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Abstract

Ratcliff, Van Zandt, and McKoon (1999, Psych. Rev.) claim
that connectionist models fail to simulate many aspects of how
individuals select one of two possible responses. Here, these
claims are re-evaluated via computational and behavioral in-
vestigations of an extended version of the original numeros-
ity judgment task. The results of the experiment indicate that
some of the empirical effects that the models failed to cap-
ture do not generalize and were likely due to idiosyncratic as-
pects of the original methodology. The simulations show that
a more biologically-plausible model captures the bulk of the
new effects, including some trial-by-trial adaptive effects that
are outside the scope of models tested against aggregate data,
and emergent asymptotic stability that has previously required
an explicit leak parameter.

Keywords: response selection, decision making, connection-
ism, numerosity judgment, overall and trial-by-trial effects

Understanding how one of multiple candidate responses is
selected in a given task is a long-standing and critical issue in
cognitive science, and is one of the earliest domains to have
been investigated with computational models. To date, much
of the work has focused on the sub-issue of how individu-
als perform in tasks in which they must rapidly select one of
two possible responses (i.e., speeded two-alternative forced-
choice tasks; 2AFC tasks). This has led to the development
of several models that can be fit to data from 2AFC tasks with
a high degree of precision (e.g., the diffusion model; Ratcliff,
1978). One of several key limitations of these models, how-
ever, is that they are highly domain-specific and are not nat-
urally extendable to studying other intuitively related issues,
such as ‘closed-set’ response selection tasks involving three
or more pre-specified candidate responses, or ‘open-set’ re-
sponse selection tasks which require the production of novel
responses such as nonword naming. These models are also
often fit to aggregated data and do not explain how the deci-
sion system adapts over time based on its past experiences.

One possible avenue for addressing these limitations is the
development of a connectionist model of response selection,
given the connectionist framework’s grounding in domain-
general learning, representation, and processing principles
that are drawn from systems and cellular neuroscience. Not
only might such a model be able to explain the overall and
adaptive effects in 2AFC tasks, it should also be readily ex-
tendable to the other response tasks described previously.
Moreover, insofar as connectionist models fail in these en-
deavors, this can serve to guide the development of improved
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principles which can, by virtue of the domain-general nature
of the framework, have wide-spread implications for domains
well beyond response selection (e.g., semantic cognition).

Past work by Ratcliff, Van Zandt, and McKoon (1999) pro-
vides some initial insight into the performance of connec-
tionist models of 2AFC tasks relative to that of the diffu-
sion model in simulating performance in a numerosity judg-
ment task. In this task, participants were presented with a
10x10 array which was filled with a number of asterisks sam-
pled from two overlapping distributions with ‘low’ and ‘high’
mean numbers of asterisks, and made responses indicating
which distribution they believed had been sampled from to
generate the stimulus. The model comparisons revealed that
the connectionist models failed to capture important aspects
of the behavioral data (e.g., latency-accuracy functions, trial-
by-trial adaptive effects).

To address some of these limitations, Usher and McClel-
land (2001) introduced a revised connectionist formalism in
the leaky, competing accumulator model. Changes in this
model included explicit constraints on the sign of the weights
between competing units and from the underlying source of
evidence that drives the response units, and the use of a
threshold-linear activation function that is not differentiable
at all points in time. A critical implication of the latter change
is that it violates the mathematical principles that underlie
standard gradient descent learning algorithms such as back-
propagation (Hinton, 1989). Collectively, these changes ren-
dered the accumulator functionally analogous to the diffusion
model, and generally showed identical or superior fits to that
model. This notwithstanding, a fundamental issue with this
type of domain-specific connectionist model is what strengths
of the standard connectionist framework were given up dur-
ing model development. In particular, the disconnect between
these models and standard connectionist learning algorithms
prevents these models from being effortlessly extended to
other response selection tasks—Ilet alone cognitive process-
ing and learning in other domains.

An alternative approach to developing improved connec-
tionist models of response selection is to focus, instead, on
improving the domain-general assumptions of the frame-
work. One way to do this that is independent of the partic-
ular constraints needed to simulate response selection is to
more accurately instantiate the known connectivity and pro-
cessing characteristics of the brain. For instance, neurons



are either excitatory or inhibitory—not both, as is the case
in standard connectionist models. There are also more exci-
tatory than inhibitory neurons, which biases the type of in-
formation that can be encoded by each sub-population: in-
hibitory neurons serve primarily to regulate overall activation
in the information-content-rich excitatory neurons. Connec-
tions between brain regions are also typically only excitatory
and relatively sparse (or functionally weak), whereas there is
dense (or functionally strong) connectivity among both exci-
tatory and inhibitory neurons within a brain region. The acti-
vation dynamics of individual neurons are also better approx-
imated by activation functions that do not possess an upper
non-linearity as is the case for sigmoidal functions (Usher &
McClelland, 2001), but that are nevertheless differentiable at
all points in time, such as the hybrid sigmoid-linear activation
function that is presented in detail later.

To date, models that are constrained by the aforementioned
characteristics of systems and cellular neuroscience have
been found to capture a wide range of empirical effects such
as the temporal dynamics of ambiguous word comprehension
(Armstrong, 2012) and the ERP correlates of word and non-
word processing and of behavioral lexical decision (Laszlo &
Plaut, 2012). The present work extends these investigations
by evaluating whether a more biologically-plausible connec-
tionist model can simulate overall and adaptive effects in a
simple perceptual task, without abandoning key principles
such as learning or adopting ad hoc connectivity constraints.

Prior to the computational work, however, an appropri-
ate set of benchmark data must be identified. Ratcliff et al.
(1999) argued that their numerosity judgment task data were
representative of results of many tasks and could therefore
be treated as a gold standard for model comparison. How-
ever, detailed inspection of their results suggests that idiosyn-
cratic and esoteric aspects of their methods may have led to
atypical results. For instance, participants were potentially
able to adopt sophisticated response strategies beyond those
that are incorporated into simple models of response selec-
tion (notwithstanding that ultimately, more complex models
should account for these data). For instance, participants
received extensive experience with the task (= 12,000 tri-
als). This may have interacted with the fact that participants
were also explicitly told that the ‘low’ and ‘high’ distributions
overlapped and therefore that it would not always be benefi-
cial to adjust their performance following responses that were
labeled as ‘incorrect’ (in contrast to the definitional behav-
ior of error-driven learning and to the behavior observed in
Armstrong, Joordens, & Plaut, 2009). To explore adaptation
in the decision system, Ratcliff and colleagues also repeatedly
and somewhat predictably manipulated the likelihood of sam-
pling from the ‘low’ and ‘high’ distributions (=~ 30 times)—
effectively changing the optimal threshold for making ‘low’
or ‘high’ responses—which may have allowed participants
to utilize sophisticated cognitive control mechanisms. Con-
sequently, we first investigated the representativeness of the
original data in an extension of the original study.
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Numerosity Judgment Experiment

The experiment assessed the generality of the empirical find-
ings reported by Ratcliff et al. (1999) using a slightly mod-
ified version of the original methodology. This involved
(a) splitting the distribution of number of asterisks using a
fixed threshold rather than two overlapping ‘low’ and ‘high’
distributions, so that the feedback provided in the task was
perfectly accurate within a mega-block (400 trials split into
multiple blocks) and could, in principle, provide a basis for
learning to respond perfectly, (b) eliminating or minimizing
participants’ prior experience with potential changes in the
threshold value across mega-blocks that would allow them
to develop sophisticated response strategies by changing the
threshold value at most two times, and (c) only present-
ing participants with 3 mega-blocks totaling 1,200 trials (vs.
12,000 in the original study, of which the first 1,200 were
dropped) to study initial learning when adaptive effects may
be larger and more readily detectable. Insofar as these modi-
fications produce divergent results, the data from this experi-
ment may be a superior gold standard for model evaluation.

Methods

Participants. A total of 121 right-handed Carnegie Mellon
undergraduates participated in exchange for course credit.

Apparatus. The experiment was implemented using Psy-
choPy 1.71.01 (Peirce, 2007). Responses were recorded on
standard computer keyboard using the ‘z’ and ‘/’ keys.

Stimuli and design. The stimuli used in the experiment
consisted of a variable number of asterisks in a 10 x 10 grid.
The number of asterisks was sampled from a trimmed normal
distribution (mean = 50, SD = 14, min = 28, max = 72). These
stimuli were divided into ‘low’ and ‘high’ categories on the
basis of whether the number of asterisks fell above or be-
low a threshold value. The threshold that delineated a ‘low’
response from a ‘high’ response could be either 4.5 points
below or above the mean of the distribution in a given mega-
block. These parameters are similar to those employed in the
original experiment, with the critical difference that there was
no overlap between the ‘low’ and ‘high’ distributions.

Participants were presented with 10 practice trials fol-
lowed by three mega-blocks of 400 experimental stimuli. The
threshold for making ‘low’ or ‘high’ responses could poten-
tially change across each of these blocks. The full set of
16 different combinations of thresholds were run across the
three mega-blocks (e.g., ‘low/low/low’ vs. ‘low/low/high’ vs.
‘low/high/low,” etc.). Preliminary analyses indicated that the
data could be grouped based on whether the threshold re-
mained the ‘same’ between adjacent blocks or ‘changed’ be-
tween adjacent blocks. This allowed the critical number of
conditions to be reduced to four for the analyses (same—same,
same—change, change—same, change—change). Trials were
presented across 25 blocks of 50 trials, except for the first
and last blocks, which contained 25 trials.

The frequency with which each number of asterisks would
be presented was a multiple of the probability density func-



tion. The stimuli were divided into ‘low’ and ‘high’ groups on
the basis of the response threshold for the mega-block. Given
the threshold levels used in the experiment, 72% (36% x 2)
of trials fell on the tails of the distribution and were always
either ‘low’ or ‘high.” The correct response for the remaining
28% of trials in the center of the distribution depended on the
threshold for the mega-block. The positioning of the asterisks
within the array and the order of the stimuli were random,
with the constraint that no more than five of the same type of
stimuli could be presented sequentially.

Procedure. Participants were instructed that they would
have to decide whether the number of presented asterisks was
either ‘low’ or ‘high.” They would have to learn what con-
stituted a ‘low’ or ‘high’ number of asterisks by making re-
sponses and learning from the feedback that was provided.
Note that in contrast to Ratcliff et al. (1999), participants were
not instructed that a given number of asterisks could be pro-
duced by either the ‘low’ or ‘high’ distributions (because the
feedback in the present experiment was accurate within each
mega-block), nor were they informed that the threshold that
delineated between the ‘low’ and ‘high’ distribution might
change during the experiment. This was predicted to increase
the likelihood that participants would adapt to the changes in
the characteristics of the stimuli using simple statistical learn-
ing mechanisms based on the feedback that was provided.

Participants were instructed to respond as quickly as they
could without making many mistakes. To operationalize this
instruction, after each block participants received a message
to “try to go faster, even if it means making a few more er-
rors”, or to “try to make a few less errors even if it means
slowing down.” The message that a participant received de-
pended on whether their accuracy was above or below 90%,
although this was not known to them. Following the instruc-
tions, participants were presented with the practice trials fol-
lowed by the 25 experimental blocks.

Each trial consisted of (1) a fixation stimulus (+) for 500—
700 ms, (2) a blank screen for 50 ms, and (3) a number of
asterisks, which remained on the screen until participants re-
sponded or for a maximum of 5000 ms. If the response was
incorrect (4) “INCORRECT” appeared on the screen for 400
ms. The next trial began automatically.

Results

Initial proficiency. The instructions alone were sufficient
for participants to configure their response system in line with
the general demands of the task, as assessed via a binomial
test on the accuracy of the first practice trial relative to chance
(mean accuracy = 63% SE = 0.05, p = 0.008, n = 104).

Overall performance for the same-same condition.
Overall performance in the experiment was slightly less ac-
curate and slower than that reported by Ratcliff et al. (1999).
This notwithstanding, the qualitative similarity between the
studies on a number of metrics was quite high, including
accuracy and latency as a function of distance from the re-
sponse threshold, the latency distribution for correct and in-
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correct responses, and the latency-accuracy functions. Fig-
ures 1 and 2 plot a subset of these data (the omitted figures,
which are not included because of space constraints, showed
similar qualitative matches to the model data). Note that be-
cause fewer stimuli were presented as distance increased from
the response threshold, the data from both the experiment and
the simulation becomes increasingly unreliable as distance in-
creases (particularly for incorrect response latency), so later
comparisons between the model and the simulation focus on
distance from the threshold of 10 asterisks or less.

Sequential effects for the same—same condition. Sequen-
tial effects in the same—same condition were examined as a
function of the number of blocks for stimuli of different dis-
tances from the threshold. In contrast to Ratcliff et al. (1999),
the data plotted in Figure 3 showed a continuous decrease in
latency as a function of practice, particularly for large dis-
tances from the threshold. Similar trends were observed in
the accuracy data (not shown), although performance reached
an asymptotic state within the first five blocks.

Mixed-effect regression models (Baayen, Davidson, &
Bates, 2008) were used to further explore the effects of a
number of characteristics of the preceding trial on the cur-
rent trial’s accuracy and latency. Due to space constraints,
only the effects of previous trial accuracy, stimulus type, and
response are reported. Significant effects have p-values less
than .05. For the dependent measure of accuracy, previous
trial accuracy did not predict significant variance, repetitions
of the same stimulus increased accuracy, and repetitions of
the same response decreased accuracy. For the dependent
measure of correct latency, a previous accurate response and
a repetition of the same response both decreased latency, and
there was no effect of stimulus repetition. Additionally, the
effects of prior accuracy decreased as a function of practice.

Adaptive effects following threshold changes. Figure 4
plots correct latency as a function of trial number for different
numbers of asterisks and combinations of constant or chang-
ing response thresholds across mega-blocks (participant’s ac-
curacy data, not shown, showed similar dynamics). Three
groups of asterisks are presented: one fell just below the ini-
tial low threshold (37-45), one fell just above the initial low
threshold and just below a later high threshold in conditions
in which a threshold change occurred later (46-54), and one
was well above the initial low threshold but was immediately
above a high threshold if the threshold value changed (55—
63). The results indicated that in both the accuracy and the
latency data the adaptation that followed a threshold change
occurred over an extended number of trials. Specifically, per-
formance generally did not approach an asymptotic level until
approximately 100 trials after the threshold change.

Discussion

Despite the methodological similarities, many of the effects
observed in this experiment diverge from those reported by
Ratcliff et al. (1999). Moreover, the analyses of early per-
formance reported here question some of the modeling as-
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sumptions reported in that paper that could have contributed
to the poor performance of the connectionist models that were
tested. For instance, the above-chance initial accuracy during
the practice blocks and the consistent performance improve-
ments throughout the experiment suggest that a connectionist
model should begin simulating the task with a basic level of
proficiency which continues to improve with practice. This
contrasts with the simulations conducted by Ratcliff and col-
leagues, for which either a trained model for which learning
had been disabled or an untrained network for which learning
was enabled were assessed.
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Similarly, the significant effects of the accuracy of the
previous trial on the accuracy and the latency of the subse-
quent trial that were observed in the experimented reported
here were not in line with those reported by Ratcliff et al.
(1999). These effects are, however, in line with the expected
behavior that would result from using an error-driven learn-
ing algorithm and with the results observed in other studies
(Armstrong et al., 2009). One possible reason for the discrep-
ancy is that the participants used their explicit knowledge of
the inconsistent nature of the feedback provided in the origi-
nal experiment to develop adaptation strategies that override
the effects of simple error-driven learning algorithms (but that
may be captured by more sophisticated algorithms that do
consider such factors; Hinton, 1989).

The adaptive effects observed in the present experiment
following the change in the threshold also differed from those
reported by Ratcliff et al. (1999). In particular, the rate of
adaptation following a threshold change was relatively slow
and approximately 100 additional trials were necessary to
reach a new asymptotic level of performance. this contrasts
with the results of the original experiment, which showed that
the new asymptotic level was reached in an order of mag-
nitude fewer trials (5-15). This discrepancy is likely due to
participants’ extensive experience with threshold changes at
semi-predictable intervals in the original task.

Taken together, these discrepancies undermine prior claims
about the representativeness of the original task and data as
a gold standard for model comparison, and suggest that the
present data are a more appropriate gold standard for evaluat-
ing the performance of simple models of response selection.

Numerosity Judgment Simulation

The simulation work evaluates whether a more biologically-
plausible connectionist model produces the same patterns of
effects that were observed in the experiment.

Methods

Participants. Two simulated participants completed each
of the main conditions in the experiment (same—same, same—
change, change—same, change—change).

Network architecture. The model architecture, based on
the biologically-plausible connectivity principles described
in the introduction, is presented in Figure 5. The visual in-
puts were divided into two groups of 100 units, the first of
which coded for the presence of an asterisk in a given loca-
tion, whereas the second coded for the absence of an asterisk
in a particular location. This normalizes the overall amount of
activity in a similar fashion to on-center/off-surround and off-
center/on-surround visual neurons. One response unit coded
for ‘low’ responses and the other for ‘high’ responses.
Arrows indicate full connectivity from one pool of units
to another, with the exception that units were not connected
to themselves. Outgoing connections from excitatory units
were constrained to be positive and were initialized to a mean
value of 0.15. Outgoing connections from inhibitory units
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were constrained to be negative and were initialized to a mean
value of -0.4. All of the units received a bias connection with
a mean value of -2.19. Weights were sampled from a uni-
form distribution centered on the mean and with a range of
1.0, with the condition that weights below zero for excitatory
units and above zero for inhibitory units were clipped at zero.
Furthermore, so that the network would not need to learn po-
sitional invariance (i.e., that the same amount of excitation
should arrive at the hidden layer regardless of where in the
array the asterisk was presented) the weights from the units
in each visual sub-group were constrained to have the same
values. Finally, to reduce the difference in terms of total acti-
vation across the different pools, the output from each visual
sub-group was normalized to range between 0 and 1.

All of the hidden and response units integrated their inputs
over time (dt = 0.2). A unit’s output, o, was a sigmoid-linear
function of its net input, i, and of normally-distributed output
variability (error), €, per the following equation:

ofi) = { T & 10
0.25i+¢, ifi>0

This equation approximates a threshold linear function as
a continuous transition from a relatively low and stable ac-
tivation state regardless of the specific amount of input, to
a state wherein the activation of the unit varies linearly as
a function of the input (the 0.25 value was selected because
it is the derivative of the sigmoid for i = 0; the equation is
therefore continuous and differentiable despite being defined
in two parts). The error reflects the variability inherent to
neural processing and had a standard deviation of 0.025 for
all but the visual units. For those units, error was also in-
tended to capture the uncertainty in an individual’s estimate
of the number of presented asterisks, and was set to 0.1.

Representations. The input patterns for the network were
generated in the same manner as in the behavioral experi-
ment. The target outputs for the response units were set such
that a ‘low’ number of asterisks had a target of 1.0 for the
‘low’ unit and 0.0 for the ‘high’ unit; the complementary pat-
tern was used for presentations of ‘high’ stimuli. Two sets
of 1,200 patterns were created: pre-training patterns and task
simulation patterns. The number of pre-training patterns was
determined in pilot simulations that found that after approx-
imately 1,200 trials, the model was about as accurate as the
human participants at the beginning of the practice trials.

Pre-training and task simulation. The processing of pre-
training and task-simulation trials was identical. On each
trial, the net input and output of the hidden and response units
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were set to -2.19 and 0.1 respectively. The network was then
presented with the input pattern and trained for 100 unit up-
dates. Error was calculated for the last 95 unit updates. The
error was scaled by a factor of 3.0 for the units that were sup-
posed to be off to encourage the simulation to make slower
but mostly-accurate responses. A unit’s target activation was
adjusted such that it was considered to be correct once it was
either below 0.1 or above 0.9 for units that were supposed
to be off and on, respectively. Error was calculated using a
two-piece error function: cross-entropy error was used for
activation values below 0.5 and sum-squared error was used
for activation values above 0.5 (Hinton, 1989). Weights were
adjusted after each trial using a steepest gradient descent al-
gorithm and a learning rate of 0.01. Units were considered to
have made a response when a response unit’s activation ex-
ceeded 0.5. The network’s response latency was how many
unit updates had occurred prior to responding.

Results

Overall performance for the same-same condition. The
model showed the same qualitative effects (and reasonable
quantitative similarity) for accuracy and latency as a func-
tion of distance from the response threshold and the hazard
functions (not shown), the latency distribution for correct re-
sponses (Figure 1), and the latency-accuracy functions up to
approximately 10 asterisks, beyond which the both empirical
and simulation data are not very reliable (Figure 2).

Sequential effects for the same—same condition. The
model showed similar increases in accuracy (not shown) and
decreases in latency (Figure 3) as a function of practice, in-
cluding differential latency decreases for the slowest stimuli
that were closest to the response threshold.

Mixed-effect regression analyses of the effects of the char-
acteristics of the previous trial did show some weak patterns
of disagreement with the behavioral data, however. For the
dependent measure of accuracy, prior accurate responses and
repetitions of the previous stimulus decreased the accuracy
on the subsequent response, whereas repetitions of the re-
sponse increased accuracy. For the dependent measure of
latency, prior accurate responses non-significantly increased
accuracy, repetitions of the previous stimulus type signifi-
cantly decreased latency, and repetitions of the response non-
significantly increased latency.

Adaptive effects following threshold changes. Figure 4
shows that the simulation recapitulated the main effects in the
behavioral experiment following a threshold change: gradual
increases in the latencies for stimuli that were suddenly closer
to the new threshold, and gradual decreases in the latencies of
stimuli that were further from the new threshold.

Activation trajectories. While running the simulations, an
additional emergent property of this architecture was ob-
served: despite employing an activation function for which
there is no explicit upper bound, the units tended to settle
to stable asymptotic activation levels (Figure 6). This was
true both if the input corresponded to a number of asterisks
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Figure 6: Activation trajectories for the ‘low’ (top line) and ‘high’
(bottom line) response units for a ‘low’ stimulus (32 asterisks).

that was near or far from the response threshold, although
the asymptotic level of activation did differ across these two
cases. This property is of interest because the leaky accumu-
lator model required an explicit leak current to avoid runaway
activation if a stimulus was presented for an extended period.

Discussion

In contrast to the claims of Ratcliff et al. (1999) the connec-
tionist model succeeded in capturing a substantial portion of
the effects observed behaviorally. The main disagreement,
in terms of model-behavior mismatch, was in terms of the
specific sequential effects of previous trial accuracy, stimulus
repetition, and response repetition. Two causes of these dis-
crepancies are currently being investigated: First, the current
model may trade off speed and accuracy slightly differently to
the human participants, which may be addressed by adjusting
the scaling of the error for incorrectly activating a response
unit. Second, the current simulation only instantiated mem-
ory of prior experience in the form of weight adjustments,
whereas these effects may be more accurately captured in a
slightly more sophisticated model wherein residual activation
from processing the prior stimulus influences subsequent per-
formance (Plaut & Booth, 2000). Nevertheless, the model did
succeed in capturing the overall rates of sequential and trial-
by-trial adaptation—effects that are usually outside the scope
of models that are typically only evaluated by fitting aggre-
gate data (e.g., the diffusion model) and that are not used
to understand how and why model parameters (the weights
in the present model) are gradually derived by learning from
trial-by-trial experience.

The use of the more biologically-plausible framework also
had the effect of inheriting many of the properties of the leaky
accumulator model, or at least close approximations thereof,
that has been tailored to response selection (e.g., bottom-up
excitation, indirect competition between response units via
lateral inhibition). Thus, this model gains parsimony and in-
dependent support and validity from neurobiology, while also
being domain-general and suitable for studying other phe-
nomena such as the ERPs and ambiguous word comprehen-
sion (Armstrong, 2012; Laszlo & Plaut, 2012). Moreover, as
shown by the activation trajectories in Figure 6, this frame-
work shows initial promise at generating stable asymptotic
states that were not present in the leaky accumulator model
without the addition of an explicit leak parameter.

General Discussion

The simulation’s ability to capture most of the effects in the
new behavioral data has several important implications. First,
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it highlights the importance of careful task analysis and a con-
sideration of the mechanisms that drive performance in iden-
tifying an appropriate gold standard task. More generally, it
also suggests that a better method for assessing model per-
formance is through the use of a broad range of tasks that
generate multiple gold standards, to avoid discrediting cer-
tain frameworks on the basis of what may ultimately be es-
tablished as somewhat atypical effects (notwithstanding that
more complex models with appropriate mechanisms should
capture those effects). Furthermore, it highlights the value
of independently-motivated biological constraints on devel-
oping an improved set of domain-general computational prin-
ciples that can be readily extended to other phenomena (e.g.,
selecting an appropriate response when naming a nonword).
Finally, this work highlights the inherent trade-off between
developing tailored quantitatively-precise models versus de-
veloping domain-general models: the latter may (at least ini-
tially) produce less precise quantitative fits, but they can be
extended to a much broader set of phenomena and provide not
only an existence proof of model plausibility via data fitting,
but a principled explanation of how and why the model per-
forms the way it does. Thus, although much work remains in
refining the biologically-plausible framework and the model
of response selection, this approach promises to be of broad
value to cognitive science.
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