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Summary
The dream of cognitive neuroscience has always been a seam-
less integration of cognitive representations with neural ma-
chinery, but—despite decades of work—fundamental gaps
remain. Part of the problem is that many contemporary the-
ories of cognition are formulated in terms of representations
and computations that are quite different from those used in
computational neuroscience. Bridging this gap requires more
than simply a translation between theoretical concepts in the
two fields; what is needed is a more radical updating of neu-
roscience’s theoretical vocabulary.

What should this vocabulary look like? Some important
features of representations and computations used in contem-
porary cognitive theories are:

• Compositional, recursive and relational representations
(Fodor, 1975; Smolensky, 1990; Hummel & Holyoak,
2003; Stewart et al., 2011).

• Flexible use of different structural forms (e.g., taxonomic
vs. causal knowledge; Kemp & Tenenbaum, 2009).

• Multiple levels of abstraction (Tenenbaum et al., 2011).

• Knowledge partitioning / clustering (Lewandowsky &
Kirsner, 2000).

• Complex intuitive theories (e.g., naive physics, theory of
mind; Carey, 2009).

• Algorithms that operate on these representations (e.g., dy-
namic programming, Monte Carlo methods; Griffiths et al.,
2012).

These representations and computations are “structured” in
the sense that they incorporate rich domain knowledge and
strong constraints (Tenenbaum et al., 2011).

This symposium addresses the question: how do neural cir-
cuits acquire and compute with structured representations?
This question is examined from a number of angles. Ger-
shman introduces the basic issues and discusses attempts
to articulate a neurally plausible theory of structured cogni-
tion. Pouget describes recent work on implementing com-
plex probabilistic computations in neural circuits. Botvinick
shows how neural circuits can be used to discover hierarchical
task structure in the environment. Finally, Dayan discusses
work on wedding richly structured models of semantics with
representations of individual episodes. Each talk will be 20
minutes long, followed by a 20 minute panel discussion with
speakers moderated by Tenenbaum.

Gershman: from knowledge to neurons
How can neurons express the structured knowledge represen-
tations central to intelligence? This problem has been at-
tacked many times from various angles. I discuss the history
of these attempts and situate our current understanding of the
problem. I then outline a new approach based on the idea
of compressing structured knowledge using neurons in a way
that supports probabilistic inference. I illustrate this approach
using examples from motion perception and value-based de-
cision making.

Pouget: modeling the neural basis of complex
intractable inference

It is becoming increasingly clear that neural computation can
be formalized as a form of probabilistic inference. Several
hypotheses have emerged regarding the neural basis of these
inferences, including one based on a type of code known
as probabilistic population codes or PPCs (Ma et al., 2006).
PPCs have been used to model simple forms for multisensory
integration, attentional search, perceptual decision making or
causal inference, for which human subjects have been shown
to be nearly optimal. However, most inferences performed by
the brain are too complex be solved optimally in a reasonable
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amount of time and must therefore involve approximate so-
lutions. We have started to explore how neural circuits could
implement a particular form of approximation, called vari-
ational Bayes, with PPCs (Beck et al., 2012). Remarkably,
this approximation requires a nonlinearity known as divisive
normalization which has already been found in most neural
circuits. This approach can be applied to a wide range of
complex inferences, such as the ones involved in olfactory
processing, image processing in the primary visual cortex and
other related problems.

Botvinick: discovering hierarchical task
structure

Naturalistic action displays a hierarchical structure: Simple
actions cohere into subtask sequences or component skills,
which in turn combine to realize overall goals. Computa-
tional models from cognitive psychology, artificial intelli-
gence, and most recently neuroscience, have sought to char-
acterize the representations and mechanisms underlying hi-
erarchical action control (Botvinick, 2008). However, such
models tend to neglect a fundamental question: How do hi-
erarchical representations of action or task structure initially
arise? We approach this as a learning problem, asking how
useful component skills can be inferred from experience. Be-
havioral evidence suggests that such learning arises from a
structural analysis of encountered problems, one that max-
imizes representational efficiency and, as a direct result, de-
composes task into subtasks by ‘carving’ them at their natural
‘joints.’ A key question is how this analysis and optimization
process might be implemented neurally. Recent data suggests
an intriguing answer: Detection of hierarchical task structure
might arise as a natural consequence of predictive represen-
tation. I’ll present computational work fleshing out this pos-
sibility, along with behavioral and fMRI data that lend it con-
siderable initial support.

Dayan: unsupervised learning and the
representation of episodic structure

The representation of hierarchically structured knowledge in
systems using distributed patterns of activity is an abiding
concern for the connectionist solution of cognitively rich
problems. One particularly important unresolved issue con-
cerns episodic versus semantic structure—how rich genera-
tive models of the semantics of domains can be used in the
representation of particular, structured, entities. I will unpack
this problem and suggest some routes to solutions.
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