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Abstract 

We investigate how cognitive capacity limits the number of 
group relations that a person can maintain. The simulation 
experiment’s results using ACT-R and its memory equations 
replicated an effect similar to that of Dunbar’s (1998) number, 
or the average total number of group ties capable of being 
supported in memory. In our study, we also examined the 
influences of two spatial factors (navigation strategies and 
map configurations) on the growth of generative networks. 
Our results suggest three interesting conclusions: (a) a fixed-
path navigation strategy increases the speed that networks can 
form; (b) a higher grid ratio (connectivity of the agents’ 
world) provides more chances for agents to build relations, 
and thus increases the network generation speed; but (c) 
neither factor influenced the total relations that an agent could 
maintain, which implies that Dunbar’s number primarily 
depends on internal cognitive factors and less on external 
factors.   

Keywords: ACT-R, Cognitive modeling, Social-cognitive 
network, network formation. 

Introduction 

What does it mean to know someone?  In colloquial English, 

this can imply anything from knowledge of someone’s true 

character or secrets to a casual friendship.  Nevertheless, 

this kind of knowing seems to imply more than a declarative 

association.  I may know that Michelle Obama is Barrack 

Obama’s wife, but I cannot say that I know either Michelle 

or Barrack Obama.  Knowing in this context seems to imply 

knowledge not only of an individual’s identity but also 

some knowledge of the significant relationships in their life, 

knowledge derived from direct interactions with that 

individual.  I may get to know of Barrack Obama by reading 

his memoir but I get to know him in a social sense by speak-

ing with him.   

In this paper, we begin to explore what it means to know 

someone in a network, and how that knowledge influences 

our daily interactions.  Drawing from Simon’s (1991) work 

on bounded rationality in organizations and Dunbar’s (1998) 

work examining the connections between cognition and 

language, we believe this form of knowledge reliably 

constrains organizations and moderates our behavior.  

Consequently, we seek to identify more concretely the 

mechanisms that underlie tie-formation, in other words the 

foundations of friendship. We begin by modeling the rate of 

tie formation in cognitively plausible generative networks.   

Dunbar (1998) presents empirical evidence that suggests 

that human social networks are cognitively constrained.  

Chiefly, he argues that the neocortex size of humans limits 

the size of a fully connected human social network to about 

150 ties.  He defines a fully-connected social network as one 

where all members can not only attach an identity but also a 

relation to all other members (Dunbar, 1998, pp. 66-68).  He 

further argues that this constraint underlies the small-world 

effect observed by Milgram (1967) and others. He distin-

guishes this number of group ties from the number of 

sympathy ties, the number of intimates a person encounters 

in a month (n=11-12), or the number of face-to-name 

matches a human can typically perform (n=1,500-2,000).  

Dunbar infers these numbers and the relationship between 

neocortex size and social network size from empirical 

studies of human and non-human primates. He then 

compared these findings with anthropological evidence, 

finding his predictions basically matched the 

anthropological data.  

McCarty, Killworth, Bernard, Johnsen, and Shelley (2001) 

propose a far larger number (n=291) as an average network 

size.  In part, this discrepancy is rooted in a difference in 

definitions.  McCarty et al.’s (2001) definition of a social tie 

requires mutual identification as opposed to Dunbar’s 

stricter definition of mutual identification and placement in 

the network.  Also, McCarty et al. suggest other possible 

sources of discrepancy such as responder biases (number 

preferences and individual differences), size effects that 

influence the respondents’ ability to accurately estimate the 

number of acquaintances associated with either very small 

or large subpopulations, and analysis errors arising from 

missing data or numerical biases introduced when 

combining studies.  Nevertheless, neither of these potential 

sources of error nor the difference in definition seem to 

entirely account for the wide discrepancy in these estimates 

because, while McCarty et al. allude to ecological effects, 

neither they nor Dunbar systematically account for them. 

Also, it remains an interesting question as to what extent the 

difference in definitions contributes to the difference in esti-

mates.  

Ecology (defined here as an actor’s physical and social 

environment) influences cognition not only by presenting a 

set of opportunities and resources but also by moderating 

our perceptions of those opportunities (Brantingham & 

Brantingham, 1993).  We also know that humans are sensi-

tive to environment when recalling sets of relations, using 

different approaches in different settings (Metz & Shultz, 

2010).  There has been far less work, however, examining to 

what extent ecology reliably influences tie formation in 

memory. For instance, one criticism of Dunbar’s estimate is 

that it does not include the significance of environmental 

complexity.  In other words, would the number of social ties, 

as Dunbar defines them, ever emerge in a distributed social 

structure like Suburbia, or could it?  Does neocortex size 

impose a maximum, or is the relationship more complex?  
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More generally, how does memory and environment 

mediate and constrain social networks?   

We begin to examine these questions by modeling the 

effects of memory on the formation of generative networks 

(networks arising from an initially empty set). We use 

McCarty’s et al.’s (2001) definition of ties, that is, 

identification is sufficient to constitute a tie in this experi-

ment. We believe that understanding the rate of network 

formation is a necessary precondition for reconciling 

Dunbar’s and McCarty et al.’s estimates because this rate, in 

itself, constrains the opportunities available in the social set.  

In other words, the rate of network formation influences the 

emergence of in-and-out group dynamics which in turn 

mediates the formation of all subsequent groups (Festinger, 

Schachter, & Back, 1950).   

Agent-based simulations have been used for social net-

work studies for many years now. Carley and Newell (1994) 

were, to our knowledge, the first to  use a cognitive 

architecture (Plural Soar) to study organizations. More 

recently, some studies have applied cognitive architectures 

to model human decision making in collaborative tasks 

(Lebiere, Gonzalez, Dutt, & Warwick, 2009; Morgan, 

Morgan, & Ritter, 2010; Prietula & Carley, 2001). These 

authors have, however, primarily focused on small group 

collaborations and interactions with less than 20 agents.   

In this paper, we use a cognitive architecture based socio-

cognitive simulation to examine the effect that memory 

activation thresholds, navigation strategies, and map-

configurations have on the rate of network formation. 

Examining different memory activation thresholds for links 

between agents enables us to model not only the effects of 

memory retention on network formation but also provides 

us a means of representing differences in the modeled social 

ties’ quality, as Dunbar defines this term (Dunbar, 1998, pp. 

76-77).  In other words, higher quality relationships are 

associated with greater cognitive investment and higher 

memory strength. Comparing navigation strategies and map 

configurations allows us to represent the social opportuni-

ties associated with activity spaces in the environment. 

This study draws from previous work (Kaulakis et al., 

2012) and (Zhao, Kaulakis, Morgan, Hiam, & Ritter, 2012).  

In Kaulakis et al.’s, we introduced an earlier version of an 

ecological model and modeling environment (VIPER).  

Kaulakis et al.’s presents a structural analysis, examining 

how the agents’ declarative representation of their social ties 

reliably differed from the experiment’s ground truth 

network, or the network formed from all the agents’ room 

co-occurrences.  Kaulakis et al. found population size had 

the greatest influence on network construction in memory, 

but that the similarity results were tentative.  Zhao et al. 

(2012) elaborated on the model by adding navigation 

strategies.  Zhao et al.’s primary contribution, however, 

showed that parameters in the simulation, world size, length 

of interactions, and navigation strategies, led to changes in 

the agents’ average activation values in their social 

networks. While promising, these studies provided no 

insight as to the rate of network formation and did not 

examine Dunbar’s number in detail.   

To reconcile Dunbar’s (1998) and McCarty’s et al.’s 

(2001) estimates, we need to understand time not only as 

defining all the possible social opportunities available to the 

network but also how previous tie formation constrains 

future choices.  To do this, we first need some notion of a 

simulated network’s formation baseline, when in other 

words does the network reach equilibrium and its members 

are primarily maintaining in memory as opposed to making 

ties? We examine this question here.   

Experiment Environment  

To model multi-agent social behavior, we constructed a 

simulation environment, VIPER. All of our experiments 

were conducted on a 2GHz eight-core Linux 2.6.31 machine 

with Ubuntu 11.04 with 8GB of RAM, with SBCL 1.0.52 as 

our Lisp. We use ACT-R 6 in Anderson et al. (2004).   

ACT-R 

ACT-R (Anderson et al., 2004) is a cognitive architecture 

and unified theory of cognition.  It tries to provide a fully 

functional system that produces all aspects of human behav-

ior at the cognitive level. We use ACT-R because its 

memory mechanisms enable us to fully implement the 

cognitive capacities and constraints we believe necessary to 

model the emergence of networks. 

VIPER 

VIPER, a text-based multi-agent simulation, models physi-

cally embodied social networks(Kaulakis et al., 2012).  It is 

designed to support multi-agent simulations used to study 

network science.  It is lightweight in that it is text based, but 

is extensible and records agent behaviors over time to 

support studies on how networks form. VIPER represents 

these constraints in several ways, the chief being a strong 

separation between the agents and their environment. 

VIPER is dynamic, agent-based, and designed to be a part 

of a distributed model that resolves events in either real or 

accelerated time.   

To handle large amount of agents simulation, we utilized 

file imaging techniques in Linux system to reduce the 

memory cost of ACT-R. This reduces the cost of a single 

ACT-R thread from 50 Mb to less than 20MB, which allows 

us to run 1,000 agents on one machine.  

Experiment 

To explore the effects of environmental connectivity, 

navigation strategy, and memory activation thresholds on 

the pace of network formation, we ran a simulated study that 

examined each of these three factors.   

Map Configuration 

Drawing from work in environmental psychology and crime 

mapping, we know environmental complexity influences 

network formation; we represent environmental complexity 
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with three room configurations. We measure the relative 

connectivity of our three map configurations by defining its 

grid ratio, the ratio of the number of edges over the total 

number of edges possible for a rectangular grid containing 

the same number of rooms.   

We used three map configurations, shown in Figure 1.  

The first configuration (Figure 1a) is a two-hallway 

configuration with grid ratio 0.6. This configuration should 

lead to low connectivity due to the large distances between 

the agents. The second configuration (Figure 1b) has a 

central area with grid ratio 0.75. We predict that Figure 1b’s 

central meeting point will lead to network connectivity that 

is less than that found in Figure 1c but greater than that 

found in Figure 1a. The last configuration (Figure 1c) is a 

full 5x5 grid with grid ratio 1.0.  

 

 
Figure 1:  Maps (hallway, central, full grid) used in the 

simulation study. 

Navigation Strategies 

In a social network the agents’ movement patterns will 

influence the social network’s topology by again influencing 

any one’s agent’s interaction opportunities. For example, a 

policeman walking beat will likely have a larger number of 

acquaintances than a person who spends most of his or her 

time at home because the policeman has more opportunities 

to meet people. To replicate human navigation behavior, we 

implemented two navigation strategies: random-walk and 

fixed-path. 

1) The Random-walk strategy implements a random walk.  

2) The Fixed-path strategy follows a specific path to 

navigation in a small area. This strategy simulates the 

routine navigation behavior, such as going work or 

going to school. 

Experiment Parameters  

Zhao et al. (2012) found that the map configurations and 

navigation strategies influence network measures. In this 

experiment, we will examine the two navigation strategies 

for each of the map configurations in 4 runs. The total agent 

size is currently an arbitrary choice, 40; forty provides a 

populated but not crowded environment to study. The 

parameters of the 4 runs are shown in Table 1.  

 

 

 

 

Table 1: Setting of experiment parameters 

Runs Agent 

size 

Map 

configuration 

Navigation 

strategy 

Run 1 40 Hallway Fixed 

Run 2 40 Hallway Random 

Run 3 40 Central Random 

Run 4 40 Grid Random 

 

To examine the growth curve of the network, we captured 

the network growth over 18 time slices between 10 and 

500 s. Those sample running times were selected by running 

a pilot experiment, from which we found that the curve 

changes significantly from 80 to 150 s.  We present more 

sample times here, resulting in a more interesting and 

precise curve. 

Results and Analysis 

We examine the effect of the three parameters (map 

connectivity, navigation strategy, and memory threshold) in 

order. Each run took approximately 500 seconds in real-time, 

with the analysis logs being analyzed by hand using ORA 

(Carley, Reminga, Storrick, & Columbus, 2011).   

Memory Networks 

With 4 runs and 18 sampling times, we created 2,880 

egocentric memory networks (one for each agent, noting 

who that agent thought they knew, as shown in Figure 2a), 

and 72 merged memory networks across a run of 40 agents 

(merging memories across agents in a run, as shown in 

Figure 2b).  Both networks in Figure 1 consist of agents 

where no memory threshold was applied.  

 
Figure 2:  Example egocentric network (left) and merged 

memory network (right) for agents without a memory 

threshold applied. 

Curves of the Growth of Merged Networks  

In this section, we show the effects of the model’s three 

parameters on the rate of tie formation.  Based on these 

figures, we will discuss how memory thresholds, map 

configurations, and navigation strategies influence the 

formation rates of simulated networks. 

Figure 3 shows the growth curve of a network consisting 

of agents using a fixed-path navigation strategy in the 

Hallway map. The lower line represents the network 

formation rate of a network where no memory threshold was 

applied—if an agent met an agent, they formed a permanent 

tie. We find that the lower curve increase rapidly and then 
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flattens when it reaches 1,336 ties (the maximum is 40*39, 

or 1,560, if the agents’ paths completely overlap, which they 

do not). This flattening occurs once the network has 

achieved equilibirum and is fully connected.  

In Figure 3, the top solid line represents the network 

formation rate of a network where an activation threshold of 

0.0 was applied. According to the ACT-R theory, the 

activation threshold represents a memory limitation, 

meaning that memory chunks with an activition value lower 

than the threshold cannot be retrieved. The top curve’s more 

gradual progression illustrates the influence of memory on 

the formation rate, multiple exposures are required to 

remember another agent.  While the difference in total 

number of links (800 versus 1,336) illustrates memory’s 

effect on the network’s topology. In addition, this network 

never achieves a fully connected state, in the sense that the 

agent’s declarative representation at no point includes the 

total set of possible interactions.  In other words, these 

agents must continue to maintain their relationships because 

they continue to forget. Nevertheless, this networks does 

eventually acheives equilibirum at 150 seconds with a 

network size of 800 links.  

 Comparing the two solid curves in the Figure 3, we 

noticed another difference, the time at which the rate of 

growth begins to increase.  For the thresholded network, this 

time happens later than for the un-thresholded network.  

This is because the agents tie formation requires multiple 

exposures. Initially, agents are busy simply encountering 

other agents and building their friends list. As they, however, 

begin to meet more “old friends”, the activation values of 

friendships start to increase. The dash curve in Figure 3 

shows the number of relations that could not be retrieved. 

The curve grows fast at the beginning because most of new 

ties are weak and un-retrievable. It decrease after 

200seconds as the network acheives equilibirum.  

The x-axis of the Figure 3 represents the simulation 

running time in real seconds. In our experiment, we set the 

traval interval between rooms at 16 seconds to make the 

effect of memory decay more prominent. Nevertheless, this 

interval is still not long enough to be realistic because 

people might take minutes or hours to find another person. 

As this work only focuses on the growth pattern of the 

social network, we would argue that the measurement of 

time is a secondary factor of our study because over 80 

percent of the decay happens in the first 16 seconds 

acorrding to the ACT-R decay equation, with little 

additional decay occouring at greater time scales. 

Consequently, we believe total running time of 500 seconds 

and a short travel intervel of 16 seconds are acceptable for 

simulating the growth pattern.  

 
Figure 3:  The effect of memory threshold on network 

formation over time for the fixed path navigation strategy in 

the hallway map. 

Figure 4 shows the growth curve of a network of agents 

using the random navigation strategy in the Hallway map. 

Comparing Figure 4 with Figure 3, the non-threshold curves 

have the same growth pattern, but the threshold curves 

appear to be different.  Memory appears to have different 

effects based on the setting in which the agents operate.   

 
Figure 4:  The effect of memory threshold on network 

formation over time for the random walk strategy in the 

hallway map. 

Figure 5 compares the growth curves of two networks 

where a memory retrieval threshold of 0.0 was applied; 

these networks differ with respect to the navigation strategy 

used by their members. The fixed path-strategy (dash line) 

forms ties more quickly than the random-path strategy.  We 

suspect that the fixed-path strategy achieves equilibrium 

sooner because it is more localized, and thus provides more 

chances for agents to meet their “old friends”.  On the other 

hand, both networks achieve equilibrium at about 800 links, 

suggesting that the navigation strateies in this simulation do 

not constrain the number of relations an agent can maintain 

in memory.  
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Figure 5:  The effect of navigation strategy on network 

formation over time in the hallway map with threshold. 
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Figure 6 compares the network formation rates of net-

works occurring in each of the three map configurations 

(full grid, central, and hallway); all these networks consist 

of agents with a memory activation threshold of 0.0. We 

find that the map configurations have a similar influence on 

the networks’ growth curves as the navigation strategies. 

Again, the map configurations influence the rate of forma-

tion but not the network’s size at equilibrium. 
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Figure 6:  The effect of map configuration on network 

formation over time. 

Comparing the three curves, we find the Hallway map 

(grid ratio=60%) is associated with the longest delay in 

network formation and the lowest rate of increase; the full 

grid map (grid ratio=100%) has the shortest delay and the 

fastest rate of link formation. These results show that delay 

in the network’s growth rate is negatively correlated with 

grid ratio, while the network’s growth rate during its growth 

spurt is positively correlated.  

Activation Normalization:  Semantic Challenges   

One of the main issues we face in the analysis and 

interpretation of our results is the need to assign semantic 

meanings to the activation values associated with our ACT-

R agents’ memory chunks. Because raw activation values 

may grow or shrink indefinitely, we see normalization as a 

process by which the data can be made more regular, and to 

help scale between time scales used in our simulation and 

those occurring in the real world.   

In the introduction to this paper, we cited Dunbar’s (1998) 

concerns about tie “quality”. In this work, we used raw 

activation values in our measures, which is fine for our 

purposes, but is insufficient for many other questions. 

Activations are not portable or easily interpretable in social 

terms. To make sensible translations between activation 

levels and Dunbar’s notion of tie quality, we suggest that 

the ties be normalized as we describe in this section. This 

normalization recasts activations as statements about the 

“probability of recall” within a particular timeframe. Using 

activations in this way supports the measurement of 

environmental parameters, and the prediction of 

environmental distractions that are likely to prevent tie 

consolidation by limiting the time available for tie 

maintenance. This grounding provides metrics that are 

empirically measurable and come closer to Dunbar’s 

“quality” concept. Derived from the ACT-R Probability of 

Recall Equations (Anderson et al., 2004), where the 

normalized activation value is a function of three variables 

internal to the agent, such that i is the current chunk, Tau is 

the threshold for recall, and s is noise, then the normalized 

value is a probability that a particular chunk will be recalled: 
 

    (eq. 1) 
 

 

This method fulfills all of the requirements above and 

provides a concrete interpretation of activation levels as 

Probabilities of Recall. Additionally, it also ties the 

threshold to the time of recall in seconds, like this: 

 (eq. 2) 

 

These properties will make the analysis of normalized 

activation values able to generate much stronger statements 

about the settings in which the agents live. 

Conclusion and Discussion 

This study simulated an effect like Dunbar’s number on 

networks of cognitive architecture-based agents. The first 

analysis examined to what degree cognitive limitations 

(represented by a memory activation threshold) influenced 

the generative process of a network.  The results suggest 

that cognitive limitations influence both the rate of network 

formation and the size of the network at equilibrium. These 

findings roughly mirror what is found in empirical studies 

(Brantingham & Brantingham, 1993).   

We can view the progression of the curves in Figures 3-6 

as corresponding to three stages in network formation, 

though at abbreviated time scales. Between 0 and 100 sec-

onds, the size of the network does not grow significantly, 

and the average number of relations stays constant at 60. 

This represents the tendency of people to initially remain in 

localized relations with a few people. During this period of 

the simulation, the non-thresholded network grows very fast 

(becoming fully connected at 100 seconds) because most the 

agents wander around to meet new friends and initialize new 

relationships. For the thresholded networks, there is greater 

period of latency because the agents have not yet had the 

time to consolidate their friendships, but rather are primarily 

building their friends list.  Between approximately 100 to 

150 seconds, we see that thresholded networks begin to 

rapidly increase in size as the agents become more familiar 

with the activity space. Finally, between 150 to 500 s, the 

thresholded networks stop growing because the agents have 

shifted from primarily establishing to maintaining their 

friends network. In the stable state, the number of total links 

remains around 800, meaning that the average number of 

relations per agent in these networks is about 20. 

In the second analysis, we examined the influences of two 

navigation strategies. The results suggest that navigation 

strategies have little influence on the non-thresholded 

network but for growth time, and it does change the growth 

speed and pattern of the thresholded network. In Figure 5, 

we see that the network using the fixed-path strategy grows 

much faster. This is because the fixed-path strategy is a 

more focused strategy that provides more chances for 
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people to meet their “old friends”.  In this case, people more 

easily form small groups associated with their starting 

location, such as people living on the same street or 

attending the same school. We see that the fixed-path 

strategy facilitates the rapid creation of smaller tighter 

groups than the random-walk strategy.  

The third analysis focused on examining the influences of 

spatial configurations on generative networks. We defined 

grid ratio as the ratio of the number of edges over the total 

number of possible edges to quantify the connectivity of the 

map configurations. We find that delay increment is nega-

tively correlated with grid ratio, while the formation rate 

during the growth phase is positively correlated with the 

grid ratio. This result validates our definition of grid ratio, 

because it shows the grid ratio does have influence on net-

work formation; it also proves that lower grid ratio maps 

with more gaps and obstacles decrease the network’s growth 

rate. We found, however, that our map configurations did 

not influence the final size of the network.  

Summarizing our results, we see that navigation strategies 

and room configurations only seem to significantly influ-

ence our networks’ delay increment and growth rate, while 

the final size of our thresholded networks remains at 800 

links. We suspect that one possible way to adjust the final 

size of the network is by changing the cognitive parameters 

in ACT-R, for instance adjusting memory decay speed or 

base level learning activation.  Moreover, our results also 

imply, at least for our world, that navigation strategies and 

environmental complexity do not significantly influence the 

number of friends that a person can maintain in memory 

(Dunbar’s number), as the average number of relations were 

same for both networks.  They do, however, suggest the 

ecological factors significantly contribute to the degree of 

localization, and perhaps in a more complex world the total 

size and evolution of the network as defined by the number 

of total environmental possibilities.  

Future Work 

Future work will build upon both our insights regarding the 

effect of cognitive resources on network topology, as well 

as rate of growth. First, we would like to extend our analysis 

of the normalized thresholds to see if there are regularities 

in their effects on network topology. Second, we will run 

more agents, because our test systems were kept deliberately 

small. Finally, we will extend our analysis on the effects of 

cognition on network measures analogous to Dunbar's 

Number, such as information and knowledge diffusion. 
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