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Abstract

The ability to decide between multiple fixation targets in
complex visual environments is essential for our survival.
Evolution has refined this process to be both rapid and cheap,
allowing us to perform over 100,000 saccades a day.
Previous models for visual decision making have focused
on maximizing reward magnitude or expected value
(EV = probability of reward x magnitude of reward).
However, such methods fail to incorporate utility, or
happiness derived from reward, optimizing strictly on
nominal reward values. We propose an alternative model for
visual decision making, maximizing utility as opposed to
value under the assumption of a decreasing marginal utility
curve. To test our model, we asked 10 UCSD graduate
students to participate in an eyetracking experiment where
they choose between different fixation targets presented on a
brief display. The reward for each target was generated from
fixed, predetermined distributions with different variance that
was initially unknown to the subjects. The subjects were
asked to maximize their reward for each test session within
the experiment. Comparing our results with expected value
and reward optimizing hedge algorithms, we show that utility-
based models more accurately reflect human behavior in
visual decision making tasks.

Keywords: Visual decision making; risk aversion; utility
theory; reward.

Introduction

Target selection is a complex optimization task that the
human visual system must complete thousands of times per
day. Assuming a probabilistic, stationary distribution for
reward, the problem is directly reducible to the multi-armed
bandit problem (Lai & Robbins, 1985; Freund & Schapire,
1997; Auwuer et al., 2003; Chaudhuri, Freund & Hsu, 2009).
Despite the complexity of the problem, an efficient, low-
cost algorithm is necessary to permit rapid saccades to be
made in the noisy, low-resolution perceptual environment.
Previous attempts to model visual decision making involve
a probabilistic, reward magnitude framework where the
probability of fixation is weighted based on the expected
value (EV), defined as the probability of reward multiplied
by the magnitude of reward (Milstein & Dorris, 2007;
Navalpakkam et al., 2010; Platt & Glimcher, 1999).
Depending on the approach, the definition of the probability
of reward can be taken either from the traditional economic
context as the probability of obtaining a reward upon target

fixation (Milstein & Dorris, 2007; Milstein & Dorris, 2011,
Platt & Glimcher, 1999) or from the perspective of noisy
sensors, modifying the probability of a target's location
given the noise (Navalpakkam et al., 2010). Alternative
approaches that have achieved comparable accuracy to
expected value strategies include a study on rhesus monkeys
by Milstein and Dorris (2011), where they show reward
magnitude alone may explain saccadic preparation and
reaction time data.

Despite the success of expected value models, there are
many real life examples where behavior does not maximize
expected value. For example, for many types of large
investment (e.g. automobile, home, healthcare), there is a set
of insurance policies to reduce risk. Insurance companies
sustain themselves by making a small profit while reducing
risk for consuming individuals. If it were the case that
every individual viewed reward maximization as
maximizing their expected value, these institutions would
no longer be profitable and would cease to exist. However,
there are many instances where individuals are willing to
disproportionally sacrifice some of their assets to reduce the
probability of an extremely undesirable outcome. As a
result, insurance is often viewed as mutually beneficial and
is encouraged in many situations. Bernoulli (1738/1954)
provided the first examples of deviation from expected
value behavior, stating that decisions should be based on an
individual’s current wealth, with less wealthy individuals
being more averse to risky decisions. Brocas and Carrillo
(2009) presented a simple illustration where two perfectly
rational individuals may come to opposite conclusions in
situations of uncertainty due to differences in utility
preferences. The goal of our experiment is explore the
concept of utility maximization and risk aversion in the
context of visual decision making, where decisions are made
in quick succession, without much time for the conscious
evaluation of value.

We provide an alternative model for visual decision
making that attempts to maximize utility, or happiness
derived from reward, rather than expected value. In the
following sections, we will formally define our model, as
well as provide a mathematical justification for why
expected value fails to account for behavior with respect to
most types of reward. We also compare the predictions of
our model with those made by the expected value model and

2564



two well-known machine learning algorithms. Our results
show that a risk averse, utility maximization model
performs significantly better than the other models at
describing human eye movement behavior under all
experimental conditions.

Model Description
Assume that there are n targets: x;, where i = 1, ..., n.

- Let m;, be the probability of encountering target x; at
location .
- Let v; be the value for fixating on target x;.

The expected value for fixating at location | can be
calculated as follows:

EV() = Z i Vi (1]
i
However, value alone is often a poor measurement for
reward (Bernoulli, 1954; von Neumann & Morgenstern,
1953). This is due to the fact that people tend to have a
decreasing marginal utility for most types of reward.
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Figure 1: Individuals tend to have a decreasing
marginal utility for most types of reward due to
priorities in reward allocation (see text). Note that for
decreasing marginal utility, the utility derived from
doubling the value of reward is less than twice the
utility of the original value: u(2v;) < 2u(v;).

Intuitively, decreasing marginal utility arises from how
consumption of reward is allocated. The first units of a
reward such as money tend to be spent towards essential
necessities, while later units tend to be used on luxury
goods. Similar arguments could be made for other rewards
such as food, shelter, and material goods. Figure 1 depicts a
standard decreasing marginal utility curve.

One implication of holding a decreasing marginal utility
curve is that the risk averse decision will frequently
maximize utility. For example, Figure 2 shows that under
the decreasing marginal utility assumption, an individual
will always prefer an action that generates a guaranteed
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Figure 2: A property of the decreasing marginal utility
curve is that individuals should demonstrate risk averse
behavior in their decision making. Despite having
identical expected values, a fair chance between v, and
vy, yields u*, which is less than the utility provided by
0.5(v, + vp), which yields u**. Note that the choice
between v, and v, has greater variance than the single
point, 0.5(v, + v).

reward to one which provides a fair gamble between
two outcomes that preserves expected value. This result
generalizes: individuals with a decreasing marginal utility
for reward should always prefer the choice with lower
variance, given options of equal expected value.

Replacing value (v;) with utility u(v;), we obtain the
following equation for expected utility:

BUQD = ) myu(v). 2]
i
The goal of the subject is to find the location in the scene
that contains the target which maximizes expected utility.
Therefore, the objective function for maximizing utility is:

f = argmax, ) i u(v). [3]
i

To model u(v;), we note that it is monotonically
increasing, but has a decreasing slope leading to diminishing
returns with increased reward. For our model, we represent
the curve using a natural logarithm because of its simplicity
and because it shares the same properties as the utility
curve. It is important to note that no two individuals hold
the same utility function for reward, and the natural
logarithm reflects a hypothetical utility function of the
average individual.

The new objective function thus becomes:

f = argmax; Z i In(cv; + 1) [4]

i

where c is a constant value reflecting the magnitude of risk
aversion. In our experiment, v; is a value that must be
learned by the subject for each experimental phase.
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Based on feedback, in each trial we approximate u(v;)
as a weighted average across past observed rewards,
In(cry + 1),In(cry + 1), ..., In(cry + 1).  Similarly, v; is
approximated by the weighted average of the observed
rewards sequence (ry,7,,...,7;). Since the targets in our
experiment are visually dissimilar, m;; becomes close to 0
or 1 depending on the target. This allows us to approximate
m;; € {0,1} and simplifies our calculation.

Experimental Methods

Subijects

Ten naive subjects participated in the experiment after
providing informed consent. All subjects were right-handed
graduate students from the University of California, San
Diego Computer Science and Engineering department.

Experimental Procedure

Feedback

Reward for trial == +50

Cumulative test reward = +475

Target Display

500 ms
Fixation

250 ms

Figure 3: The basic experimental setup. At start of
every trial, subjects were asked to hold a central
fixation for 250 ms before being presented the target
display. Once the targets are presented, the subject
must make a saccade to one of the targets within
500 ms, when feedback is displayed. If no decision is
made within the 500 ms, the subject receives no reward
for the trial and is notified that they must make their
decision faster. Subjects are permitted to spend as long
as they wish on the feedback screen prior to starting the
next trial to make adjustments to their strategy.

We model our experiment using similar parameters to those
used in Navalpakkam et al. (2010). At the beginning of
every trial, subjects were asked to indicate they were ready
by fixating at a center fixation point and pressing the “enter”
key on the keyboard. Each trial begins with a central
fixation ‘+’ presented for 250 milliseconds.  Subjects
indicate their choice by saccading to one of the targets.
Then, subjects were presented with an image containing two
targets labeled ‘A’ and ‘B’ for 500 milliseconds. Figure 3
provides an illustrated description of each trial.

Targets in the experiment appeared at 7 degrees
eccentricity from the central fixation point, and were
horizontally aligned. The target stimuli were 1.8 degree in
height and was each encompassed by a 3.6 x 3.6 degrees
square border. The location where each target appeared was
randomly generated from trial to trial. Subjects viewed the
display on a 19-inch cathode ray tube (CRT) monitor at a
distance of 30 inches from the screen.

The experiment consists of an initial training phase and
three test phases of 50 trials each. In the training phase, the
rewards for the two targets were drawn from discrete
uniform distributions, U[0, 50] and U[50, 100]. Subjects
were required to learn which target yielded the higher
reward and fixate on that target for at least 75 percent of the
training trials before being allowed to proceed to the test
phase. This was done to ensure the subject was accustomed
to making quick and accurate saccades while wearing the
eyetracking device. Subsequently, each test phase consisted
of two targets of equal mean, but different variance.
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Figure 4: The distribution of target reward for each test.
Of the two targets, the lower variance target (4A) was
kept constant for all three tests, while the distribution
of the higher variance targets (4B), (4C), and (4D)
changed for Tests 1, 2, and 3 respectively.

The reward for each target was generated from the
distributions described in Figure 4. For each test, the higher
variance target’s distribution was adjusted, while the lower
variance distribution was kept constant across all of the
tests. Subjects did not know the identity or probability
distribution of the target at the beginning of each trial or test
phase in the experiment. They were instructed to learn the
distributions and maximize their reward for each test phase.

We used an Eyelink 1000 eyetracker from SR Research to
record the subjects’ eye movements. At the beginning of
each test, the eyetracker was recalibrated using a nine-point
calibration across the edge and center of the display.

Modeling Procedure

Performance for each model was measured by the
percentage of trials in which the model matches the human
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fixation decision. For each trial, the utility-based risk averse
model picked the location that maximized the objective
function described in Equation [4], while the expected
value model maximized argmax,; },;;; v;. We chose the
constant ¢ from Equation [4] by binary search across the
[0, 10] interval, finding the value of ¢ that best predicted the
human subject data. However, the results were not sensitive
to the exact choice of c.

Every model prediction was compared with the decision
made by the subject. Updates to both models (i.e. running
averages to v; and u(v;)), were done based on the
experimental feedback provided to the subjects for each
individual trial, as if the model had made the same choice as
the subject. In addition to the greedy algorithms, where the
model decision is always the one that maximized the
objective function, we compared the performance of three
policies that include exploration of less-valued alternatives:
g-greedy, decreasing ¢, and softmax (Sutton & Barto, 1998).
We tested epsilon and softmax temperature values of
0.05, 0.10, and 0.20. The exploration algorithms may be
summarized subsequently as follows:

e-greedy:
Initialize €
For every trial
Generate random number r € [0, 1]
Ifr>e
Take action maximizing the objective function
Else
Randomly generate action from uniform distribution

Decreasing €:

Initialize €, dec_rate = € / (num_trials — 1)
For every trial
Generate random number r € [0, 1]
Ifr>e
Take action maximizing the objective function
Else
Randomly generate action from uniform distribution
Update € = € — dec_rate

Softmax:

Initialize T
For every trial
Generate action i based on probability density:
e/t
Z}%z ,e@0)/T

where Q. (i) is the running average of reward for choosing i.

Aside from comparing prediction performance against
expected value, we also compared our results against two
well-known machine learning algorithms, Hedge (Freund
& Schapire, 1997) and Normal-Hedge, (Chaudhuri,
Freund & Hsu, 2009) from the multi-arm bandit problem
literature. Both algorithms are designed to maximize
reward, given a single parameter value (8 for Hedge
and ¢, for Normal-Hedge). Before we continue, it is

important to take note of one subtle difference in the
objective function of the multi-armed bandit problem with
our problem. The objective function of the multi-armed
bandit minimizes regret (defined as the difference in
reward between the ideal and the chosen action) as
opposed to maximizing accumulated reward. To address
this, we linearly transformed the reward obtained to range
from [0, 1] and compute the loss of each action as the
difference, 1 - reward. In our Hedge implementation, we
tested the entire range of temperature values [0, 1] in
increments of 0.05. We find the best temperature setting
to be B = 0.05, and use it for our analysis. For Normal-
Hedge, the algorithm is self-adapting around a variable
constraint ¢, (note this variable is unrelated to the variable
¢ from Equation [4]). We solve for ¢, using line search as
recommended by the authors. A detailed description of
the algorithm as well as the proof on performance bounds
may be found for Hedge in Freund & Schapire (1997) and
Normal-Hedge in Chaudhuri, Freund & Hsu (2009).

In all our models, we excluded two subjects from our
experiment as their data lay beyond two standard
deviations from the mean number of saccades to the lower
variance target. Note that we did not purposely remove
risk seekers as this is equivalent to removing data with
respect to the higher variance target due to the fact that
there are two targets. Of these, one of the subjects was
removed because he systematically fixated only at the
target that appeared on the left side of the display,
regardless of the identity of the target.

To address potential location bias concerns in making
saccades, we recruited only right-handed subjects for our
study. In addition, we tested our models with and without
two location-based prior probabilities obtained from
subject responses. The priors were the probability of
fixating at each potential target location, and the
probability of returning, given a previous saccade to the
same location on the previous trial. In all of our models,
there was no significant change in performance when we
incorporated the priors under a Bayesian setting. For this
and all model comparisons used in this paper, we used a
paired t-test to compare the performance between models.

Results

Behavioral Data

The results of the human experiment are presented in
Figure 5. For each test phase, we maintained a record
of the number of saccade decisions to each target.
The reward distribution for higher variance target in
Tests 1-3 shared the same mean, but differed in
variance as shown in Figure 4 (B-D) respectively, so
the utility for these choices will increase. The lower
variance target maintained the same distribution for all
three tests. In Test 3, the subjects showed significantly
risk averse behavior (p = 0.0321), choosing the lower
variance target 54.8 percent of the time. As the difference
in variance between the targets decreased, subjects
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Figure 5: The results from the human experiment. The
gray line represents indifference between the two
targets. The reward distribution for the higher variance
target in Tests 1-3 shared the same mean, but differed
in variance as shown in Figure 4 (B-D) respectively.
Of the three tests, subjects showed significant risk
averse behavior in Test 3 (the test with greatest
difference in variance between the two targets), where
they chose the lower variance target 54.8% of the time.

became increasingly indifferent between the two targets.
Subjects in Test 2 chose the lower variance target 54.2
percent of the time (p = 0.0861), while subjects in Test 1
chose the lower variance target 50.8 percent of the time
(p = 0.621).

Choosing a Value for ¢

Recall from Equation [4] in the model description where a
constant, ¢, was included to allow for fine-tuning of the
magnitude of risk-averse preferences. One interesting,
and perhaps surprising result is that most reasonable
settings of ¢ outperform the expected value model in
predicting human behavior. For this reason, we simply
chose a local maximum using a binary search across
positive values of c¢. Exceptions to this include ¢ =0
(when the strategy reduces to random) and extremely
large values of ¢ (when most rewards share approximately
the same value).

Comparison with Expected Value

We simulated the expected value and utility-based risk
averse strategies for 100 simulations (c = 2.48) using
greedy, e-greedy, decreasing ¢, and softmax exploration
functions (Sutton & Barto, 1998). Our results show that
all non-greedy algorithms perform significantly worse
than their greedy counterparts (p < 0.001). Simple
exploration strategies yield poor performance because
although they are capable of accurately capturing the
probability of exploration, they fail at correctly
predicting the trials on which they occur. As a result,
since the probability of performing a reward maximizing
action for any given trial is greater than the probability of
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Figure 6: A comparison of the model fits between the
greedy expected value and greedy utility-based risk
averse (RA) strategies in predicting human data. In all
three test conditions, the utility-based risk averse
strategy significantly outperformed the expected value
(EV) strategy for T = 100 simulations (p < 0.001). The
gray dotted line represents chance performance, while
the red dotted line represents fit obtained by always
choosing the lower variance target (an omniscient
model). Given a limited history of reward, the subject
may choose the higher variance target as a result of a
greedy action. Performance above the red dotted line
suggests that the algorithm was fairly accurate its
prediction of when the subject chose to take such
greedy action as opposed to exploring the other option.

exploration, the greedy version of the algorithm will
significantly outperform their exploration counterpart.

Figure 6 compares the utility-based risk averse strategy
with the expected value strategy in predicting human
behavior. The results show that although both models
perform significantly above chance, maximizing across
utility significantly outperforms value maximization
(p < 0.001) for all three test conditions. The red dotted
line provides a benchmark for how much performance
may be obtained from a strategy defined by choosing only
the lower variance target.  Note that this is an
overprediction, since at the beginning of each test phase,
the subject does not know which of the two targets holds
lower variance (or even the value of their reward).

Comparison with Hedge

We compare the fit of the utility-based risk averse
strategy with two well-known algorithms for solving the
multi-armed bandit problem from machine learning. We
choose to implement hedge algorithms over an alternate
strategy, Exp4 (Auer et al., 2003) due to its superior
performance under conditions where the reward
distribution is fixed (the reward probability distributions
are fixed for our experiment as shown in Figure 4). We
test twenty values for the temperature value (8) in Hedge
and present the result for the optimal setting, 8 = 0.05.
For Normal-Hedge, we find the constraint, c;, via line
search as recommended by the authors. Figure 7 shows a
summary of our results. In all three test conditions, the

2568



utility-based risk averse strategy significantly outperforms
hedge algorithms under their optimal settings (p < 0.001).

Precentage of Matching Predictions
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Figure 7: The results comparing the performance
between the utility-based risk averse strategy with
Hedge (H) and Normal-Hedge (NH) algorithms on
predicting human data. In all three test conditions, the
utility-based  risk averse strategy  significantly
outperformed the Hedge and Normal-Hedge strategies
for T = 100 simulations (p < 0.001). The gray dotted
line represents chance performance, while the red
dotted line represents performance obtained from only
choosing the lower variance target.

Discussion and Future Work

Our work shows that by constructing models from a
utility maximization standpoint, we are able to make
predictions regarding human behavior that would
otherwise be impossible in situations involving risk.
Previous models in saccadic prediction involved a
direct integration of the probability and magnitude
of reward, ignoring risk derived from variance in
reward distributions. In this paper, we present evidence
suggesting the importance of such parameters when
modeling visual decision making. Our findings show that
under conditions of uncertainty, the human visual
system takes a risk averse approach, taking account of
the variance of the reward distribution in addition to
the mean.

However, the current utility-based risk averse model
does not address all questions that arise with the
incorporation of risk. In particular, the work does not
address issues raised from prospect theory (Kahneman &
Tversky, 1979; Tversky & Kahneman, 1992; Kusev et al.,
2009). For example, in the context of the experiment,
there is no loss associated with viewing any target, and
thus the asymmetry between loss and gain perception
could not be modeled. Likewise, there are many situations
where risk seeking behavior is exhibited and is the utility
optimizing choice. While both conditions may arise in
vision, prospect theory could not be modeled under the
current experimental framework, and risk seeking
behavior would require a change in the shape of the utility

function. However, despite these limitations, we believe
that the current work presents a starting point for
analyzing visual decision making under uncertainty.
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