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Abstract

We set forth to show that lexical connectivity plays a role in
understanding early word learning. By considering words that
are learned in temporal proximity to one another to be related,
we are able to better predict the words next learned by
toddlers. We build conditional probability models based on
data from the growing vocabularies of 77 toddlers, followed
longitudinally for a year. This type of conditional probability
model outperforms the current norms based on baseline
probabilities of learning given age alone. This is a first step to
capturing the interaction between a child’s productive
vocabulary and their learning environment in order to
understand what words a child might learn next. We also test
different types of variants of this conditional probability and
find that not only is there information in words that are
learned in proximity to one another but that it matters how
models integrate this information. The application of this
work may provide better cognitive models of acquisition and
perhaps allow us to detect children at risk for enduring
language difficulties earlier and more accurately.

Keywords: word learning, semantics, language acquisition,
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Introduction

Do children learn words systematically? There is a lot of
evidence that words are not all learned equally. Perhaps not
surprisingly, for example, parents’ vocabulary is related to
their children’s vocabulary (e.g., Weizman & Snow, 2001;
Veen, et al., 2009). That is, the child will learn the words in
his or her environment. In addition, some concepts, and
therefore the words that name them, may be easier to learn
than others. For example, concrete nouns are learned earlier
than verbs and adjectives (e.g., Sandhofer, Smith, & Luo,
2000; Gentner, 2006). Furthermore, the child may bring
some preferences and constraints to the task of word
learning. For example, children may become particularly
interested in dinosaurs or construction equipment or even
tea sets (DeLoache, Simcock, & Macari, 2007). That is, in
characterizing the forces that guide word learning, there is
evidence that at least three distinct but not necessarily
mutually exclusive sources of information can come to bear:
a) the structure and composition of the linguistic
environment, b) the structure of the concepts and categories
being named, and c) the characteristics of the learner itself.
In this paper we focus mostly on this third source of
variability by constructing conditional probability models
from longitudinal trajectories of word learning that make
predictions at the word level, for individual children. That
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is, we ask: can we use the words a child knows now to
predict the words that a child will learn next?

Measuring the developing lexicon

One well-established way to characterize toddlers’ lexicons
is to use vocabulary checklists, such as the MacArthur-Bates
Communicative Development Inventory (CDI; Fenson et
al., 1994). These parent-reported measures have been shown
to be effective in evaluating children’s communicative skills
up to 30 months of age (e.g., Thal et al., 1999). The CDI:
Words & Sentences Toddler form is a checklist of over 700
early words that at least 50% of children typically say at 30
months of age. By pooling data over thousands of children,
the CDI provides norms of the percentage of children who
say each of these words at a given age from 16 to 30 months
of age, month by month. Aside from being shown to be a
valid measure of communicative skills for this age group,
the CDI has been recently shown to be an effective tool for
sorting toddlers at the low and high end of the acquisition
distribution into late talkers and typically developing
children (Heilmann, et. al, 2005). This might allow us to see
universality in learning but it also masks some of how the
process works—the aggregate cannot explain individual
differences but models of learning necessarily must.

The CDI norms can be used to build models of growth.
For example, Hills and colleagues (2009) have used CDI
norms to build growth models based on networks of words
connected by feature similarity or associative strength.
Beckage, Smith and Hills (2011) used the connectivity of
language within the vocabulary of young learners and
showed that there are differences in the structure of the
vocabularies of children at risk for language impairments
and those of typically developing children.

Note that these approaches presuppose that there is
information in the relationships between words. If this is the
case, there should be predictive power in looking at the
between-word dependencies over time. We do this by
exploiting the statistical regularities present in the
developing vocabularies of 77 children, followed
longitudinally for a year, at monthly intervals.

Rationale

We propose a simple way of uncovering the interaction
between the language environment and learning and thus
uncovering more of the systematicity of word learning.
Instead of just considering the frequency of production for a



given word conditioned on the age of a child, as with the
CDI norms, we suggest that there might be additional
information in the structure of the language knowledge
itself, in the set of words that are known. To pursue this
claim, we build the most naive notion of relatedness and
leverage this information in order to predict what words a
child might learn next. We define relatedness to be the
conditional probability of a word given the child knows
another word. For the sake of this paper, we consider words
learned in temporal proximity to be related. We build up
these values from the longitudinally collected CDIs by
considering a connection between words that are learned at
the same time (within the same month). We then compute
the conditional probability as follows:

Pr(alp) = £L2NY) (1)

Pr(b

For example, we compute the prg)gability of knowing “cat”
given “dog” by calculating the probability of a child
learning “cat” and “dog” in the same month, normalized by
the probability of knowing “dog” in the population as a
whole. We can then use a variety of methods to combine
these conditional probabilities into a single probability of
learning word i given that they know a set of words J. That
is, for each not-yet-known word, we can calculate the
probability that the child will learn that word next, given the
set of words the child already knows.

In order to combine the conditional probabilities given the
set of known words, we need to integrate over the
conditional probability given each of the words known.
Here we test three different models of this: the Additive
model assumes that every conditional probability
contributes equally. In the additive model we simply sum up
the conditional probability of i given every j in the set of
known words. This gives us a proportion of learning for
every word not yet learned. The issue with this model is that
it requires a large amount of information and storage. One
rudimentary simplification would be to assume that only the
maximum conditional probability was used. This model we
call the Maximal model because we use only the strongest
conditional probability between i and some j from the set of
known words J. Finally in the Threshold model we
compare a model that considers conditional probabilities in
an additive fashion but considers links only as present or
absent. The link is determined as present when the
conditional probability strength is above a certain threshold
(in our case the median of all conditional probability values)
and absent otherwise. We compare these conditional
probability models to two population-based models, one
based on the CDI norms (norm-baseline), another based on
the observed frequencies (observed-baseline), as well as
the null model (the assumption that all words will be
learned with equal chance). We evaluate the conditional
probability models by comparing their predictive power to
the population-based models, and wuse 5-fold -cross-
validation to evaluate the model’s performance in predicting
untrained trajectories.
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Methods

Vocabularies and Co-occurrences

We utilize CDI measured vocabularies collected at the
University of Colorado Boulder. Seventy-seven toddlers
between 15.7 and 18.6 months (mean starting age 17
months) were recruited as part of a year-long longitudinal
study. These participants completed monthly behavioral
tasks as well as vocabulary assessments. The vocabulary
assessments were conducted through parent report using the
CDI Words & Sentences toddler forms. These CDIs were
collected for 12 consecutive months with the majority of
parents completing the forms each month. On average we
have 9.8 months for each child.

In our study, we include a total of 650 words from the
full form, marking duplicate words with parts of speech
(such as “orange” as a noun and “orange” as an adjective).
We included words that were both on the full form and had
norms available online (http://www.sci.sdsu.edu/cdi/).
Words that were not part of our modeling included words
like above, after, on and off. All together we have 77
children and a total of 684 CDI forms. For the sake of this
paper we consider each month to be independent of every
other month. That is, we build associative structure only
from words that are learned during the same month (or
words that are known at the beginning of the study.) This
limits the co-occurrence measure to capture only short-term
dependencies. In the future we plan to extend this work to
include cross-sectional vocabularies as well, which will
allow us to capture long-term dependencies.

To derive the strength of connectivity, we simply take a
count of the number of times two words appear in the same
vocabulary (i.e. are learned in the same month) normalized
by the population level knowledge as measured from our
sample for the words. This provides the basic counts that are
then used to compute an ‘activation level’ that will then give
rise to predictions of the next word learned. We then
calculate the probability of learning word i given that a child
already knows word j. This is then compared to the models
based only on population level data as well as a model that
assumes uniform learning.

Models

We compute two population-based measures. The first
normed model is based on the CDI norms where we
consider the likelihood of a child learning the specific set of
words we observe to be a function of the population level
age of acquisition (AoA) norms (Dale & Fenson 1996). The
second measure is calculated analogously, but computing
the likelihood according to the AoA as observed in our own
sample. We also compare these and all other models to a
straw-man baseline measure (the null model) that gives
every unlearned word equal probability of being learned.

We compare these population level models to conditional
probability models. For the additive model we calculate the
probability that each word is learned as proportional to the
sum of the conditional probability of all known words.
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In effect, the probability of learning word a is computed
such that we sum across the conditional probability of each
known word b in the set of known words B. For example if
a child knows words “cat” and “dog” then the probability
that the child will learn word “pet” is proportional to the
sum of the probability of learning “pet” given “cat” plus the
probability of learning “pet” given “dog”. This assumes a
level of independence that does not exist in language itself.
Using similar methods, in the maximal model we
consider only the maximum conditional probability to be
proportional to the probability of learning a given word. We
test this model because it requires only one point of
information per word as opposed to considering all possible
combinations of known and unknown words.

Pr(a(b;)
Pr(b;)

)
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This simplification may still capture much of the variance if
the maximal connection dominates the additive model or if
strong connections in the learning environment really do
highlight words to be learned next.

We also consider thresholded conditional probability. The
idea here is that the learner has access to most of the
conditional probability space but only at a coarse level. The
learner is considered to maintain only the strongest
conditional probabilities and that these are considered as
present or not. Mathematically, the threshold model is:

Pr(a|B) X Z H{Pr(zzll)7',)>c} 4
b, eB

Here 1 is the indicator function and is valued only when the
conditional probability is greater than some constant ¢. For
this analysis we let ¢ be the median conditional probability
across all children. This adds an additional variable to our
model but it is set a priori and thus has little significance on
the complexity of the model. From an information
processing point of view, this model may take less effort
since we consider only the presence and absence of a link
and not the weight, reducing the complexity of the space.

While we do not consider it here, even these very simple
models can quickly be extended to other types of more
sophisticated models. First, conditional probability is at best
a first order approximation to the full complexity that
language embodies. The model can only be as good as the
measure used to inform it which in this case is simple co-
occurrences. Further, these co-occurrences are based on one
month time slots, we could consider data at other time
scales, or multiple timescales. Finally, we have chosen to
integrate the conditional probability information here in the
simplest ways. These models can be seen as network models
which allows us to consider not only what words are
predicted to be learned next but how these mechanisms for
learning transform the semantic structure present in the
network. We mention this to highlight the implications of
testing these basic assumptions on the larger word learning
models (e.g., Vitevitch, 2008; Hills et al, 2009).
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Evaluation

We begin by looking at the percent of vocabularies better fit
than the null model and the percent likelihood improvement.
This tells us some information about the general variability
of the input and the ability of the model to account for this
variability but little about which model is best. Thus we
consider the percent of vocabularies that are better than each
of the population based models. This tells us the proportion
of vocabularies better fit by the model but not how much
better (or worse) of a fit the models give us for our sample.
Thus we include the total likelihood of the test data given
each of the models. We then compare the likelihood fits
across models in order to understand how a model is
performing in comparison to other models. We also look at
the percent of vocabularies best fit by a given model.

This gives us a good deal of information about the
performance of the models and the ability of the models to
utilize and combine information in order to predict words
learned next at the level of an individual child’s vocabulary.
To be sure that we are capturing actual signal we want to
calculate the conditional probabilities based on a different
set of vocabularies than those on which we test the models.
Thus, we use cross validation and iteratively build up the
necessary associations that the models require from 80% of
the vocabularies and then test on the remaining 20%. We do
this at the child level since sequential vocabularies are not
independent of the child (an issue we’ve ignored up to this
point). We randomly select the 20% test group and repeat
this 5 times such that every observed set of vocabularies for
a given child is in the test set once. This allows us to test
how well the model can predict the vocabulary growth of a
child it has no direct information about. We compare the
average performance on the five different test sets.

Results

We know what specific words a child learned in a given
month, and we use our model to calculate the probability of
a given set of words. Some models give a zero probability to
learning certain words and thus we first want to look at what
percentage of our population cannot be fit by a specified
model. This will give us information about how constrained
the models are in their ability to fit the wide range of data
present in our sample. Column 1 of Table 1 shows the
results. In general the models are able to capture the learned
words fairly well. The worst model is the Threshold model
which is due to the fact that many words are assigned a zero
probability under this model since connections that are not
above the median strength are considered absent—this
results in about 4% of the observed vocabularies not being
explainable under the strictest definition of the model. The
model based on the CDI norms also has some difficulty
accounting for some (2%) of the vocabularies seen. In
practice, this means that some children learned words earlier
than the normed CDI measures would have predicted—that
is, in the vocabularies used to build up the norms, there were
no children in the sample that learned some words that
children in our study did. This is even more extreme for our



observed CDI norms—which is probably an effect of
sample size. In general a large majority of the 684
vocabularies could be fit under the models we constructed; a
total of 633 overlapped across all models. We constrain our
model comparisons to this subset in all further evaluations.

The next major question is whether or not the constructed
models outperform the null model in which each word is
given equal probability of being learned. The answer, in
short, is that all models perform better than the null model
when we consider the total likelihood across all
vocabularies. Further, the minimum number of vocabularies
better fit by our models than the null model was 82%. This
suggests that there is systematicity to the order in which
children learn words. In fact we don’t only fit the observed
data better we get a fairly substantial improvement in
overall likelihood when we utilize these models. We have at
last 8% improvement and at most 19% improvement.

Table 1: Model performance compared to null model. We
consider % of vocabularies not fit, improvement over null
and % of vocabularies better fit by a given model.

Model vocabs not | improvement vocabs. better
fit (%) over null (% llk) | than null (%)
Normed 2.37 14.54 81.99
Observed | 3.97 19.04 90.52
Additive | 0 18.22 89.10
Maximal | 0 8.39 86.41
Threshold | 4.05 18.66 82.94

However, showing that words are not acquired randomly
does not answer the question of how individual children
build up a vocabulary. Returning to the ideas from the
introduction, this does not rule out the effect of the structure
of the environment. Children learning words proportional to
the frequency they encounter them in the environment could
explain these results. This would maintain independence
between the words a child knows and the words the child is
going to learn next. The two baseline models maintain this
independence as well: the model based on the normed CDIs
and the model fitting to the observed CDIs. In contrast, the
other models assume conditional probability plays a role in
prediction of vocabulary growth and uses this to link known
words to what words will be learned next. Thus, to get at
our original question we want to compare these population
level models to the other models that require conditional
information. We already have a bit of information about the
overall model performance when we look at the total
likelihood across all vocabularies. We see that we get the
largest improvement in likelihood when we utilize the
observed CDIs. And we also see that this model gives us the
most vocabularies that are fit better than random acquisition.

The gains resulting from using conditional probability are
clearer when we consider which vocabularies were best fit
rather than looking at the overall likelihood which could be
easily inflated by isolated vocabularies that are particularly
difficult for a given model to fit. With cross-validation, the
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threshold model outperforms all others, as shown in Table
2. This improvement is non-trivial as it accounts for the best
model in over 50% of vocabularies. This is maintained
when we look across children as well—most children are
best fit by the threshold model. The observed norm model
does provide the best fit for 22% of the data suggesting that
there is some predictive powers in the population level rate
and time of acquisition. When we look across the population
level models we see that over 70% of vocabularies are better
fit by a conditional probability model than by a population
level normed model. Critically, this suggests that there is
some added information in conditional probabilities.

Table 2: Performance with cross-validation. Overall ability
to account for the data as well as percent of vocabularies
best fit by a given model. For comparison the model
performance is directly compared to population models.

Model % vocabs | % better % better
best fit normed observed

Normed 7.28 30.82

Observed | 22.04 69.17

Additive | 10.23 75.20 54.29

Maximal | 10.31 25.63 17.67

Threshold | 50.11 77.38 60.52

To show the extent of improvement offered by
conditional probabilities, we consider the percent of
vocabularies better fit by a given model and the CDI data. In
Table 2, column 2 and 3, we see that most of the models
perform much better than the normed model with roughly
75% of children being better fit under a given model than
the published norms and further that many vocabularies are
better fit when compared to the norms based on our
particular population of toddlers in boulder. This suggests
that the norms may be predictive for some children but that
in general accounting for the words that are learned
previously as well as the relationship of words that are
learned together may help us predict what word a child will
learn next. Further, the way we combine the type of joint
information about word learning may influence our ability
to capture vocabulary growth.

Discussion

These results suggest that conditional probabilities do aid in
accounting for word learning trajectories. That is, the words
that a child already knows can help predict the words that
they are going to learn in the future. This implies that there
is some sort of systematicity in word learning and that it is
not explainable by structure of the environment alone or by
conceptual complexity but rather by the interaction of the
structure of concepts and meaning within the knowledge of
the individual child. The two models that are based on
normed data can be seen as independent of individual
variation. That is, for these models to perform well at
predicting what words a child will learn next, children
across a variety of settings and in a variety of learning



environments would be expected to learn words in similar
proportion and at a similar rate. This could suggest that the
input is structured in a systematic way or that the learning
strategy is the same across all children and not dependent on
the child’s productive vocabulary at any point in time. We
did see that these models in general can be fairly predictive
of word learning and in fact the total likelihood of the data
was minimized under the model that built norms from CDIs
collected in our lab. This suggests that these models capture
some important aspect of learning. However if we are
interested in understanding the different styles of how
children learn and capturing the variability across children,
these models, inherently, cannot help us with these types of
questions as they average out variability.

Looking more closely at the overall likelihood of the
models, we see a strong trend that the population models are
not as able to adapt to new data. When we fit the models on
the full data (that is we included the test set in the training
set) the observed CDI norms had a much better total
likelihood. However, this model took a big hit in the cross-
validation method (results not shown in this paper)
suggesting that the observed CDI norms may have overfit
the data. The fact that conditional probability models
performed better than the population level models in
predicting unseen data suggests that the whole story is not in
the input alone, but that there is an interaction between a
child’s productive vocabulary and what words the child will
learn next. Even with very simple models of conditional
probability we were able to increase our ability to predict
and account for the ways vocabularies expand. Thus, if we
were to refine our models to include other types of
relationships (or more meaningful semantic relationships)
between known words and words learned we might be able
to understand how children take in their language
environment and combine this with their individual
vocabulary knowledge to learn new words. The work
presented here only begins to look at this by testing models
that combine the relationship of co-learned words in
different ways, but refinement on these types of models
could provide a way for us to uncover not just how children
learn new words but also how they integrate a variety of
information in order to develop representations of the world.
For example, here we considered the median and as our
cutoff in the threshold models, but in theory this could be a
free parameter fit at the level of individual children (or at
the population level conditioned on age) and could hold
added information about how children interact with the
learning environment. It is true that this threshold model has
an additional variable but by setting this before looking at
the data we have dealt with any issues in comparing this
model to the other models. In the future we plan to do more
extensive parameter fits as well as extend the basic models
in complexity. For example, we would like to allow the
number of maximal values included in our maximal model
to be n instead of just 1, where n is a free parameter itself.

The first model (the additive model) tested combined
conditional probabilities by maintaining connections and
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weights and summing up all of the conditional probabilities
between the word candidate and all known words. This
resulted in a model that was able to fit much of the data and
often better than the population level models. But this was
not the best fitting model suggesting that this model might
have required too much information, accumulating a ratio
that included significant noise in addition to the signal. A
huge simplifying assumption that led to our next model was
one that suggested that children would maintain only the
strongest relationship between a word candidate and known
words. This model performed poorly—returning a total
likelihood significantly worse than the normed models and
the closest to the null model. However, the children’s
vocabularies that were better fit by this model than the CDI
norm models were vocabularies that were often best fit
overall by this model. The best model is the model that
forces a threshold on the conditional probability matrix.
This suggests that strong connections may be the important
ones and that the weight of the connection is not important
just that it is present.

We do not only gain insight from looking at what models
succeed but also what models failed and how. The CDI
norming data had difficulty capturing individual
vocabularies. It is important to note that in some way this
model was handicapped from the beginning. None of the
observed data was used in building up the norms. On the
other hand, the frequencies noted in the norms were accrued
over thousands of children, as opposed to our much smaller
sample. Nonetheless, even when the other models were
handicapped in the same fashion, the discrepancy in
performance still exists. This highlights one of the major
weaknesses in utilizing normed data in order to help predict
future vocabulary progression. First, it fails to exploit the
temporal dependencies available when using longitudinal
data. Second, it fails to utilize the dependencies between
subsets of words. Of course the poor performance of the
norm baseline could be due to a variety of other reasons
which would plague any attempt to characterize universals
from individual data, and which pose problems to the
traditional norming studies. For example, geographic
changes between where the norms are collected and
Boulder, CO, where our vocabularies were collected could
produce variation thus restricting the generalizability of the
norms. Or there could be cohort differences due to the fact
that the world in which our current children are growing up
has a different underlying structure in small but significant
ways than the world of the children who contributed data to
the norms 20 years ago. This suggests a need for us to
consider other tools and methods in order to build up a
robust and predictive measure of infant word learning.

Conclusions and Further Directions

Altogether, our findings demonstrate that the conditional
probabilities contain information that captures the
relationship between the words known by a child at a
specific time point and the words that child will learn next.
Further, our results show that it matters how we integrate



these probabilities. For example, the maximal model is
utilizing only minimal information from the conditional
probability (the strongest conditional probability between
known and candidate words only) and this model performs
very poorly. This suggests that, even though conditional
probabilities do contain useful information, not every use of
it improves predictive power. The fact that the threshold
model does best, suggests that understanding how to
combine information can increase fit of the model and allow
us to make more accurate future predictions. Interestingly,
the model that integrated over the complete conditional
probability matrix did not perform better than the model
with less information. This result is not atypical for the
world of child language acquisition and suggests that
perhaps taking into account memory or other cognitive
constraints may be useful, if not necessary, in capturing
early learning (e.g. Phillips & Pearl, 2012).

This work offers evidence that word learning is affected
by a combination of forces and understanding these forces
may allow us to predict words that a child would be likely to
learn next. We would like to extend these results.
Specifically we would like to more closely examine what
types of relationships might exist and ways to measure
them. If we understand the language environment where a
child is learning as well as the way in which the child might
be integrating this information with their current vocabulary
we should be able to predict which words a child may learn
next. This matters because this may allow us to capture
children who have learning strategies leading to language
difficulty or impairment. These types of models could let us
diagnose such children earlier and may allow us to provide
effective and child specific interventions.

Another potential direction is the development of tools
and techniques that allow us to understand temporal
dependencies at different time scales other than a month.
Time series analysis combined with graph clustering on the
semantics may allow us to expand this work from joint
probability to a more complex probability space giving us
better temporal resolution as well as more predictive
models. Along those same lines, we may be able to fine-
tune these models with cognitive theory (which are not
included at all in these models, see Hills et al, 2009 for a
paper that does consider this) to test generative and process
motivated theories of word learning. This would allow us
not only to build new computational tools but to refine and
expound upon theories of word learning.

At the onset of this paper we asked whether it would be
possible to predict the words a child will learn next from the
words she knows now. Our findings, even with this simple
set of models, suggest that the answer to that question is
yes. Significantly, this opens up doors that have far-reaching
implications. If we understand how children utilize their
environment, conceptual understanding and semantic
connectivity as they interact with the world and build up a
vocabulary, we can design individualized teaching
paradigms that may allow us to build upon, or compliment,
what the child already knows aiding in language acquisition.
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