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Abstract 

Cognitive modeling is a complex endeavor so it is not 
surprising that the goals and intentions of modelers are often 
misunderstood, even by other modelers. To try to clarify this 
we have attempted to map out the various philosophical and 
theoretical commitments that one makes when creating a 
cognitive model or architecture. The goal of this is to avoid 
misunderstandings between the adherents of different 
modeling systems and between cognitive modelers and the 
rest of the scientific community. 
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Introduction 

In the 1990s there was movement to contrast mainstream 

cognitive modeling, which was labeled as cognitivist, with 

alternative approaches which were asserted to represent a 

fundamentally different paradigm. These alternatives 

included situated cognition, distributed cognition, 

dynamicism, embodied cognition and subsumption 

architectures. However, Vera and Simon (1993) argued that 

these theories represented progress and innovation but not 

an alternative approach. They did this by arguing that critics 

of the mainstream view had mistakenly assumed that the 

practices, strategies, and short cuts of mainstream modelers 

represented their actual philosophical and theoretical 

commitments. We argue that Vera & Simon’s argument was 

a legitimate response and more generally that philosophical 

and theoretical commitments cannot be determined solely 

by analyzing systems and practices associated with a 

method of modeling. Full understanding requires 

explicating the philosophical and theoretical commitments 

of the modeler. 

Today all of the alternatives to mainstream modeling 

discussed in Vera and Simon (1993) are accepted in the 

main stream. That is to say, they are broadly recognized as 

important contributions. At this time it would be fair to say 

that there is no widely accepted, "main stream" approach to 

modeling. However, despite efforts to understand different 

modeling systems as alternative approaches, each with their 

own strengths (e.g., McClelland, 2009) there are still 

numerous attempts to vilify modeling systems by critics 

who do not fully understand the goals and intentions of the 

system creators and users. In our view, the idea that a 

modeling system can be dismissed based on a principle or a 

philosophical argument is, in fact, a philosophical mistake.  

We argue that pigeon holing modeling systems according 

to broad philosophical and theoretical distinctions (e.g., 

cognitivist vs. anti-cognitivist, computational vs. non-

computational, representational vs. anti-representational, 

etc.) is misleading and counterproductive. In place of this, 

we advocate a multidimensional approach to characterize 

modeling systems along numerous dimensions, including 

the beliefs and motivations of the modeler. Thus in our 

system, two modelers can use the same computational code 

but actually have very little in common. Likewise two 

modelers could use very different codes (e.g., the ACT-R 

symbolic/subsymbolic code, J. R. Anderson & Lebiere, 

1998; and the NENGO spiking neuron code, Eliasmith & 

Anderson, 2003) and still be completely on the same page. 

To illustrate this approach we will use the controversial 

example of the "symbol" throughout the paper, although 

each dimension can be applied to any modeling construct. 

Due to limited space we have focused on dimensions that 

we believe are important. 

AI and Useful fictions 

The strong AI hypothesis says that if the functions of the 

human mind can be correctly simulated on a computer then 

there will be no difference between the human mind and the 

computer mind. It is important to note that this hypothesis is 

silent about the level of abstraction or embodiment required 

for success. It could involve high level algorithms realized 

as software, or it could involve a brain made of highly 

realistic mechanical neurons embodied in a lifelike 

humanoid robot and raised as a human infant. Therefore, if 

we apply strong AI to symbols it means that the symbols in 

a model are a valid way of representing what is taking place 

in the brain. Alternatively, symbols can be viewed as useful 

fictions. That is, the brain does not process symbols but 

there is something about the processing of symbols that is 

analogous to how a brain works and it is therefore useful or 

expedient to model it in this way. 

Metaphysics 

In mainstream western philosophy there are substances and 

processes that act on the substances. For example, logical 

formalisms can be used to act on symbolic representations 

about the state of the world. We will refer to this as 

substance philosophy. In process philosophy (see Bickhard, 

2010; Whitehead & Griffin, 1931) there are no modular 

substances, only interacting processes. What appear to be 

substances are temporary emergent properties of ongoing 

processes. According to Quantum Physics, process 

philosophy is true for physical objects. For example, the 

chair across the room is a temporary quantum process not an 

independent object. Likewise, when you close your eyes and 
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remember the chair, that memory is a temporary neural 

process not an object.  

Often psychological and linguistic constructs are 

discussed as if they were actual objects, which leads to 

confusion because it could mean they are meant as objects 

(i.e., substance philosophy) or that they are meant as a 

simplification standing in for a process (i.e., process 

philosophy). For example, the use of symbols in a model 

could signify that symbols exist, or it could signify that 

there is a process that acts as though symbols exist. More 

generally, a process philosophy view implies that 

psychological or linguistic constructs in a model should be 

regarded as abstract proxies standing in for interacting 

processes – not informationally encapsulated modules as 

suggested by Fodor (1983). The issue then becomes the 

relative stability of the processes underlying psychological 

constructs. Process philosophy is silent on this - neural 

processes giving rise to psychological constructs could be 

very stable, resulting in a relatively crisp, well defined 

constructs; or they could be noisier, resulting in fuzzy and 

possibly temporary constructs. Determining this, in our 

opinion, is not a philosophical issue. However, deciding if 

constructs, such as symbols, actually exist is a philosophical 

issue. 

Divide and conquer versus unification 

The simplicity principle (Chater & Vitányi, 2003) refers to 

the idea that cognitive phenomena are best modeled in the 

simplest way. This goal, related to Occam’s Razor, is not 

contentious but becomes less clear when the scope of the 

phenomena is considered. Newell, in his famous (1973) 

paper, argued that the phenomena to be explained is the 

whole brain. Newell (1990) distinguished between micro 

models (i.e., independent models of different phenomena) 

and architectural models (i.e., models constrained by the use 

of a cognitive architecture aimed at describing the whole 

brain). The goal with micro models is to make them as 

simple as possible but the goal for models built in an 

architecture is more complex. The model should be as 

simple as possible given the constraints of the architecture 

but the actual goal is to produce an architecture that is as 

simple as possible across numerous models of different 

phenomena (including neural phenomena, (J. R. Anderson, 

2007a)). 

Therefore, from an architectural point of view, having lots 

of incommensurate micro models is not useful, regardless of 

how simple they are individually. One way around this is to 

argue that the micro model represents a distinct 

cognitive/neural module that encapsulates and operates on a 

particular kind of information (Fodor, 1983). For example, 

by arguing that there is a distinct symbol based language 

module, one can ignore issues or problems concerning the 

viability of using symbols to model other functions of the 

brain. Therefore, the form of a particular model could reflect 

the goal of creating a unified architecture, of understanding 

a distinct module, or of creating the simplest model for a 

specific phenomenon. 

Reverse and forward Engineering 

Reverse engineering involves testing a system, the brain in 

this case, and working backwards to discover how it 

functions. Unfortunately, having a model that performs 

similarly to a human does not confirm that it is a valid 

model because other future tests may disconfirm it. 

However, modeling can also move forward through 

forward engineering. Forward engineering involves 

designing a system with the goal of achieving certain 

functions. Therefore, the goal is to achieve the same 

functionality that humans have without worrying about 

doing it in the same way as the brain does. If successful the 

result would be a system that is roughly isomorphic to how 

the brain behaves, but does not give insight into how the 

brain does it. For example, the use of symbols in a model 

could be due to the belief that symbols behave 

isomorphically to neural representations. 

The difference between backward and forward 

engineering is also important when evaluating how a model 

has been evaluated. Generally speaking, attempts to reverse 

engineer involve careful comparisons to experimental data 

while attempts to forward engineer involve showing that a 

model can produce certain functionality. It is important to 

note that a modeler may also iterate between reverse and 

forward engineering. 

Epistemic commitments  

Epistemic commitment refers to the mechanisms used to 

build the model. Specifically, we mean it to refer to a 

commitment to a particular way of understanding and 

modeling the brain. The debate between proponents of 

symbol systems and proponents of neural networks is an 

example of an epistemic debate. The idea motivating such 

debates is that it is necessary to first get the way of 

modeling right, otherwise the resulting models will be 

misleading and ultimately dead ends. This issue has fueled a 

lot of debate within cognitive science. Examples of different 

systems are: symbol systems, neural networks, holographic 

systems, dynamic systems, spiking neuron models, Bayesian 

networks, logical systems, grammatical systems etc. 

However, it is also possible to view these as tools rather 

than competing theories, in which case the choice of a 

particular way of modeling would reflect a pragmatic choice 

rather than a principled one. Another approach is to view 

different modeling systems as different lenses for viewing a 

phenomena in different ways (McClelland, 2009). 

Related to this, it is important to note that the word 

architecture is used in two ways. As noted above, it can 

refer to a system meant to be a unified model of the whole 

brain, or it can refer to mechanisms for building models that 

are able to model the whole brain. For example, ACT-R (J. 

R. Anderson, 1993) is an attempt at creating a unified 

architecture but it is meant to be a hybrid system and 

therefore does not embody an epistemic commitment. ACT-

R is often described as a production system but this is 

incorrect as ACT-R has numerous modules that use 

numerous mechanisms. The use of a production system 
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module to coordinate the other modules in ACT-R is a 

commitment to a theory about unification; it is not an 

epistemic commitment (i.e., a way of understanding the 

whole brain). In contrast, NENGO (Eliasmith & Anderson, 

2003) is a system for building spiking neuron models 

according to a specific theory about spiking neurons, so the 

use of NENGO can be seen as an epistemic commitment 

(i.e., that the whole brain can be modeled in this way). 

Ontological commitments 

Ontological commitment refers to the way a model is 

divided into functional parts and their connectivity. There 

are two reasons why ontological commitments are 

important. The first has to do with creating unified cognitive 

architectures. Simply put, a valid cognitive model of the 

whole brain requires that the functional parts of the model 

map onto the functional parts of the brain.  Although the 

results of experimental psychology are good for testing 

models, they may be misleading in terms of telling us what 

the parts are because their ontologies are defined primarily 

to make experimentation possible on different psychological 

phenomena. Unfortunately this does not necessary tell us 

what the actual parts are. For example, we remember facts 

and we remember episodes and these can be treated 

separately for experimental purposes, but we still do not 

know if we have separate semantic and declarative memory 

systems or if they are both products of a single long term 

memory system. 

Another very important issue related to ontologies is 

cognitive re-use (see M. L. Anderson, 2010). This refers to 

whether or not our cognitive ontology corresponds to a 

dedicated neural area. Much of the neural localization work 

taking place today explicitly or implicitly assumes that it 

does. However, the cognitive re-use hypothesis is that 

higher-level cognitive mechanisms and functions can be 

created by re-using and recombining lower level cognitive 

mechanisms and functions. If this is true then there are two 

important consequences: (1) specific brain areas are not 

dedicated to specific cognitive functions, and (2), the 

ontology that we should be looking for is at a lower level. 

Therefore, modelers may believe that the modules of their 

system correspond to actual cognitive functions in the brain, 

and they may further believe that these functions map to 

dedicated areas of the brain. But having a module in a 

model does not necessarily mean that they believe either of 

these things. For example, following the cognitive re-use 

hypothesis, a module could also represent a function that is 

created through the interaction of lower level functions 

under specific conditions. Symbols, or any other construct, 

can be thought of in either way. 

System levels 

Allan Newell (1980) proposed that the brain is constructed 

in the way that computers are engineered, according to 

system levels. The reason why natural systems would 

develop distinct hierarchical levels was developed by Simon 

(1962) but a discussion of this is beyond the scope of this 

paper. A system level occurs when the behavior of a 

complex lower level system can be understood in terms of 

less complex higher level constructs. For example, in the 

theory of thermodynamics, the complex interactions of 

atomic particles can be understood through higher level 

concepts such as heat and pressure. So a systems level is a 

real thing (in as much as heat and pressure are real things) 

but it is important to note that a system level can be weak or 

strong depending on the relative reduction in complexity 

produced by the emergent level. A weak system level is 

leaky, meaning that it is sometimes affected be system 

levels below it (e.g., Saunders, Kolen, & Pollack, 1994). 

The cognitive level is theorized to exist as a systems level 

above the neural level but there is considerable controversy 

over whether it exists and if it does, what form does it take? 

The symbol system hypothesis asserted that the cognitive 

level is based on processing symbols. Likewise, Chomsky 

(e.g., Chomsky, 1995) argued that for understanding 

language, symbols could be divorced from the underlying 

system that produces them. However, it is instructive look at 

exactly what was meant by, "symbol." For Chomsky a 

symbol is a word, but Newell defined a symbol in terms of 

distal access (Newell, 1990). Distal access refers to using 

information that is not local, i.e., information that is 

transported from another part of the brain. The form of the 

information or the way it is transferred is not important, 

therefore Newell's commitment to symbols is completely 

different from Chomsky’s commitment to symbols.   

Level of Analysis 

Level of analysis is different from system level. Level of 

analysis refers to analyzing a system at a particular level 

(e.g., neural, neural groups, networks, symbols). Using a 

level of analysis may or may not indicate a belief that the 

level is a systems level. So the use of symbols in a model 

may indicate a commitment to the symbol system 

hypothesis, but it could also occur because that level of 

analysis is useful, without any commitment to the existence 

of an actual systems level. Also, it is possible to test a model 

constructed at a higher systems level using a lower level of 

analysis if there is a theory about how the lower level is 

related to the higher level. For example, ACT-R models can 

be tested using a neural level of analysis with an fMRI scan 

(J. R. Anderson, 2007b). Choice of a level of analysis 

reflects beliefs about the most effective way of testing a 

model. 

Consciousness 

Explaining consciousness is a special case of the strong AI 

issue that deserves its own section. The question is, could a 

properly constructed cognitive architecture actually have 

conscious experiences. From a strong AI point of view the 

answer is yes, but many people reject this position because 

they find it hard to imagine. This seems to be due mainly to 

our subjective experience of qualia.  

Qualia refer to the various phenomenal feelings of our 

conscious experiences. From a modeling point of view 
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qualia creates a potential problem because thought, emotion, 

and different types of perception do not feel the same to us; 

they feel qualitatively different. However, from a cognitive 

science perspective, and a neuroscience perspective, all 

qualia arise from information processing that is ultimately 

realized through the firing of neurons. Since we do not 

understand what consciousness is or how it creates different 

qualia from the same underlying mechanism, most cognitive 

models simply ignore the issue or focus on the correlates of 

consciousness (e.g., awareness, wakefulness, report ability, 

etc.).  

However, the concept of qualia is important for modeling 

because it cuts across the board and separates the issue of 

how information is processed from how it is subjectively 

experienced. By setting aside the issue of qualia we are 

implicitly adopting the view that qualia is an epiphenomena; 

that is, we can model the brain without considering qualia 

because qualia has no functional significance (Dennett, 

1991). This is very convenient since it allows us to model 

all aspects of the brain as information processing and ignore 

or put off the problem of explaining why different brain 

functions feel qualitatively different from each other. 

Alternatives to understanding consciousness as an 

epiphenomena arising from information processing are 

scarce. Searle (1980) makes his arguments against strong AI 

by arguing that it leads to absurd consequences or 

conclusions (the Chinese room is his most famous 

example), but he does not offer an alternative explanation. 

Hameroff & Penrose (1996) argue that normal information 

processing is inadequate to model human cognition and 

consciousness. They propose that the brain is capable of 

quantum computing and therefore a valid simulation would 

require a quantum computer. Although this view is not 

popular it should be noted as quantum computing is so far 

the only scientific alternative to normal computing, 

although, as Penrose concedes, it is still a type of 

information processing. Chalmers (2010) has argued that if 

you reject that consciousness arises from information 

processing, the only option is to adopt some form of 

dualism.  

Philosophy of science 

Some people define science with Popper’s (1935) notion of 

falsifiability.  However, although it is in theory possible to 

falsify cognitive models, it is often the case that the failure 

of a model leads to changes in the model rather than a 

rejection of the model. With unified architectures the 

problem of falsification is trickier because in order to test 

the architecture, it must be used to build a model of a task, 

therefore, if it fails, it is unclear if the architecture has been 

falsified or just the model. Newell (1990) realized this and 

argued that Lakatos’ definition of science (1970) was more 

appropriate than Popper's for understanding architectures. 

Essentially, Lakatos defines science in terms of making 

progress over time, therefore if an architecture or model is 

improved through testing and refinement so that it explains 

more, it can be considered scientific (for a detailed 

discussion see Cooper, 2007). 

It is interesting to note that although some of the criticism 

directed at testing models comes from Experimental 

Psychology, Experimental Psychology also fails to follow 

Popper's model. Specifically, most experiments in 

Experimental Psychology test for significant differences 

predicted by a theory, therefore, falsifying the theory would 

mean showing no significant difference, which would mean 

accepting the null hypothesis, which is not allowed in the 

ANOVA or t-test statistics that are generally used. Like 

modeling, theories in Experimental Psychology are 

generally altered and not rejected. In both cases it is possible 

to construe theories that are falsifiable; it is just not very 

common. The criticism of modeling coming from 

Experimental Psychology has more to do with statistics. 

Specifically, Experimental Psychology has a clear definition 

for defining when two conditions are significantly different. 

In contrast, the goal for a model is to show that it is 

significantly similar to a set of data and there is not an 

agreed upon standard for this (e.g., Roberts & Pashler, 

2000), although there are statistical ways to tackle the issue 

(e.g., Stewart & West, 2010). 

Another issue arises from comparisons with Computer 

Science or Engineering where it is common to evaluate 

algorithms against each other according to some clear 

criterion or test set. According to this approach, cognitive 

models should be compared to see which one explains the 

data best. This can be done when the models are specifically 

designed to model the same problem (see Erev et al., 2010 

for an example). However, it is not commonly done because 

models are designed with different goals in mind, therefore 

a good test set for one might be an inappropriate or poor test 

set for another. It all depends on the goals and the 

theoretical framework of the modeler, which is why it is 

important to be clear about these. 

Conclusion 

We have outlined a number of dimensions on which 

modelers can take different views. Most of them are binary 

so it is possible to say agree, disagree, or agnostic. This list 

is not exhaustive, but being aware of where we stand on 

these issues can potentially avoid a lot of misunderstanding 

and provide a richer view of the whole modeling enterprise.  

We have tried to be neutral in terms of laying out this list 

but we acknowledge that some people may feel that some of 

the choices we have presented are invalid. For, example, 

one could argue that there is no such thing as system levels 

in the brain. Our point is that we should separate that 

argument from the evaluation of modeling systems that 

appear to embody systems levels.  

Another issue is the relationship between the different 

dimensions that we have laid out. People tend to associate 

sets of beliefs with the use of different modeling systems. 

Possibly some of the dimensions we described are 

correlated and logically go together. However, arguments 

about whether certain dimensions are conceptually related 
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or conceptually independent should be separated from 

subjective impressions concerning the co-occurrence of 

dimensions across the users of different modeling systems. 

In order to progress in understanding the various 

cognitive modeling spaces, the impacts of these and other 

dimensions need to be further deliberated. 
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