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Abstract

We investigate how cognitive capacity limits the number of
group relations that a person can maintain. The simulation
experiment’s results using ACT-R and its memory equations
replicated an effect similar to that of Dunbar’s (1998) number,
or the average total number of group ties capable of being
supported in memory. In our study, we also examined the
influences of two spatial factors (navigation strategies and
map configurations) on the growth of generative networks.
Our results suggest three interesting conclusions: (a) a fixed-
path navigation strategy increases the speed that networks can
form; (b) a higher grid ratio (connectivity of the agents’
world) provides more chances for agents to build relations,
and thus increases the network generation speed; but (c)
neither factor influenced the total relations that an agent could
maintain, which implies that Dunbar’s number primarily
depends on internal cognitive factors and less on external
factors.

Keywords: ACT-R, Cognitive modeling, Social-cognitive
network, network formation.

Introduction

What does it mean to know someone? In colloquial English,
this can imply anything from knowledge of someone’s true
character or secrets to a casual friendship. Nevertheless,
this kind of knowing seems to imply more than a declarative
association. | may know that Michelle Obama is Barrack
Obama’s wife, but I cannot say that I know either Michelle
or Barrack Obama. Knowing in this context seems to imply
knowledge not only of an individual’s identity but also
some knowledge of the significant relationships in their life,
knowledge derived from direct interactions with that
individual. | may get to know of Barrack Obama by reading
his memoir but | get to know him in a social sense by speak-
ing with him.

In this paper, we begin to explore what it means to know
someone in a network, and how that knowledge influences
our daily interactions. Drawing from Simon’s (1991) work
on bounded rationality in organizations and Dunbar’s (1998)
work examining the connections between cognition and
language, we believe this form of knowledge reliably
constrains organizations and moderates our behavior.
Consequently, we seek to identify more concretely the
mechanisms that underlie tie-formation, in other words the
foundations of friendship. We begin by modeling the rate of
tie formation in cognitively plausible generative networks.

Dunbar (1998) presents empirical evidence that suggests
that human social networks are cognitively constrained.
Chiefly, he argues that the neocortex size of humans limits
the size of a fully connected human social network to about
150 ties. He defines a fully-connected social network as one

where all members can not only attach an identity but also a
relation to all other members (Dunbar, 1998, pp. 66-68). He
further argues that this constraint underlies the small-world
effect observed by Milgram (1967) and others. He distin-
guishes this number of group ties from the number of
sympathy ties, the number of intimates a person encounters
in a month (n=11-12), or the number of face-to-name
matches a human can typically perform (n=1,500-2,000).
Dunbar infers these numbers and the relationship between
neocortex size and social network size from empirical
studies of human and non-human primates. He then
compared these findings with anthropological evidence,
finding his  predictions  basically  matched the
anthropological data.

McCarty, Killworth, Bernard, Johnsen, and Shelley (2001)
propose a far larger number (n=291) as an average network
size. In part, this discrepancy is rooted in a difference in
definitions. McCarty et al.’s (2001) definition of a social tie
requires mutual identification as opposed to Dunbar’s
stricter definition of mutual identification and placement in
the network. Also, McCarty et al. suggest other possible
sources of discrepancy such as responder biases (number
preferences and individual differences), size effects that
influence the respondents’ ability to accurately estimate the
number of acquaintances associated with either very small
or large subpopulations, and analysis errors arising from
missing data or numerical biases introduced when
combining studies. Nevertheless, neither of these potential
sources of error nor the difference in definition seem to
entirely account for the wide discrepancy in these estimates
because, while McCarty et al. allude to ecological effects,
neither they nor Dunbar systematically account for them.
Also, it remains an interesting question as to what extent the
difference in definitions contributes to the difference in esti-
mates.

Ecology (defined here as an actor’s physical and social
environment) influences cognition not only by presenting a
set of opportunities and resources but also by moderating
our perceptions of those opportunities (Brantingham &
Brantingham, 1993). We also know that humans are sensi-
tive to environment when recalling sets of relations, using
different approaches in different settings (Metz & Shultz,
2010). There has been far less work, however, examining to
what extent ecology reliably influences tie formation in
memory. For instance, one criticism of Dunbar’s estimate is
that it does not include the significance of environmental
complexity. In other words, would the number of social ties,
as Dunbar defines them, ever emerge in a distributed social
structure like Suburbia, or could it? Does neocortex size
impose a maximum, or is the relationship more complex?
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More generally, how does memory and environment
mediate and constrain social networks?

We begin to examine these questions by modeling the
effects of memory on the formation of generative networks
(networks arising from an initially empty set). We use
McCarty’s et al.’s (2001) definition of ties, that is,
identification is sufficient to constitute a tie in this experi-
ment. We believe that understanding the rate of network
formation is a necessary precondition for reconciling
Dunbar’s and McCarty et al.’s estimates because this rate, in
itself, constrains the opportunities available in the social set.
In other words, the rate of network formation influences the
emergence of in-and-out group dynamics which in turn
mediates the formation of all subsequent groups (Festinger,
Schachter, & Back, 1950).

Agent-based simulations have been used for social net-
work studies for many years now. Carley and Newell (1994)
were, to our knowledge, the first to use a cognitive
architecture (Plural Soar) to study organizations. More
recently, some studies have applied cognitive architectures
to model human decision making in collaborative tasks
(Lebiere, Gonzalez, Dutt, & Warwick, 2009; Morgan,
Morgan, & Ritter, 2010; Prietula & Carley, 2001). These
authors have, however, primarily focused on small group
collaborations and interactions with less than 20 agents.

In this paper, we use a cognitive architecture based socio-
cognitive simulation to examine the effect that memory
activation thresholds, navigation strategies, and map-
configurations have on the rate of network formation.
Examining different memory activation thresholds for links
between agents enables us to model not only the effects of
memory retention on network formation but also provides
us a means of representing differences in the modeled social
ties” quality, as Dunbar defines this term (Dunbar, 1998, pp.
76-77). In other words, higher quality relationships are
associated with greater cognitive investment and higher
memory strength. Comparing navigation strategies and map
configurations allows us to represent the social opportuni-
ties associated with activity spaces in the environment.

This study draws from previous work (Kaulakis et al.,
2012) and (Zhao, Kaulakis, Morgan, Hiam, & Ritter, 2012).
In Kaulakis et al.’s, we introduced an earlier version of an
ecological model and modeling environment (VIPER).
Kaulakis et al.’s presents a structural analysis, examining
how the agents’ declarative representation of their social ties
reliably differed from the experiment’s ground truth
network, or the network formed from all the agents’ room
co-occurrences. Kaulakis et al. found population size had
the greatest influence on network construction in memory,
but that the similarity results were tentative. Zhao et al.
(2012) elaborated on the model by adding navigation
strategies. Zhao et al.’s primary contribution, however,
showed that parameters in the simulation, world size, length
of interactions, and navigation strategies, led to changes in
the agents’ average activation values in their social
networks. While promising, these studies provided no

insight as to the rate of network formation and did not
examine Dunbar’s number in detail.

To reconcile Dunbar’s (1998) and McCarty’s et al.’s
(2001) estimates, we need to understand time not only as
defining all the possible social opportunities available to the
network but also how previous tie formation constrains
future choices. To do this, we first need some notion of a
simulated network’s formation baseline, when in other
words does the network reach equilibrium and its members
are primarily maintaining in memory as opposed to making
ties? We examine this question here.

Experiment Environment

To model multi-agent social behavior, we constructed a
simulation environment, VIPER. All of our experiments
were conducted on a 2GHz eight-core Linux 2.6.31 machine
with Ubuntu 11.04 with 8GB of RAM, with SBCL 1.0.52 as
our Lisp. We use ACT-R 6 in Anderson et al. (2004).

ACT-R

ACT-R (Anderson et al., 2004) is a cognitive architecture
and unified theory of cognition. It tries to provide a fully
functional system that produces all aspects of human behav-
ior at the cognitive level. We use ACT-R because its
memory mechanisms enable us to fully implement the
cognitive capacities and constraints we believe necessary to
model the emergence of networks.

VIPER

VIPER, a text-based multi-agent simulation, models physi-
cally embodied social networks(Kaulakis et al., 2012). It is
designed to support multi-agent simulations used to study
network science. It is lightweight in that it is text based, but
is extensible and records agent behaviors over time to
support studies on how networks form. VIPER represents
these constraints in several ways, the chief being a strong
separation between the agents and their environment.
VIPER is dynamic, agent-based, and designed to be a part
of a distributed model that resolves events in either real or
accelerated time.

To handle large amount of agents simulation, we utilized
file imaging techniques in Linux system to reduce the
memory cost of ACT-R. This reduces the cost of a single
ACT-R thread from 50 Mb to less than 20MB, which allows
us to run 1,000 agents on one machine.

Experiment

To explore the effects of environmental connectivity,
navigation strategy, and memory activation thresholds on
the pace of network formation, we ran a simulated study that
examined each of these three factors.

Map Configuration

Drawing from work in environmental psychology and crime
mapping, we know environmental complexity influences
network formation; we represent environmental complexity
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with three room configurations. We measure the relative
connectivity of our three map configurations by defining its
grid ratio, the ratio of the number of edges over the total
number of edges possible for a rectangular grid containing
the same number of rooms.

We used three map configurations, shown in Figure 1.
The first configuration (Figure 1l1a) is a two-hallway
configuration with grid ratio 0.6. This configuration should
lead to low connectivity due to the large distances between
the agents. The second configuration (Figure 1b) has a
central area with grid ratio 0.75. We predict that Figure 1b’s
central meeting point will lead to network connectivity that
is less than that found in Figure 1c but greater than that
found in Figure la. The last configuration (Figure 1c) is a
full 5x5 grid with grid ratio 1.0.

o H
0
G

Figure 1: Maps (hallway, central, full grid) used in the
simulation study.

Navigation Strategies

In a social network the agents’ movement patterns will
influence the social network’s topology by again influencing
any one’s agent’s interaction opportunities. For example, a
policeman walking beat will likely have a larger number of
acquaintances than a person who spends most of his or her
time at home because the policeman has more opportunities
to meet people. To replicate human navigation behavior, we
implemented two navigation strategies: random-walk and
fixed-path.

1) The Random-walk strategy implements a random walk.

2) The Fixed-path strategy follows a specific path to
navigation in a small area. This strategy simulates the
routine navigation behavior, such as going work or
going to school.

Experiment Parameters

Zhao et al. (2012) found that the map configurations and
navigation strategies influence network measures. In this
experiment, we will examine the two navigation strategies
for each of the map configurations in 4 runs. The total agent
size is currently an arbitrary choice, 40; forty provides a
populated but not crowded environment to study. The
parameters of the 4 runs are shown in Table 1.

Table 1:; Setting of experiment parameters

Runs Agent Map Navigation
size configuration strategy

Run 1 40 Hallway Fixed

Run 2 40 Hallway Random

Run 3 40 Central Random

Run 4 40 Grid Random

To examine the growth curve of the network, we captured
the network growth over 18 time slices between 10 and
500 s. Those sample running times were selected by running
a pilot experiment, from which we found that the curve
changes significantly from 80 to 150 s. We present more
sample times here, resulting in a more interesting and
precise curve.

Results and Analysis

We examine the effect of the three parameters (map
connectivity, navigation strategy, and memory threshold) in
order. Each run took approximately 500 seconds in real-time,
with the analysis logs being analyzed by hand using ORA
(Carley, Reminga, Storrick, & Columbus, 2011).

Memory Networks

With 4 runs and 18 sampling times, we created 2,880
egocentric memory networks (one for each agent, noting
who that agent thought they knew, as shown in Figure 2a),
and 72 merged memory networks across a run of 40 agents
(merging memories across agents in a run, as shown in
Figure 2b). Both networks in Figure 1 consist of agents
where no memory threshold was applied.

Figure 2: Example egocentric network (left) and merged
memory network (right) for agents without a memory
threshold applied.

Curves of the Growth of Merged Networks

In this section, we show the effects of the model’s three
parameters on the rate of tie formation. Based on these
figures, we will discuss how memory thresholds, map
configurations, and navigation strategies influence the
formation rates of simulated networks.

Figure 3 shows the growth curve of a network consisting
of agents using a fixed-path navigation strategy in the
Hallway map. The lower line represents the network
formation rate of a network where no memory threshold was
applied—if an agent met an agent, they formed a permanent
tie. We find that the lower curve increase rapidly and then
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flattens when it reaches 1,336 ties (the maximum is 40*39,
or 1,560, if the agents’ paths completely overlap, which they
do not). This flattening occurs once the network has
achieved equilibirum and is fully connected.

In Figure 3, the top solid line represents the network
formation rate of a network where an activation threshold of
0.0 was applied. According to the ACT-R theory, the
activation threshold represents a memory limitation,
meaning that memory chunks with an activition value lower
than the threshold cannot be retrieved. The top curve’s more
gradual progression illustrates the influence of memory on
the formation rate, multiple exposures are required to
remember another agent. While the difference in total
number of links (800 versus 1,336) illustrates memory’s
effect on the network’s topology. In addition, this network
never achieves a fully connected state, in the sense that the
agent’s declarative representation at no point includes the
total set of possible interactions. In other words, these
agents must continue to maintain their relationships because
they continue to forget. Nevertheless, this networks does
eventually acheives equilibirum at 150 seconds with a
network size of 800 links.

Comparing the two solid curves in the Figure 3, we
noticed another difference, the time at which the rate of
growth begins to increase. For the thresholded network, this
time happens later than for the un-thresholded network.
This is because the agents tie formation requires multiple
exposures. Initially, agents are busy simply encountering
other agents and building their friends list. As they, however,
begin to meet more “old friends™, the activation values of
friendships start to increase. The dash curve in Figure 3
shows the number of relations that could not be retrieved.
The curve grows fast at the beginning because most of new
ties are weak and un-retrievable. It decrease after
200seconds as the network acheives equilibirum.

The x-axis of the Figure 3 represents the simulation
running time in real seconds. In our experiment, we set the
traval interval between rooms at 16 seconds to make the
effect of memory decay more prominent. Nevertheless, this
interval is still not long enough to be realistic because
people might take minutes or hours to find another person.
As this work only focuses on the growth pattern of the
social network, we would argue that the measurement of
time is a secondary factor of our study because over 80
percent of the decay happens in the first 16 seconds
acorrding to the ACT-R decay equation, with little
additional decay occouring at greater time scales.
Consequently, we believe total running time of 500 seconds
and a short travel intervel of 16 seconds are acceptable for
simulating the growth pattern.

400

=== No threshold

—r— Activation threshold

1,400 -
o — A
1,200
@
-
£1,000
—
= 800 2 —adh
e 600
=
S bﬁse--~9—--o—---(> ------ Fmm————— ©
2
£
=
=

200

===-=relations not retrieved

0

0 200 400
Running Time (s)

Figure 3: The effect of memory threshold on network
formation over time for the fixed path navigation strategy in
the hallway map.

Figure 4 shows the growth curve of a network of agents
using the random navigation strategy in the Hallway map.
Comparing Figure 4 with Figure 3, the non-threshold curves
have the same growth pattern, but the threshold curves
appear to be different. Memory appears to have different
effects based on the setting in which the agents operate.
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Figure 4: The effect of memory threshold on network
formation over time for the random walk strategy in the
hallway map.

Figure 5 compares the growth curves of two networks
where a memory retrieval threshold of 0.0 was applied;
these networks differ with respect to the navigation strategy
used by their members. The fixed path-strategy (dash line)
forms ties more quickly than the random-path strategy. We
suspect that the fixed-path strategy achieves equilibrium
sooner because it is more localized, and thus provides more
chances for agents to meet their “old friends”. On the other
hand, both networks achieve equilibrium at about 800 links,
suggesting that the navigation strateies in this simulation do
not constrain the number of relations an agent can maintain
in memory.
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Figure 5: The effect of navigation strategy on network
formation over time in the hallway map with threshold.
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Figure 6 compares the network formation rates of net-
works occurring in each of the three map configurations
(full grid, central, and hallway); all these networks consist
of agents with a memory activation threshold of 0.0. We
find that the map configurations have a similar influence on
the networks’ growth curves as the navigation strategies.
Again, the map configurations influence the rate of forma-
tion but not the network’s size at equilibrium.
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Figure 6: The effect of map configuration on network
formation over time.

Comparing the three curves, we find the Hallway map
(grid ratio=60%) is associated with the longest delay in
network formation and the lowest rate of increase; the full
grid map (grid ratio=100%) has the shortest delay and the
fastest rate of link formation. These results show that delay
in the network’s growth rate is negatively correlated with
grid ratio, while the network’s growth rate during its growth
spurt is positively correlated.

Activation Normalization: Semantic Challenges

One of the main issues we face in the analysis and
interpretation of our results is the need to assign semantic
meanings to the activation values associated with our ACT-
R agents’ memory chunks. Because raw activation values
may grow or shrink indefinitely, we see normalization as a
process by which the data can be made more regular, and to
help scale between time scales used in our simulation and
those occurring in the real world.

In the introduction to this paper, we cited Dunbar’s (1998)
concerns about tie “quality”. In this work, we used raw
activation values in our measures, which is fine for our
purposes, but is insufficient for many other questions.
Activations are not portable or easily interpretable in social
terms. To make sensible translations between activation
levels and Dunbar’s notion of tie quality, we suggest that
the ties be normalized as we describe in this section. This
normalization recasts activations as statements about the
“probability of recall” within a particular timeframe. Using
activations in this way supports the measurement of
environmental parameters, and the prediction of
environmental distractions that are likely to prevent tie
consolidation by limiting the time available for tie
maintenance. This grounding provides metrics that are
empirically measurable and come closer to Dunbar’s
“quality” concept. Derived from the ACT-R Probability of
Recall Equations (Anderson et al., 2004), where the

normalized activation value is a function of three variables
internal to the agent, such that i is the current chunk, Tau is
the threshold for recall, and s is noise, then the normalized
value is a probability that a particular chunk will be recalled:
% (eq. 1)
1+e =
This method fulfills all of the requirements above and
provides a concrete interpretation of activation levels as
Probabilities of Recall. Additionally, it also ties the
threshold to the time of recall in seconds, like this:

T = Fe i (eq. 2)

These properties will make the analysis of normalized
activation values able to generate much stronger statements
about the settings in which the agents live.

Apli,7,8) =

Conclusion and Discussion

This study simulated an effect like Dunbar’s number on
networks of cognitive architecture-based agents. The first
analysis examined to what degree cognitive limitations
(represented by a memory activation threshold) influenced
the generative process of a network. The results suggest
that cognitive limitations influence both the rate of network
formation and the size of the network at equilibrium. These
findings roughly mirror what is found in empirical studies
(Brantingham & Brantingham, 1993).

We can view the progression of the curves in Figures 3-6
as corresponding to three stages in network formation,
though at abbreviated time scales. Between 0 and 100 sec-
onds, the size of the network does not grow significantly,
and the average number of relations stays constant at 60.
This represents the tendency of people to initially remain in
localized relations with a few people. During this period of
the simulation, the non-thresholded network grows very fast
(becoming fully connected at 100 seconds) because most the
agents wander around to meet new friends and initialize new
relationships. For the thresholded networks, there is greater
period of latency because the agents have not yet had the
time to consolidate their friendships, but rather are primarily
building their friends list. Between approximately 100 to
150 seconds, we see that thresholded networks begin to
rapidly increase in size as the agents become more familiar
with the activity space. Finally, between 150 to 500 s, the
thresholded networks stop growing because the agents have
shifted from primarily establishing to maintaining their
friends network. In the stable state, the number of total links
remains around 800, meaning that the average number of
relations per agent in these networks is about 20.

In the second analysis, we examined the influences of two
navigation strategies. The results suggest that navigation
strategies have little influence on the non-thresholded
network but for growth time, and it does change the growth
speed and pattern of the thresholded network. In Figure 5,
we see that the network using the fixed-path strategy grows
much faster. This is because the fixed-path strategy is a
more focused strategy that provides more chances for
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people to meet their “old friends”. In this case, people more
easily form small groups associated with their starting
location, such as people living on the same street or
attending the same school. We see that the fixed-path
strategy facilitates the rapid creation of smaller tighter
groups than the random-walk strategy.

The third analysis focused on examining the influences of
spatial configurations on generative networks. We defined
grid ratio as the ratio of the number of edges over the total
number of possible edges to quantify the connectivity of the
map configurations. We find that delay increment is nega-
tively correlated with grid ratio, while the formation rate
during the growth phase is positively correlated with the
grid ratio. This result validates our definition of grid ratio,
because it shows the grid ratio does have influence on net-
work formation; it also proves that lower grid ratio maps
with more gaps and obstacles decrease the network’s growth
rate. We found, however, that our map configurations did
not influence the final size of the network.

Summarizing our results, we see that navigation strategies
and room configurations only seem to significantly influ-
ence our networks’ delay increment and growth rate, while
the final size of our thresholded networks remains at 800
links. We suspect that one possible way to adjust the final
size of the network is by changing the cognitive parameters
in ACT-R, for instance adjusting memory decay speed or
base level learning activation. Moreover, our results also
imply, at least for our world, that navigation strategies and
environmental complexity do not significantly influence the
number of friends that a person can maintain in memory
(Dunbar’s number), as the average number of relations were
same for both networks. They do, however, suggest the
ecological factors significantly contribute to the degree of
localization, and perhaps in a more complex world the total
size and evolution of the network as defined by the number
of total environmental possibilities.

Future Work

Future work will build upon both our insights regarding the
effect of cognitive resources on network topology, as well
as rate of growth. First, we would like to extend our analysis
of the normalized thresholds to see if there are regularities
in their effects on network topology. Second, we will run
more agents, because our test systems were kept deliberately
small. Finally, we will extend our analysis on the effects of
cognition on network measures analogous to Dunbar's
Number, such as information and knowledge diffusion.
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