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Abstract

We describe an attempt to understand causal reasoning in
situations where a binary cause produces a change on a
continuous magnitude dimension. We consider established
theories of binary probabilistic causal inference — AP and
Power PC — and adapt them to continuous non-probabilistic
outcomes. While AP describes causal strength as the
difference of effect occurrence between the presence and
absence of the cause, Power PC normalizes this difference
with the effect base-rate to obtain a proportional measure of
causal power, relative to the maximum possible strength. Two
experiments compared the applicability of each approach by
creating scenarios where binary probabilistic scenarios were
directly mapped onto inference problems involving
continuous  magnitude  dimensions.  Results  from
counterfactual judgments tentatively indicate that people
reason about causal relations with continuous outcomes by
adopting a proportional approach when evaluation preventive
causal powers, and a difference approach in generative
scenarios.

Keywords: causal learning; continuous outcomes; reasoning;
counterfactual.

Background

The capacity to learn about and represent causal knowledge
is a fundamental aspect of cognition without which humans
lose the ability to not only make predictions and decisions,
but also to forecast, prepare and direct their behaviours
towards achieving goals and fulfilling desires. Current
research mostly focuses on causal relations involving binary
events. Outside the lab, however, people do not only
encounter binary events. In fact, we are more likely to be
dealing with continuous variables: How much faster could I
run if I lose 20 pounds of weight? How much weight would
I gain if I ate cheeseburger everyday? How much sugar do I
need to add to avoid over sweetening? These questions are
daily examples of people’s involvement with causal
relations entailing continuous variables.

Binary causal relations involve a state change of a binary
event (cause present/absent) to produce a change in another
binary event (effect present/absent), but such simplicity is
not the case for continuous variables. In a continuous causal
scenario, a magnitude change of a continuous variable is
produced by a magnitude change of another continuous
variable. For example, in a binary relation, a state change of
a cause could be flicking a switch from off to on which
changes the status of a bulb from off to on. On the other
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hand, a continuous relation involves a change of a dial
position to cause a change of luminosity from dimmer to
brighter. Despite many daily-life examples of continuous
variables, very few studies have been investigating causal
judgment involving continuous variables (White, 2001).
Here we are trying to find out how people acquire causal
knowledge involving continuous variables?

Learning Framework: Difference or Proportion

Most theories of binary causal learning are rooted in
Hume’s empiricism (1739/1888): Causal knowledge is not
explicitly available via sensory modalities but instead is
inferred using the input received via them. One of Hume’s
cues to causation is contingency — i.e. the frequency of an
effect and a cause co-occurring.

A longstanding model formalising contingency as an
indicator of causal belief is AP, which calculates the
difference of the probabilities of the effect in the presence
vs. the absence of the cause (Jenkins & Ward, 1969):

AP =P(elc)-P(el-c)

Consider these hypothetical scenarios involving the study
of skin rash as a side effect of a new group of medicines on
a group of forty patients. In scenario 1, none of them had a
rash before taking medicine A, but 20 of them had rash after
taking the medicine. In scenario 2, also none of them had
rash before taking the medicine, but only 10 of them
reported rash after taking medicine B. AP computes causal
strength by considering the difference in relative frequencies
of patients before and after taking the medicines, giving AP
values of 0.50 and 0.25 respectively; hence concluding that
medicine A has higher causal strength than medicine B to
cause skin rash.

Consider another scenario 3 in which 20 of 40 patients
already had skin rash even before taking medicine C, but the
number of patients suffering with rash increased to 30 after
taking the medicine. Applying AP in scenario 3 results in
medicine C having a causal strength index of 0.25, which is
similar to medicine B. However, studies have shown that
despite having the same AP values, people tend to conclude
that medicine C is more effective than medicine B in
causing the rash (Cheng, 1997; Buehner, Cheng, & Clifford,
2003). This discrepancy is captured by another influential
theory on causal learning: Power PC (Cheng, 1997).

Power PC argues that in addition to the difference causal
strength is also influenced by the base-rate, P(e|-c). Power



PC normalizes the difference with the base rate to obtain a

proportional measure of causal power.

_ AP -AP
1-P(E1-C) P(EI-C)

Power PC has also been used to parameterise Bayesian

models of causal learning (Griffiths & Tenenbaum, 2005)

and is generally recognized as a rational account of causal

strength.

Applying Power PC onto scenarios 2 and 3 results in
having causal strength indexes of 0.25 and 0.50 for
medicine B and C respectively. Unlike AP, this model
therefore captures people’s ability to provide normative
responses. The key difference between AP and Power PC is
that the former considers the absolute difference the cause
makes to the occurrence of the effect, while the latter
calculates the difference relative to the maximum causal
change possible, and thus provides a proportional index of
causal strength.

In the earlier scenarios, medicine B had the opportunity to
cause skin rash in all 40 patients, and did so in 10 of them;
in contrast, in the scenario involving medicine C, the
medicine only had the opportunity to cause skin rash in 20
patients because the other 20 already had rash even before
taking the medicine. From these 20 unaffected patients,
medicine C managed to affect 10 of them to have skin rash.
Therefore, Power PC suggests that for medicine B, the
causal strength index is 0.25 because 10 out of 40 patients
had rashes whereas for medicine C it is 0.50 because it
caused rashes in 10 out of 20 (i.e. the initially unaffected)
patients.

Moreover, the Power PC theory also tackles ceiling and
floor effects. In another scenario where all 40 of the patients
already had skin rash before taking medicine D, and all 40
still had skin rash affer taking the medicine, AP for this
scenario would be zero, suggesting that medicine D makes
no difference to the occurrence of rash. A rational judgment,
however, would be that the experiment is inconclusive with
respect to generative causal power because medicine D had
no opportunity to demonstrate its potential effectiveness,
and thus the causal status of D is unknown. Wu and Cheng
(1999) showed that reasoners indeed follow this logic, and
withhold judgment in cases where causal power is
unknowable. If Power PC is applied to this scenario, the
equation is undefined (due to division by 0), which is
consistent with both rational assessment and empirical
results.

We highlighted the contrast between the difference and
proportional perspectives of both theories because they will
be relevant when considering approaches to continuous
causation. Proportions can only be computed with respect to
a reference limit. In binary probabilistic causation, the
relevant limits are P(e) = 0 (the effect never happens) and
P(e) = 1 (the effect always happens). These probabilities
provide the upper limit of maximal causal effectiveness for
preventive and generative causation, respectively, in a
binary probabilistic framework: The maximum impact a
preventor could have would be to reduce the probability of

p,g'('n p[)l’(’ =

116

the effect to 0, while the maximum impact of a generator
would be to raise it to 1. When considering causal changes
to continuous outcome magnitudes, such natural limits are
not necessarily present. While the maximum impact a
preventor could have would still be to reduce the quantity of
the effect to 0 magnitude, the maximum impact a generator
could have might be unknown because it could keep on
increasing the magnitude unless there is a known upper
limit.

Study Scope

The central idea of this study was to investigate whether
people reason about causal relations involving non-
probabilistic continuous outcomes within a difference or
proportional framework. Because of the wealth of prior
works assessing the suitability of these approaches with
respect to binary probabilistic causation, we wanted to
create scenarios that afford a similar comparison between
the two accounts. To this end, and as a first step on our
quest, we only considered situations where a binary cause
can produce a (deterministic) magnitude change on a
continuous variable. This allowed us to set up situations that
are one-to-one mappings of binary probabilistic causation to
scenarios  involving  continuous  outcomes. More
specifically, in both cases the cause is still either present or
absent, but instead of it resulting in a change of probability
of the outcome, it now affects the magnitude of the
outcome.

In probabilistic causation the (binary) cause results in a
binary state-change across a group of entities; aggregating
these state-changes across a sample results in an assessment
of the change of probability of the effect brought about by
the presence of the cause, which is of course a continuous
variable bound between 0 and 1. In contrast, we considered
changes of a continuous outcome magnitude in a single
entity. This allowed us to preserve exactly the same
structure as in probabilistic causal inference tasks. For
example, a probability condition of P(elc) = 0.75, which
indicates that skin rash is present in 75 out of 100 patients
given that all of them took the medicine, was mapped onto a
quantity condition of Q(elc) = 7.5 cm?, indicating that 7.5
cm? of skin from an area of 10 cm? where the ointment was
applied broke out with a rash.

In order to maximize comparability to binary probabilistic
causation and preserve structural identity, our studies
employed an artificial upper limit on a continuous scenario
to serve as a reference for maximum causal effectiveness
(see Method). Imposing such a limit allowed us to derive
predictions not only for a difference based, but also for a
proportional approach. Moreover, it afforded the
opportunity for a more stringent test of the two approaches,
by using different counterfactual scenarios to elicit causal
judgments. More specifically, we asked one counterfactual
question where the upper limit of causal effectiveness
corresponded to the artificial limit in the learning phase,
while another made reference to a higher limit, not
previously experienced in the learning phase. If reasoners



approach causal inference problems involving continuous
outcome magnitudes with a difference-based approach,
changing the reference limit should have no impact on their
predictions for causally induced magnitude change: All that
would matter is the difference the cause made in the
learning phase, regardless of the upper limit of causal
effectiveness. In contrast, according to a proportional
approach, reasoners would relate that difference to the
maximum possible difference, and scale their predictions
accordingly in the presence of a different limit.

Imagine that a government wants to test the efficacy of a
20 mph speed limit on traffic fatalities in residential areas.
Community A serves as a pilot and fatalities are reduced
from 20 per year before the trial to 10 per year after the trial.
What would we predict if community B, which is larger, has
more roads, and suffers from 50 fatalities a year, were to
adopt the same program? According to a difference-based
approach, we would predict that the program results in the
same absolute reduction by 10, to result in 40 fatalities per
year. The proportional approach would consider the
maximum change possible in A (20) and would recognize
that 10 corresponds to half of that. Consequently, it would
predict a reduction from 50 to 25. We used a similar logic to
compare difference to proportion based approaches.

Experiments

Participants

Thirty different undergraduates from Cardiff University’s
School of Psychology participated in each preventive and
generative experiment in exchange for course credit.

Design and Procedure

Each participant worked on 15 conditions directly adapted
from the binary probabilistic design of Experiment 1 in
Buehner et. al. (2003). Each condition consisted of a pair of
quantities of an effect in the presence vs. absence of the
cause (see Table 1).

The generative experiment used a cover story that asked
participants to imagine they were pharmaceutical
consultants researching the side effects (skin rash) of
synthetic substances in cosmetic creams. Fifteen different
fictitious cosmetic creams corresponded to the 15 causal
conditions in Table 1.

The cover story also described that the size of skin rash
was measured before and after the application of the cream,
and that some patients may develop skin rash even in the
absence of any cosmetic products. Instructions stressed that
each cream was applied to cover 10 cm” of a patient’s back
and that the base rate (rash before cream application) was
also expressed with reference to this 10 cm?® area. This
served to impose an artificial limit of maximum causal
efficacy — the cream could only create rash so as to cover
the entire 10 cm” area.

A similar cover story was used for the preventive
experiment, this time introducing ointments that relieve skin
rash. Again, adopting the same 15 conditions, the story

117

described a proper motivation on how allergic reaction
would cause the skin rash to occur up to 10 cm” without any
preventive measure, and on how the ointment would reduce
the skin rash.

Table 1: Fifteen causal conditions for both experiments

Causal Power

Qele)  Qel=¢)  AQI ——5 - Prol
1.00 1.00 0.00 - 0.00
0.75 0.75 0.00 0.00 0.00
0.50 0.50 0.00 0.00 0.00
0.25 0.25 0.00 0.00 0.00
0.00 0.00 0.00 0.00 -
1.00 0.75 0.25 1.00 0.25
0.75 0.50 0.25 0.50 0.33
0.50 0.25 0.25 0.33 0.50
0.25 0.00 0.25 0.25 1.00
1.00 0.50 0.50 1.00 0.50
0.75 0.25 0.50 0.67 0.67
0.50 0.00 0.50 0.50 1.00
1.00 0.25 0.75 1.00 0.75
0.75 0.00 0.75 0.75 1.00
1.00 0.00 1.00 1.00 1.00

" Values of Q(ec) and Q(e|—c) are switched in preventive

After going through the cover story, participants were
presented with 15 visual stimuli to correspond to the 15
conditions in a random order (see Figure 1). They then had
to judge how strong the cause generates/prevents the effect
by answering two counterfactual questions — one at a time.
The two counterfactual questions were presented to
correspond to two limits — a limit that was consistent with
the cover story, and a higher limit.

BEFORE

The cream was applied on an area
of 10 cm2 on the patient's back.
2.5 cm?2 of this area was already

applied, was covered by rash.
covered by rash before the cream
was applied.

A A
E\ \

Figure 1: Sample Stimuli from the generative component

treated skin area :
) \ WITH rash

WITHOUT rash

After one hour, 7.5 cm2 of the
10 cm?2 area, where cream was
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Figure 2: Power PC and AP Predictions of Causal Ratings.

The counterfactual question for the generative experiment
was: Now imagine a new patient who does not have any skin
rash. If we applied this cream on the back of this patient to
cover an area of 10 cm’, how big would the area of skin
rash be on this patient? The exact same sentence was used
for the second question except that the area (i.e. the limit)
was changed to 50 cm’.

The counterfactual question for the preventive experiment
was: Now imagine a new allergy patient suffering from a
rash of 10 em’. If we apply the ointment, how large would
the area of rash be? Similarly, the second question was
exactly the same except for substituting the area with 50
cm’. Participants provided numerical responses using the
keyboard.

Predictions

Figure 2 shows causal strength prediction plots for the 15
conditions, derived from difference based (AP) and
proportional (Power PC) approaches (solid and dashed lines
respectively). Causal conditions that have identical AQ
values are linked together and plotted against the base-rate.

To allow comparisons both with previous literature, and
across the two limit scenarios, these predictions were plotted
with respect to the value of the limits tested. Since the
maximum area of skin rash is 10 cm” in the consistent-limit
scenario, the maximum power in the prediction has been set
to 10 as well. In contrast, in the scaled-up limit scenario, the
maximum power in the prediction has been set to be at 50 to
match up with the maximum rash area of 50 cm?.

Participants’ judgments were analogously converted: For
instance, an area judgment of 10 cm” in the consistent-limit
scenario was converted into a causal rating of 10 in the
generative, and a causal rating of 0 in the preventive
experiment.
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Figure 3: Medians of Counterfactual Responses.

More specifically, we subtracted the counterfactual
response given by the participant from the relevant upper
limit. This conversion was made on the judgments to reflect
that an increase of affected skin area would indicate an
increase of causal power when considering generative
causes, while larger predicted skin areas would indicate
weaker causal powers when considering preventive
relations.

The absolute difference approach predicts that causal
strength is unaffected by increments of base-rate, and that
causal ratings vary only as a function of AP. Furthermore, a
strict interpretation of difference approach would suggest
that the same difference is then applied to a different
context, involving a higher upper limit. Consequently,
prediction plots for the difference approach remain within
the range of 0 to 10, across both the consistent-limit and
scaled-up limit scenarios.

The proportional approach, on the other hand, predicts a
consistent influence of base-rate onto causal ratings in both
limit cases, which varies depending on whether generative
or preventive powers are assessed. Despite having the same
non-zero difference values (i.e. AP), in the generative
scenario causal ratings should increase as the base rate
increases. The reverse pattern is predicted in preventive
scenarios. These influences of base rate, however, are not
predicted for when the difference value is zero, and causal
ratings should remain at zero for both generative and
preventive cases. In addition, the proportional approach also
dictates that counterfactual causal ratings are scaled up in
line with a higher limit.

Results

Kolmogorov-Smirnov test showed that judgments were non-
normally distributed. Consequently, Figure 3 plots median



judgments, and statistical analysis was based on non-
parametric tests.

A qualitative inspection of the generative results in Figure
3 suggests that judgments correspond more to difference
than proportional approach predictions. In the consistent-
limit scenario, apart from the conditions involving AQ =
0.25, the judgments for other AQ values are relatively flat at
the predicted difference values, suggesting a minimal
influence of base-rate.

This minimal influence of base-rate is also evident on
causal judgments in the scaled-up limit scenario. In this
scenario, judgements from conditions involving identical
values of AQ are also relatively consistent at the difference
values, even though a small indication of a positive trend is
observed in the AQ = 0.25 case. Even though the minimal
influence of base-rate influence is in line with a difference
account, generative judgments violate its other significant
property: They vary from 0 up to 50, instead of 10. We will
discuss this in the next section.

Qualitatively inspecting the preventive results in Figure 3
suggests they fit well with proportional approach. In both
limit scenarios, the contingent cases indicate the influence
of the base-rates. Instead of remaining constant at the
difference values, the judgments decrease as the base-rate
increases. Moreover, for the non-contingent cases,
judgments also follow proportional predictions, in that they
stay at zero despite a change of the base-rate. Even though
there is an indication of a non-normative trend in the
consistent-limit scenario when AQ = 0.25, in general, the
preventive judgments seem to have followed proportional
predictions, both with a consistent and inconsistent limit.

Statistical  Analysis (Generative) = Nonparametric
Friedman’s ANOVA was used to determine the main effect
of the base-rate for every AQ value.

Analysis of ratings from the consistent-limit case found a
significant effect of base-rate when AQ = 0, Xi° (14) =
14.750, p < .05 and AQ = 0.25, X;” (14) = 10.545, p < .05.
The analysis does not show any significant effect of base-
rate when AQ = 0.50, Xi* (14) = 0.347, p > .05 and AQ =
0.75, X¢* (14) = 1.190, p > .05.

Unlike in the consistent-limit case, analysis of the scaled-
up limit scenario shows a significant effect of base-rate only
when AQ = 0.25, Xi” (14) = 7.978, p < .05. No significant
effects of base-rate are found when AQ = 0, X;° (14) =
6.681, p > .005; AQ = 0.50, Xi* (14) = 1.357, p > .005; and
AQ =0.75, Xi* (14) = 1.087, p > .005.

Surprisingly, the statistical test indicates an effect of the
base rate in the non-contingent case of consistent-limit
scenario, despite an observation of a flat line in Figure 3.
Inspection of the data distribution in these conditions
(Figure 4) reveals three noteworthy points: i) the modal
response is 0 in all cases, ii) a minority of participants give a
non-normative non-zero response, iii) this minority of
participants appears to exhibit an outcome density bias
(Buehner, Cheng, & Clifford, 2003). Because the Friedman
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Test ignores ties, the significant result in AQ = 0 condition
is thus driven by this minority of participants.

Statistical Analysis (Preventive) In the consistent-limit
scenario, no significant effect of base-rate was found when
AQ = 0, X¢* (14) = 4.500, p > .05. However, significant
effects of base-rate were obtained when AQ = 0.25, Xi* (14)
= 57.854, p < .05; AQ = 0.50, Xi* (14) = 15.892, p < .05;
and AQ = 0.75 as well, X;” (14) = 9.783, p < .05.

Similar trends were observed in the scaled-up limit
scenario. The analysis shows no significant effect of base-
rate when AQ = 0, X;° (14) = 1.222, p > .05. Again,
significant base-rate effects are found when AQ = 0.25, X;°
(14) = 27.931, p < .05; AQ = 0.50, Xi* (14) = 12.302, p <
.05; AQ =0.75, X;i* (14) = 3.846, p < .05.

As with the generative scenario, non-contingent
conditions uniformly elicited a median and modal response
of zero. While there was also a minority of participants who
deviated from this normative assessment, judgments from
these participants did not display any systematic patterns.
More specifically, unlike in the generative scenario, there
was no evidence of an outcome density bias, even in the
minority of non-normative judgments.

Q(elc) :0.75 Q(elc) :0.50 Q(e|c) :0.25 Q(e|c) :0.00

Q(e|-c) : 0.75 Q(e| c):0.50 Q(e|-c):0.25 @Q(e|-c):0.00

0 0128755 0 1?ﬁ5.678313 0754_5678910 012345678910
Judgments

Figure 4: Judgment Distributions of non-contingent
Conditions (AQ = 0) in the consistent-limit scenario

Discussion

Overall, our results seem to suggest that when people reason
about continuous outcomes, they do so within a proportional
framework, if the context is one of preventive causation, i.e.
the goal is to reduce the outcome magnitude. However, if
the context involves increasing the outcome magnitude
(generative causation), people seem to focus on the
difference the cause makes, without normalizing this
difference to an upper limit, even when the task clearly
implies such a limit. Interestingly, people then do not adhere
to the absolute difference a cause makes in a given context,
but instead scale up this difference, where appropriate, in
different scenarios.

For instance, in the condition when Q(elc) = 1.00 and
Q(e|=c) = 0.25, participants learned that a skin area of 2.5
cm’ was covered with of rash before the application of the
cream, and that applying the cream to an area of 10 cm’
resulted in that entire area breaking out with rash. They
considered the difference the cream made, and concluded
that its application increases the area of rash by 7.5 cm’
when applied to 10cm” of skin of a patient who does not yet
suffer from rash. Had they taken the proportional approach,
they would have concluded that this cream is maximally



effective in producing rash, and applying it to an area of
10cm’® of healthy skin would lead it all of it to break out
with rash. When they were asked to transfer their
knowledge to a different scenario, where the cream was
applied to 50cm® of healthy skin, they took the difference
(7.5 cm?) and scaled it up to this new area, concluding that
33 ¢cm’ (i.e. nearly 37.5cm®) of the 50 cm? will break out
with rash.

Inspection of Figure 3 shows that participants were
relatively consistent in scaling up their counterfactual
judgments across all the generative conditions: a factor of
approximately 5 emerges. This suggests that participants
indeed scaled up their judgments from one context to the
other, rather than merely considering the difference, as
suggested by a strict interpretation of a difference-based
approach. It appears then that people were aware of the
upper limit we imposed on our scenarios, and scaled their
judgments up accordingly in both preventive and generative
situations. However, the judgments they formed were based
on proportions only for preventive contexts, and on
differences in generative contexts.

One tempting conclusion might be that perhaps our
generative cover story might simply have failed to instill a
clear sense of an upper limit in the learning phase, despite
our best efforts to do so. After all, even when cream is
applied to only to 10 cm?, it is still feasible for a rash to
occur in a larger area than that. In contrast, the preventive
scenarios were not hampered this way — the natural upper
limit of preventive causation is always 0: No treatment
could reduce rash to less than an area of 0 cm”. However,
we have conducted studies with other generative contexts,
involving continuous outcome magnitudes that definitely do
have clear and unambiguous upper limits (such as relative
humidity in the atmosphere), and the results mirror those
reported here: People largely adopt a difference-based
approach when evaluating generative causal influence.

Conclusions

The work reported here represents the beginning of a quest
to chart the waters of continuous causal inference. We have
taken a cautious approach and created situations that are
structurally identical to conventional binary probabilistic
causal inference. We knew that doing so would limit the
ecological validity of our results. After all, most causes are
continuous variables themselves, influencing continuous
outcome magnitudes. However, our goal here was a proof of
concept: We wanted to measure people’s inferences about
causal change to continuous outcomes under ideal
conditions and with clear explicit upper limits (which are
not always present in the world). If under these conditions,
inferences followed patterns similar to those observed in
probabilistic causal inference, this might suggests that a
fruitful avenue to pursue might be to try and adapt theories
and models from binary probabilistic causal inference to
inference about continuous causation.
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Tentatively, we would conclude that people’s inference
patterns do correspond to what we know about probabilistic
causal inference. Deviations from normative models are
found frequently also in probabilistic causal inference (e.g.
Lober & Shanks, 2000), although sometimes such
deviations seem to reflect ambiguities in the task demands.
And indeed perhaps the non-normative results of our
generative experiment may be due to such ambiguities. We
are currently addressing this with follow-up studies. For
example, we have not considered the reliability of the
information on which participants base their judgments.
Bayesian models of causal inference (e.g. Griffiths &
Tenenbaum, 2005) consider both the strength of a causal
relation (as indexed by power PC), as well as the reliability
of the information (as indexed by the sample size, or the
effective sample size). For simplicity, and to ensure the one-
to-one mapping to probabilistic causation, our study
involved only single entities (i.e. one patient per treatment).

In future work, we hope to consider not only multiple
instances of continuous outcome change from the same
cause, but also to begin working with causes that are in
themselves continuous variables.
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