding to a behavior
was determined by the category of the cognitive process
(KC or Mon) implied by the individual actions that made up
the behavior Therefore, some behaviors, e.g., pattern #3:
[Quiz] — [Remove incorrect link], span KC and Mon
(KC+Mon) strategies.

The frequency numbers indicate that for almost all of the
top 10 behaviors the CON-G showed a higher frequency of
use than the two experimental groups. This may be partly
attributed to the time the KC-G and Mon-G groups spent in
tutorials, therefore reducing the amount of time they spent
on the map building task. However, an equally likely reason
may be that the CON-G students used more trial-and-error
approaches, spending less time editing and checking the
correctness of their maps in a systematic way. This is fur-
ther supported by looking at the highest average frequency
behaviors for each of the groups. The top five behavior
strategies for the Mon-G students are primarily Mon or
KC+Mon related (patterns 1, 3, 5, 7, and 9), involving quiz-
zes, map editing, and explanations. KC-G students, on the
other hand, more often employed KC strategies related to
adding and removing links along with a couple of strategies
that combine KC and Mon activities. The Con-G students
seem to have employed KC and Mon strategies in about
equal numbers, but they were less effective in using these
strategies.

An interesting strategy is pattern #10: [Add incorrect link
(AIL)] — [Quiz (Q)] — [Remove incorrect link (RIL)].
This may represent a strategy where a student first adds a
link (which happens to be incorrect) and then takes a quiz to
determine if the quiz score changes. Depending on the out-
come (in this case, the score likely decreased), the student
determines that the link added was incorrect, and, therefore,
removes it. This represents a trial-and-error strategy. While
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students in all three groups used this strategy, the Mon-G
group used it with lower frequency than the other two
groups, and this may be attributable to the effectiveness of
the Monitoring scaffolding. To study this pattern further we
developed two measures: (1) a measure of cohesiveness of
the pattern, i.e., in what percentage of the AIL - Q — RIL
patterns was the delete action supported by the quiz result;
and (2) a support measure, i.e., in what percentage of the
AIL — Q — RIL patterns was the addition of the link sup-
ported by recent actions. The MON group had higher cohe-
siveness (41.9 to 38.0 and 37.3 for the CON and KC groups)
and support (27.7 to 20.3 and 187.7 for the CON and KC
groups) measures, implying that they used this pattern in a
more systematic way than the other two groups.

Discussion and Conclusions

The results presented in the previous section provide evi-
dence that a combination of theory-driven measures and da-
ta-driven mining techniques can be successfully employed
to produce a more complete description of the metacogni-
tive strategies use in their learning and problem-solving
tasks. In our work on investigating cognitive and metacog-
nitive processes in Betty's Brain, we had to carefully in-
strument the system to collect rich data on the students' ac-
tivities and the context associated with those activities. Post
hoc mining and analysis of this data revealed a number of
interesting results. Perhaps most important, the results show
(i) that it is possible to infer aspects of students’ use of strat-
egies as they learn through these data mining and analysis
techniques combined with a cognitive/metacognitive model
of the task, and (ii) that tracking student performance and
related context information with respect to their activities al-
lows us to better characterize these strategies as suboptimal
versus optimal.

Our analyses in this study focused on students' knowledge
construction and monitoring strategies. Knowledge con-
struction strategies include seeking out information, think-
ing deeply about the material to develop a sufficient under-
standing to apply it to model building and problem solving
tasks. In particular, information structuring strategies in Bet-
ty's Brain help students with their map-building activities,
which include understanding the structure of the causal
model, the ability to construct it in parts, the ability to add
links correctly to an existing structure, and also the ability to
reason (e.g., answer questions, formulate hypotheses) with
the evolving structure. The primary monitoring strategies re-
late to determining when and how to check the correctness
of the current causal map, and then, in more detail, using the
quiz (assessment) results to determine the correctness of in-
dividual links, and what parts of the map are incomplete or
still need work.

In summary, the analysis presented in this paper success-
fully employed our metacognition measurement framework
to evaluate the effects of scaffolding support for metacogni-
tive and cognitive processes important for success in Betty's
Brain. In particular, we applied these analyses to a compari-
son of different versions of Betty's Brain, a version that pro-



Table 2: Comparison of Pattern Frequencies across Conditions

Bransford J, Brown A,
Cocking R (eds) (2000)

Avg. Frequency Model How people learn. Na-
Rank Pattern CON | Kc | MON | category | tional ~Academy Press
. . ) Washington, DC, Wash-
1 [Add incorrect link] = [Quiz] 11.20 7.35 8.24 | KC+Mon ington
2 [Add incorrect link] = [Remove incorrect link] 6.00 | 12.65 3.71 | KC Chi M, Glaser R, Farr M
3 [Quiz] > [Remove incorrect link] 7.87 | 6.10 | 6.29 | KC+Mon [ (1988) The nature of ex-
4 | [Add concept] - [Add correct link] 753 | 675 | 4.94 | KC EeftlSi\ La\_/vrencle Erl-
aum Assoclates, Inc.
5 i Explanati 8.40 3.80 535 | M . ' i
[Quiz] > [Explanation] | Flavell J, Miller P, Miller
6 [Remove incorrect link] = [Add incorrect link] 4.53 9.20 3.41 | KC S (1985) Cognitive de-
7 [Add correct link] - [Quiz] 587 | 4.05| 5.06 | KC+Mon velopment. Prentice-Hall
8 [Remove incorrect link] - [Quiz] 593 | 4.45 | 4.12 | KC+Mon Engle\_Nood C“ffS: NJ
9 [Explanation] - [Explanation] 567 | 295 | 4.88 | Mon H'fldwm A, Nesbit J, Ja-
. ) ) ) ) mieson-Noel D, Code J,
10 [Add incorrect link] = [Quiz] & [Remove incorrect link] 5.20 4.40 3.88 | KC+Mon

vided very little scaffolding and no guided practice versus
two experimental conditions: one that provided KC scaf-
folds and a second that provided Mon scaffolds. Overall, the
interventions produced changes in student behavior that
were consistent with the provided scaffolding, implying that
these metacognitive strategies can be taught and supported
for middle school students in computer-based learning envi-
ronments.

An interesting implication of this work is that monitoring
strategies can be key to better learning performance, and
better monitoring strategies may provide the catalyst for de-
veloping more effective knowledge construction, i.e., in-
formation seeking and information structuring strategies.
The results presented in this paper are promising, but further
analysis and more systematic experiments will have to be
conducted to achieve conclusive results.

Future work will involve refining the methods presented
in this paper in order to allow us to discover and define
strategies in a more systematic way. Further, we will extend
our measurement framework to more closely integrate theo-
ry-driven measures with data-driven mining for analyzing
student cognition and metacognition during learning. Ulti-
mately, we hope to find better ways of inferring students' in-
tent (i.e., goals) from their observed behaviors and strategies
while using the system.
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