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Abstract 

The ability to decide between multiple fixation targets in 
complex visual environments is essential for our survival.  
Evolution has refined this process to be both rapid and cheap, 
allowing us to perform over 100,000 saccades a day.  
Previous models for visual decision making have focused    
on maximizing reward magnitude or expected value               
(EV = probability of reward × magnitude of reward).  
However, such methods fail to incorporate utility, or 
happiness derived from reward, optimizing strictly on 
nominal reward values.  We propose an alternative model for 
visual decision making, maximizing utility as opposed to 
value under the assumption of a decreasing marginal utility 
curve.  To test our model, we asked 10 UCSD graduate 
students to participate in an eyetracking experiment where 
they choose between different fixation targets presented on a 
brief display.  The reward for each target was generated from 
fixed, predetermined distributions with different variance that 
was initially unknown to the subjects.  The subjects were 
asked to maximize their reward for each test session within 
the experiment.  Comparing our results with expected value 
and reward optimizing hedge algorithms, we show that utility-
based models more accurately reflect human behavior in 
visual decision making tasks. 

Keywords: Visual decision making; risk aversion; utility 
theory; reward. 

Introduction 

Target selection is a complex optimization task that the 

human visual system must complete thousands of times per 

day.  Assuming a probabilistic, stationary distribution for 

reward, the problem is directly reducible to the multi-armed 

bandit problem (Lai & Robbins, 1985; Freund & Schapire, 

1997; Auer et al., 2003; Chaudhuri, Freund & Hsu, 2009).  

Despite the complexity of the problem, an efficient, low-

cost algorithm is necessary to permit rapid saccades to be 

made in the noisy, low-resolution perceptual environment.  

Previous attempts to model visual decision making involve 

a probabilistic, reward magnitude framework where the 

probability of fixation is weighted based on the expected 

value (EV), defined as the probability of reward multiplied 

by the magnitude of reward (Milstein & Dorris, 2007; 

Navalpakkam et al., 2010; Platt & Glimcher, 1999).  

Depending on the approach, the definition of the probability 

of reward can be taken either from the traditional economic 

context as the probability of obtaining a reward upon target 

fixation (Milstein & Dorris, 2007; Milstein & Dorris, 2011; 

Platt & Glimcher, 1999) or from the perspective of noisy 

sensors, modifying the probability of a target's location 

given the noise (Navalpakkam et al., 2010).  Alternative 

approaches that have achieved comparable accuracy to 

expected value strategies include a study on rhesus monkeys 

by Milstein and Dorris (2011), where they show reward 

magnitude alone may explain saccadic preparation and 

reaction time data. 

Despite the success of expected value models, there are 

many real life examples where behavior does not maximize 

expected value.  For example, for many types of large 

investment (e.g. automobile, home, healthcare), there is a set 

of insurance policies to reduce risk.  Insurance companies 

sustain themselves by making a small profit while reducing 

risk for consuming individuals.  If it were the case that 

every individual viewed reward maximization as 

maximizing their expected value, these institutions would 

no longer be profitable and would cease to exist.  However, 

there are many instances where individuals are willing to 

disproportionally sacrifice some of their assets to reduce the 

probability of an extremely undesirable outcome.  As a 

result, insurance is often viewed as mutually beneficial and 

is encouraged in many situations.  Bernoulli (1738/1954) 

provided the first examples of deviation from expected 

value behavior, stating that decisions should be based on an 

individual’s current wealth, with less wealthy individuals 

being more averse to risky decisions.  Brocas and Carrillo 

(2009) presented a simple illustration where two perfectly 

rational individuals may come to opposite conclusions in 

situations of uncertainty due to differences in utility 

preferences.  The goal of our experiment is explore the 

concept of utility maximization and risk aversion in the 

context of visual decision making, where decisions are made 

in quick succession, without much time for the conscious 

evaluation of value. 

We provide an alternative model for visual decision 

making that attempts to maximize utility, or happiness 

derived from reward, rather than expected value.  In the 

following sections, we will formally define our model, as 

well as provide a mathematical justification for why 

expected value fails to account for behavior with respect to 

most types of reward.  We also compare the predictions of 

our model with those made by the expected value model and 
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two well-known machine learning algorithms.  Our results    

show that a risk averse, utility maximization model           

performs significantly better than the other models at 

describing human eye movement behavior under all 

experimental conditions. 

Model Description 
 

Assume that there are   targets:   , where        . 

- Let      be the probability of encountering target    at 

location  . 
-  Let    be the value for fixating on target   . 

The expected value for fixating at location l can be  

calculated as follows: 

                                           

 

                                      

However, value alone is often a poor measurement for 

reward (Bernoulli, 1954; von Neumann & Morgenstern, 

1953).  This is due to the fact that people tend to have a 

decreasing marginal utility for most types of reward. 
  

 

 

Figure 1: Individuals tend to have a decreasing 

marginal utility for most types of reward due to 

priorities in reward allocation (see text).  Note that for 

decreasing marginal utility, the utility derived from 

doubling the value of reward is less than twice the 

utility of the original value:                
 

Intuitively, decreasing marginal utility arises from how 

consumption of reward is allocated.  The first units of a 

reward such as money tend to be spent towards essential 

necessities, while later units tend to be used on luxury 

goods.  Similar arguments could be made for other rewards 

such as food, shelter, and material goods.  Figure 1 depicts a 

standard decreasing marginal utility curve. 

One implication of holding a decreasing marginal utility 

curve is that the risk averse decision will frequently 

maximize utility.  For example, Figure 2 shows that under 

the decreasing marginal utility assumption, an individual 

will  always  prefer  an  action  that  generates  a  guaranteed  

 
 

Figure 2: A property of the decreasing marginal utility 

curve is that individuals should demonstrate risk averse 

behavior in their decision making.  Despite having 

identical expected values, a fair chance between    and 

   yields   , which is less than the utility provided by 

           , which yields    .  Note that the choice 

between    and    has greater variance than the single 

point,            . 

 

reward to one which provides a fair gamble between        

two outcomes that preserves expected value.  This result 

generalizes: individuals with a decreasing marginal utility 

for reward should always prefer the choice with lower 

variance, given options of equal expected value. 

Replacing value      with utility      , we obtain the 

following equation for expected utility: 

                                        

 

                                     

The goal of the subject is to find the location in the scene 

that contains the target which maximizes expected utility.  

Therefore, the objective function for maximizing utility is: 

                                       

 

                                  

To model      , we note that it is monotonically 

increasing, but has a decreasing slope leading to diminishing 

returns with increased reward.  For our model, we represent 

the curve using a natural logarithm because of its simplicity 

and because it shares the same properties as the utility 

curve.  It is important to note that no two individuals hold 

the same utility function for reward, and the natural 

logarithm reflects a hypothetical utility function of the 

average individual. 

The new objective function thus becomes: 

                                 

 

                              

where   is a constant value reflecting the magnitude of risk 

aversion.  In our experiment,    is a value that must be 

learned by the subject for each experimental phase.        
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Based on feedback, in each trial we approximate                       

as a weighted average across past observed rewards,        

                               .  Similarly,    is 

approximated by the weighted average of the observed 

rewards sequence (          ).  Since the targets in our 

experiment are visually dissimilar,      becomes close to 0 

or 1 depending on the target.  This allows us to approximate 

           and simplifies our calculation. 

Experimental Methods 

Subjects 

Ten naive subjects participated in the experiment after 

providing informed consent.  All subjects were right-handed 

graduate students from the University of California, San 

Diego Computer Science and Engineering department. 

Experimental Procedure 
 

 

 

Figure 3: The basic experimental setup.  At start of 

every trial, subjects were asked to hold a central 

fixation for 250 ms before being presented the target 

display.  Once the targets are presented, the subject 

must make a saccade to one of the targets within       

500 ms, when feedback is displayed.  If no decision is 

made within the 500 ms, the subject receives no reward 

for the trial and is notified that they must make their 

decision faster.  Subjects are permitted to spend as long 

as they wish on the feedback screen prior to starting the 

next trial to make adjustments to their strategy. 

 

We model our experiment using similar parameters to those 

used in Navalpakkam et al. (2010).  At the beginning of 

every trial, subjects were asked to indicate they were ready 

by fixating at a center fixation point and pressing the “enter” 

key on the keyboard.  Each trial begins with a central 

fixation ‘+’ presented for 250 milliseconds.  Subjects 

indicate their choice by saccading to one of the targets.  

Then, subjects were presented with an image containing two 

targets labeled ‘A’ and ‘B’ for 500 milliseconds.  Figure 3 

provides an illustrated description of each trial. 

Targets in the experiment appeared at 7 degrees 

eccentricity from the central fixation point, and were 

horizontally aligned.  The target stimuli were 1.8 degree in 

height and was each encompassed by a 3.6 × 3.6 degrees 

square border.  The location where each target appeared was 

randomly generated from trial to trial.  Subjects viewed the 

display on a 19-inch cathode ray tube (CRT) monitor at a 

distance of 30 inches from the screen.   

The experiment consists of an initial training phase and 

three test phases of 50 trials each.  In the training phase, the 

rewards for the two targets were drawn from discrete 

uniform distributions, U[0, 50] and U[50, 100].  Subjects 

were required to learn which target yielded the higher 

reward and fixate on that target for at least 75 percent of the 

training trials before being allowed to proceed to the test 

phase.  This was done to ensure the subject was accustomed 

to making quick and accurate saccades while wearing the 

eyetracking device.  Subsequently, each test phase consisted 

of two targets of equal mean, but different variance.  

  

 
 

Figure 4: The distribution of target reward for each test.  

Of the two targets, the lower variance target (4A) was 

kept constant for all three tests, while the distribution   

of the higher variance targets (4B), (4C), and (4D) 

changed for Tests 1, 2, and 3 respectively. 

 

The reward for each target was generated from the 

distributions described in Figure 4.  For each test, the higher 

variance target’s distribution was adjusted, while the lower 

variance distribution was kept constant across all of the 

tests.  Subjects did not know the identity or probability 

distribution of the target at the beginning of each trial or test 

phase in the experiment.  They were instructed to learn the 

distributions and maximize their reward for each test phase. 

We used an Eyelink 1000 eyetracker from SR Research to 

record the subjects’ eye movements.  At the beginning of 

each test, the eyetracker was recalibrated using a nine-point 

calibration across the edge and center of the display. 

Modeling Procedure 

Performance for each model was measured by the 

percentage of trials in which the model matches the human 
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fixation decision.  For each trial, the utility-based risk averse 

model picked the location that maximized the objective 

function described in Equation [4], while the expected    

value model maximized                .  We chose the 

constant   from Equation [4] by binary search across the   

[0, 10] interval, finding the value of   that best predicted the 

human subject data.  However, the results were not sensitive 

to the exact choice of  . 

Every model prediction was compared with the decision 

made by the subject.  Updates to both models (i.e. running 

averages to    and      ), were done based on the 

experimental feedback provided to the subjects for each 

individual trial, as if the model had made the same choice as 

the subject.  In addition to the greedy algorithms, where the 

model decision is always the one that maximized the 

objective function, we compared the performance of three 

policies that include exploration of less-valued alternatives: 

ε-greedy, decreasing ε, and softmax (Sutton & Barto, 1998).  

We tested epsilon and softmax temperature values of      

0.05, 0.10, and 0.20.  The exploration algorithms may be 

summarized subsequently as follows: 

 
ε-greedy: 

Initialize ε 
For every trial 

Generate random number r   [0, 1] 
If r > ε 
 Take action maximizing the objective function 
Else 
 Randomly generate action from uniform distribution 

 
Decreasing ε: 

Initialize ε, dec_rate = ε / (num_trials – 1) 
For every trial 

Generate random number r   [0, 1] 
If r > ε 
 Take action maximizing the objective function 
Else 
 Randomly generate action from uniform distribution 
Update ε = ε – dec_rate 

 
Softmax: 

Initialize τ 
For every trial 

Generate action i based on probability density: 

        

          
   

 

 where       is the running average of reward for choosing i. 

 
Aside from comparing prediction performance against 

expected value, we also compared our results against two 

well-known machine learning algorithms, Hedge (Freund 

& Schapire, 1997) and Normal-Hedge, (Chaudhuri, 

Freund & Hsu, 2009) from the multi-arm bandit problem 

literature.  Both algorithms are designed to maximize 

reward, given a single parameter value (  for Hedge     

and    for Normal-Hedge).  Before we continue, it is  

 

important to take note of one subtle difference in the 

objective function of the multi-armed bandit problem with 

our problem.  The objective function of the multi-armed 

bandit minimizes regret (defined as the difference in 

reward between the ideal and the chosen action) as 

opposed to maximizing accumulated reward.  To address 

this, we linearly transformed the reward obtained to range 

from [0, 1] and compute the loss of each action as the 

difference, 1 - reward.  In our Hedge implementation, we 

tested the entire range of temperature values [0, 1] in 

increments of 0.05. We find the best temperature setting 

to be       , and use it for our analysis.  For Normal-

Hedge, the algorithm is self-adapting around a variable 

constraint    (note this variable is unrelated to the variable 

  from Equation [4]).  We solve for    using line search as 

recommended by the authors.  A detailed description of 

the algorithm as well as the proof on performance bounds 

may be found for Hedge in Freund & Schapire (1997) and 

Normal-Hedge in Chaudhuri, Freund & Hsu (2009). 

In all our models, we excluded two subjects from our 

experiment as their data lay beyond two standard 

deviations from the mean number of saccades to the lower 

variance target.  Note that we did not purposely remove 

risk seekers as this is equivalent to removing data with 

respect to the higher variance target due to the fact that 

there are two targets.  Of these, one of the subjects was 

removed because he systematically fixated only at the 

target that appeared on the left side of the display, 

regardless of the identity of the target. 

To address potential location bias concerns in making 

saccades, we recruited only right-handed subjects for our 

study.  In addition, we tested our models with and without 

two location-based prior probabilities obtained from 

subject responses.  The priors were the probability of 

fixating at each potential target location, and the 

probability of returning, given a previous saccade to the 

same location on the previous trial.  In all of our models, 

there was no significant change in performance when we 

incorporated the priors under a Bayesian setting.  For this 

and all model comparisons used in this paper, we used a 

paired t-test to compare the performance between models. 

Results 

Behavioral Data 

The results of the human experiment are presented in 

Figure 5.  For each test phase, we maintained a record      

of the number of saccade decisions to each target.              

The reward distribution for higher variance target in           

Tests 1-3 shared the same mean, but differed in                     

variance as shown in Figure 4 (B-D) respectively, so                        

the utility for these choices will increase.  The lower   

variance target maintained the same distribution for all             

three tests.  In Test 3, the subjects showed significantly 

risk averse behavior (p = 0.0321), choosing the lower 

variance target 54.8 percent of the time.  As the difference 

in variance between the targets decreased, subjects  
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Figure 5: The results from the human experiment.  The 

gray line represents indifference between the two 

targets.  The reward distribution for the higher variance 

target in Tests 1-3 shared the same mean, but differed 

in variance as shown in Figure 4 (B-D) respectively.  

Of the three tests, subjects showed significant risk 

averse behavior in Test 3 (the test with greatest 

difference in variance between the two targets), where 

they chose the lower variance target 54.8% of the time. 
 

became increasingly indifferent between the two targets.  

Subjects in Test 2 chose the lower variance target 54.2 

percent of the time  (p = 0.0861), while subjects in Test 1 

chose the lower variance target 50.8 percent of the time  

(p = 0.621). 

Choosing a Value for   

Recall from Equation [4] in the model description where a 

constant,  , was included to allow for fine-tuning of the 

magnitude of risk-averse preferences.  One interesting, 

and perhaps surprising result is that most reasonable 

settings of   outperform the expected value model in 

predicting human behavior.  For this reason, we simply 

chose a local maximum using a binary search across 

positive values of  .  Exceptions to this include     

(when the strategy reduces to random) and extremely 

large values of   (when most rewards share approximately 

the same value). 

Comparison with Expected Value 

We simulated the expected value and utility-based risk 

averse strategies for 100 simulations (  = 2.48) using 

greedy, ε-greedy, decreasing ε, and softmax exploration 

functions (Sutton & Barto, 1998).  Our results show that 

all non-greedy algorithms perform significantly worse 

than their greedy counterparts (p < 0.001).  Simple 

exploration strategies yield poor performance because 

although they are capable of accurately capturing the 

probability of exploration, they fail at correctly    

predicting the trials on which they occur.  As a result, 

since the probability of performing a reward maximizing        

action for any given trial is greater than the probability of  

 

 
 

Figure 6: A comparison of the model fits between the 

greedy expected value and greedy utility-based risk 

averse (RA) strategies in predicting human data.  In all 

three test conditions, the utility-based risk averse 

strategy significantly outperformed the expected value 

(EV) strategy for T = 100 simulations (p < 0.001).  The 

gray dotted line represents chance performance, while 

the red dotted line represents fit obtained by always 

choosing the lower variance target (an omniscient 

model).  Given a limited history of reward, the subject 

may choose the higher variance target as a result of a 

greedy action.  Performance above the red dotted line 

suggests that the algorithm was fairly accurate its 

prediction of when the subject chose to take such 

greedy action as opposed to exploring the other option. 
 

exploration, the greedy version of the algorithm will 

significantly outperform their exploration counterpart. 

Figure 6 compares the utility-based risk averse strategy 

with the expected value strategy in predicting human 

behavior.  The results show that although both models 

perform significantly above chance, maximizing across 

utility significantly outperforms value maximization       

(p < 0.001) for all three test conditions.  The red dotted 

line provides a benchmark for how much performance 

may be obtained from a strategy defined by choosing only 

the lower variance target.  Note that this is an 

overprediction, since at the beginning of each test phase, 

the subject does not know which of the two targets holds 

lower variance (or even the value of their reward). 

Comparison with Hedge 

We compare the fit of the utility-based risk averse 

strategy with two well-known algorithms for solving the 

multi-armed bandit problem from machine learning.  We 

choose to implement hedge algorithms over an alternate 

strategy, Exp4 (Auer et al., 2003) due to its superior 

performance under conditions where the reward 

distribution is fixed (the reward probability distributions 

are fixed for our experiment as shown in Figure 4).  We 

test twenty values for the temperature value ( ) in Hedge 

and present the result for the optimal setting,          
For Normal-Hedge, we find the constraint,   , via line 

search as recommended by the authors.  Figure 7 shows a 

summary of our results.  In all three test conditions, the 
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utility-based risk averse strategy significantly outperforms 

hedge algorithms under their optimal settings (p < 0.001). 

 

 
 

Figure 7: The results comparing the performance 

between the utility-based risk averse strategy with 

Hedge (H) and Normal-Hedge (NH) algorithms on 

predicting human data.  In all three test conditions, the 

utility-based risk averse strategy significantly 

outperformed the Hedge and Normal-Hedge strategies 

for T = 100 simulations (p < 0.001).  The gray dotted 

line represents chance performance, while the red 

dotted line represents performance obtained from only 

choosing the lower variance target. 

Discussion and Future Work 

Our work shows that by constructing models from a 

utility maximization standpoint, we are able to make 

predictions regarding human behavior that would 

otherwise be impossible in situations involving risk.  

Previous models in saccadic prediction involved a     

direct integration of the probability and magnitude          

of reward, ignoring risk derived from variance in         

reward distributions.  In this paper, we present evidence 

suggesting the importance of such parameters when 

modeling visual decision making.  Our findings show that 

under conditions of uncertainty, the human visual       

system takes a risk averse approach, taking account of               

the variance of the reward distribution in addition to             

the mean. 

However, the current utility-based risk averse model 

does not address all questions that arise with the 

incorporation of risk.  In particular, the work does not 

address issues raised from prospect theory (Kahneman & 

Tversky, 1979; Tversky & Kahneman, 1992; Kusev et al., 

2009).  For example, in the context of the experiment, 

there is no loss associated with viewing any target, and 

thus the asymmetry between loss and gain perception 

could not be modeled. Likewise, there are many situations 

where risk seeking behavior is exhibited and is the utility 

optimizing choice.  While both conditions may arise in 

vision, prospect theory could not be modeled under the 

current experimental framework, and risk seeking 

behavior would require a change in the shape of the utility 

function.  However, despite these limitations, we believe 

that the current work presents a starting point for 

analyzing visual decision making under uncertainty. 
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