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Abstract

Cognitive modeling is a complex endeavor so it is not
surprising that the goals and intentions of modelers are often
misunderstood, even by other modelers. To try to clarify this
we have attempted to map out the various philosophical and
theoretical commitments that one makes when creating a
cognitive model or architecture. The goal of this is to avoid
misunderstandings between the adherents of different
modeling systems and between cognitive modelers and the
rest of the scientific community.
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Introduction

In the 1990s there was movement to contrast mainstream
cognitive modeling, which was labeled as cognitivist, with
alternative approaches which were asserted to represent a
fundamentally different paradigm. These alternatives
included situated cognition, distributed  cognition,
dynamicism, embodied cognition and subsumption
architectures. However, Vera and Simon (1993) argued that
these theories represented progress and innovation but not
an alternative approach. They did this by arguing that critics
of the mainstream view had mistakenly assumed that the
practices, strategies, and short cuts of mainstream modelers
represented their actual philosophical and theoretical
commitments. We argue that Vera & Simon’s argument was
a legitimate response and more generally that philosophical
and theoretical commitments cannot be determined solely
by analyzing systems and practices associated with a
method of modeling. Full understanding requires
explicating the philosophical and theoretical commitments
of the modeler.

Today all of the alternatives to mainstream modeling
discussed in Vera and Simon (1993) are accepted in the
main stream. That is to say, they are broadly recognized as
important contributions. At this time it would be fair to say
that there is no widely accepted, "main stream™ approach to
modeling. However, despite efforts to understand different
modeling systems as alternative approaches, each with their
own strengths (e.g., McClelland, 2009) there are still
numerous attempts to vilify modeling systems by critics
who do not fully understand the goals and intentions of the
system creators and users. In our view, the idea that a
modeling system can be dismissed based on a principle or a
philosophical argument is, in fact, a philosophical mistake.

We argue that pigeon holing modeling systems according
to broad philosophical and theoretical distinctions (e.g.,
cognitivist vs. anti-cognitivist, computational vs. non-
computational, representational vs. anti-representational,

etc.) is misleading and counterproductive. In place of this,
we advocate a multidimensional approach to characterize
modeling systems along numerous dimensions, including
the beliefs and motivations of the modeler. Thus in our
system, two modelers can use the same computational code
but actually have very little in common. Likewise two
modelers could use very different codes (e.g., the ACT-R
symbolic/subsymbolic code, J. R. Anderson & Lebiere,
1998; and the NENGO spiking neuron code, Eliasmith &
Anderson, 2003) and still be completely on the same page.
To illustrate this approach we will use the controversial
example of the "symbol” throughout the paper, although
each dimension can be applied to any modeling construct.
Due to limited space we have focused on dimensions that
we believe are important.

Al and Useful fictions

The strong Al hypothesis says that if the functions of the
human mind can be correctly simulated on a computer then
there will be no difference between the human mind and the
computer mind. It is important to note that this hypothesis is
silent about the level of abstraction or embodiment required
for success. It could involve high level algorithms realized
as software, or it could involve a brain made of highly
realistic mechanical neurons embodied in a lifelike
humanoid robot and raised as a human infant. Therefore, if
we apply strong Al to symbols it means that the symbols in
a model are a valid way of representing what is taking place
in the brain. Alternatively, symbols can be viewed as useful
fictions. That is, the brain does not process symbols but
there is something about the processing of symbols that is
analogous to how a brain works and it is therefore useful or
expedient to model it in this way.

Metaphysics
In mainstream western philosophy there are substances and
processes that act on the substances. For example, logical
formalisms can be used to act on symbolic representations
about the state of the world. We will refer to this as
substance philosophy. In process philosophy (see Bickhard,
2010; Whitehead & Griffin, 1931) there are no modular
substances, only interacting processes. What appear to be
substances are temporary emergent properties of ongoing
processes. According to Quantum Physics, process
philosophy is true for physical objects. For example, the
chair across the room is a temporary quantum process not an
independent object. Likewise, when you close your eyes and
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remember the chair, that memory is a temporary neural
process not an object.

Often psychological and linguistic constructs are
discussed as if they were actual objects, which leads to
confusion because it could mean they are meant as objects
(i.e., substance philosophy) or that they are meant as a
simplification standing in for a process (i.e., process
philosophy). For example, the use of symbols in a model
could signify that symbols exist, or it could signify that
there is a process that acts as though symbols exist. More
generally, a process philosophy view implies that
psychological or linguistic constructs in a model should be
regarded as abstract proxies standing in for interacting
processes — not informationally encapsulated modules as
suggested by Fodor (1983). The issue then becomes the
relative stability of the processes underlying psychological
constructs. Process philosophy is silent on this - neural
processes giving rise to psychological constructs could be
very stable, resulting in a relatively crisp, well defined
constructs; or they could be noisier, resulting in fuzzy and
possibly temporary constructs. Determining this, in our
opinion, is not a philosophical issue. However, deciding if
constructs, such as symbols, actually exist is a philosophical
issue.

Divide and conquer versus unification

The simplicity principle (Chater & Vitanyi, 2003) refers to
the idea that cognitive phenomena are best modeled in the
simplest way. This goal, related to Occam’s Razor, is not
contentious but becomes less clear when the scope of the
phenomena is considered. Newell, in his famous (1973)
paper, argued that the phenomena to be explained is the
whole brain. Newell (1990) distinguished between micro
models (i.e., independent models of different phenomena)
and architectural models (i.e., models constrained by the use
of a cognitive architecture aimed at describing the whole
brain). The goal with micro models is to make them as
simple as possible but the goal for models built in an
architecture is more complex. The model should be as
simple as possible given the constraints of the architecture
but the actual goal is to produce an architecture that is as
simple as possible across numerous models of different
phenomena (including neural phenomena, (J. R. Anderson,
2007a)).

Therefore, from an architectural point of view, having lots
of incommensurate micro models is not useful, regardless of
how simple they are individually. One way around this is to
argue that the micro model represents a distinct
cognitive/neural module that encapsulates and operates on a
particular kind of information (Fodor, 1983). For example,
by arguing that there is a distinct symbol based language
module, one can ignore issues or problems concerning the
viability of using symbols to model other functions of the
brain. Therefore, the form of a particular model could reflect
the goal of creating a unified architecture, of understanding
a distinct module, or of creating the simplest model for a
specific phenomenon.

Reverse and forward Engineering

Reverse engineering involves testing a system, the brain in
this case, and working backwards to discover how it
functions. Unfortunately, having a model that performs
similarly to a human does not confirm that it is a valid
model because other future tests may disconfirm it.

However, modeling can also move forward through
forward engineering. Forward engineering involves
designing a system with the goal of achieving certain
functions. Therefore, the goal is to achieve the same
functionality that humans have without worrying about
doing it in the same way as the brain does. If successful the
result would be a system that is roughly isomorphic to how
the brain behaves, but does not give insight into how the
brain does it. For example, the use of symbols in a model
could be due to the belief that symbols behave
isomorphically to neural representations.

The difference between backward and forward
engineering is also important when evaluating how a model
has been evaluated. Generally speaking, attempts to reverse
engineer involve careful comparisons to experimental data
while attempts to forward engineer involve showing that a
model can produce certain functionality. It is important to
note that a modeler may also iterate between reverse and
forward engineering.

Epistemic commitments

Epistemic commitment refers to the mechanisms used to
build the model. Specifically, we mean it to refer to a
commitment to a particular way of understanding and
modeling the brain. The debate between proponents of
symbol systems and proponents of neural networks is an
example of an epistemic debate. The idea motivating such
debates is that it is necessary to first get the way of
modeling right, otherwise the resulting models will be
misleading and ultimately dead ends. This issue has fueled a
lot of debate within cognitive science. Examples of different
systems are: symbol systems, neural networks, holographic
systems, dynamic systems, spiking neuron models, Bayesian
networks, logical systems, grammatical systems etc.
However, it is also possible to view these as tools rather
than competing theories, in which case the choice of a
particular way of modeling would reflect a pragmatic choice
rather than a principled one. Another approach is to view
different modeling systems as different lenses for viewing a
phenomena in different ways (McClelland, 2009).

Related to this, it is important to note that the word
architecture is used in two ways. As noted above, it can
refer to a system meant to be a unified model of the whole
brain, or it can refer to mechanisms for building models that
are able to model the whole brain. For example, ACT-R (J.
R. Anderson, 1993) is an attempt at creating a unified
architecture but it is meant to be a hybrid system and
therefore does not embody an epistemic commitment. ACT-
R is often described as a production system but this is
incorrect as ACT-R has numerous modules that use
numerous mechanisms. The use of a production system
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module to coordinate the other modules in ACT-R is a
commitment to a theory about unification; it is not an
epistemic commitment (i.e., a way of understanding the
whole brain). In contrast, NENGO (Eliasmith & Anderson,
2003) is a system for building spiking neuron models
according to a specific theory about spiking neurons, so the
use of NENGO can be seen as an epistemic commitment
(i.e., that the whole brain can be modeled in this way).

Ontological commitments

Ontological commitment refers to the way a model is
divided into functional parts and their connectivity. There
are two reasons why ontological commitments are
important. The first has to do with creating unified cognitive
architectures. Simply put, a valid cognitive model of the
whole brain requires that the functional parts of the model
map onto the functional parts of the brain. Although the
results of experimental psychology are good for testing
models, they may be misleading in terms of telling us what
the parts are because their ontologies are defined primarily
to make experimentation possible on different psychological
phenomena. Unfortunately this does not necessary tell us
what the actual parts are. For example, we remember facts
and we remember episodes and these can be treated
separately for experimental purposes, but we still do not
know if we have separate semantic and declarative memory
systems or if they are both products of a single long term
memory system.

Another very important issue related to ontologies is
cognitive re-use (see M. L. Anderson, 2010). This refers to
whether or not our cognitive ontology corresponds to a
dedicated neural area. Much of the neural localization work
taking place today explicitly or implicitly assumes that it
does. However, the cognitive re-use hypothesis is that
higher-level cognitive mechanisms and functions can be
created by re-using and recombining lower level cognitive
mechanisms and functions. If this is true then there are two
important consequences: (1) specific brain areas are not
dedicated to specific cognitive functions, and (2), the
ontology that we should be looking for is at a lower level.

Therefore, modelers may believe that the modules of their
system correspond to actual cognitive functions in the brain,
and they may further believe that these functions map to
dedicated areas of the brain. But having a module in a
model does not necessarily mean that they believe either of
these things. For example, following the cognitive re-use
hypothesis, a module could also represent a function that is
created through the interaction of lower level functions
under specific conditions. Symbols, or any other construct,
can be thought of in either way.

System levels

Allan Newell (1980) proposed that the brain is constructed
in the way that computers are engineered, according to
system levels. The reason why natural systems would
develop distinct hierarchical levels was developed by Simon
(1962) but a discussion of this is beyond the scope of this

paper. A system level occurs when the behavior of a
complex lower level system can be understood in terms of
less complex higher level constructs. For example, in the
theory of thermodynamics, the complex interactions of
atomic particles can be understood through higher level
concepts such as heat and pressure. So a systems level is a
real thing (in as much as heat and pressure are real things)
but it is important to note that a system level can be weak or
strong depending on the relative reduction in complexity
produced by the emergent level. A weak system level is
leaky, meaning that it is sometimes affected be system
levels below it (e.g., Saunders, Kolen, & Pollack, 1994).

The cognitive level is theorized to exist as a systems level
above the neural level but there is considerable controversy
over whether it exists and if it does, what form does it take?
The symbol system hypothesis asserted that the cognitive
level is based on processing symbols. Likewise, Chomsky
(e.g., Chomsky, 1995) argued that for understanding
language, symbols could be divorced from the underlying
system that produces them. However, it is instructive look at
exactly what was meant by, "symbol." For Chomsky a
symbol is a word, but Newell defined a symbol in terms of
distal access (Newell, 1990). Distal access refers to using
information that is not local, i.e., information that is
transported from another part of the brain. The form of the
information or the way it is transferred is not important,
therefore Newell's commitment to symbols is completely
different from Chomsky’s commitment to symbols.

Level of Analysis

Level of analysis is different from system level. Level of
analysis refers to analyzing a system at a particular level
(e.g., neural, neural groups, networks, symbols). Using a
level of analysis may or may not indicate a belief that the
level is a systems level. So the use of symbols in a model
may indicate a commitment to the symbol system
hypothesis, but it could also occur because that level of
analysis is useful, without any commitment to the existence
of an actual systems level. Also, it is possible to test a model
constructed at a higher systems level using a lower level of
analysis if there is a theory about how the lower level is
related to the higher level. For example, ACT-R models can
be tested using a neural level of analysis with an fMRI scan
(J. R. Anderson, 2007b). Choice of a level of analysis
reflects beliefs about the most effective way of testing a
model.

Consciousness

Explaining consciousness is a special case of the strong Al
issue that deserves its own section. The question is, could a
properly constructed cognitive architecture actually have
conscious experiences. From a strong Al point of view the
answer is yes, but many people reject this position because
they find it hard to imagine. This seems to be due mainly to
our subjective experience of qualia.

Qualia refer to the various phenomenal feelings of our
conscious experiences. From a modeling point of view
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qualia creates a potential problem because thought, emotion,
and different types of perception do not feel the same to us;
they feel qualitatively different. However, from a cognitive
science perspective, and a neuroscience perspective, all
qualia arise from information processing that is ultimately
realized through the firing of neurons. Since we do not
understand what consciousness is or how it creates different
qualia from the same underlying mechanism, most cognitive
models simply ignore the issue or focus on the correlates of
consciousness (e.g., awareness, wakefulness, report ability,
etc.).

However, the concept of qualia is important for modeling
because it cuts across the board and separates the issue of
how information is processed from how it is subjectively
experienced. By setting aside the issue of qualia we are
implicitly adopting the view that qualia is an epiphenomena;
that is, we can model the brain without considering qualia
because qualia has no functional significance (Dennett,
1991). This is very convenient since it allows us to model
all aspects of the brain as information processing and ignore
or put off the problem of explaining why different brain
functions feel qualitatively different from each other.

Alternatives to understanding consciousness as an
epiphenomena arising from information processing are
scarce. Searle (1980) makes his arguments against strong Al
by arguing that it leads to absurd consequences or
conclusions (the Chinese room is his most famous
example), but he does not offer an alternative explanation.
Hameroff & Penrose (1996) argue that normal information
processing is inadequate to model human cognition and
consciousness. They propose that the brain is capable of
quantum computing and therefore a valid simulation would
require a quantum computer. Although this view is not
popular it should be noted as quantum computing is so far
the only scientific alternative to normal computing,
although, as Penrose concedes, it is still a type of
information processing. Chalmers (2010) has argued that if
you reject that consciousness arises from information
processing, the only option is to adopt some form of
dualism.

Philosophy of science

Some people define science with Popper’s (1935) notion of
falsifiability. However, although it is in theory possible to
falsify cognitive models, it is often the case that the failure
of a model leads to changes in the model rather than a
rejection of the model. With unified architectures the
problem of falsification is trickier because in order to test
the architecture, it must be used to build a model of a task,
therefore, if it fails, it is unclear if the architecture has been
falsified or just the model. Newell (1990) realized this and
argued that Lakatos’ definition of science (1970) was more
appropriate than Popper's for understanding architectures.
Essentially, Lakatos defines science in terms of making
progress over time, therefore if an architecture or model is
improved through testing and refinement so that it explains

more, it can be considered scientific (for a detailed
discussion see Cooper, 2007).

It is interesting to note that although some of the criticism
directed at testing models comes from Experimental
Psychology, Experimental Psychology also fails to follow
Popper's model. Specifically, most experiments in
Experimental Psychology test for significant differences
predicted by a theory, therefore, falsifying the theory would
mean showing no significant difference, which would mean
accepting the null hypothesis, which is not allowed in the
ANOVA or t-test statistics that are generally used. Like
modeling, theories in Experimental Psychology are
generally altered and not rejected. In both cases it is possible
to construe theories that are falsifiable; it is just not very
common. The criticism of modeling coming from
Experimental Psychology has more to do with statistics.
Specifically, Experimental Psychology has a clear definition
for defining when two conditions are significantly different.
In contrast, the goal for a model is to show that it is
significantly similar to a set of data and there is not an
agreed upon standard for this (e.g., Roberts & Pashler,
2000), although there are statistical ways to tackle the issue
(e.g., Stewart & West, 2010).

Another issue arises from comparisons with Computer
Science or Engineering where it is common to evaluate
algorithms against each other according to some clear
criterion or test set. According to this approach, cognitive
models should be compared to see which one explains the
data best. This can be done when the models are specifically
designed to model the same problem (see Erev et al., 2010
for an example). However, it is not commonly done because
models are designed with different goals in mind, therefore
a good test set for one might be an inappropriate or poor test
set for another. It all depends on the goals and the
theoretical framework of the modeler, which is why it is
important to be clear about these.

Conclusion

We have outlined a number of dimensions on which
modelers can take different views. Most of them are binary
so it is possible to say agree, disagree, or agnostic. This list
is not exhaustive, but being aware of where we stand on
these issues can potentially avoid a lot of misunderstanding
and provide a richer view of the whole modeling enterprise.

We have tried to be neutral in terms of laying out this list
but we acknowledge that some people may feel that some of
the choices we have presented are invalid. For, example,
one could argue that there is no such thing as system levels
in the brain. Our point is that we should separate that
argument from the evaluation of modeling systems that
appear to embody systems levels.

Another issue is the relationship between the different
dimensions that we have laid out. People tend to associate
sets of beliefs with the use of different modeling systems.
Possibly some of the dimensions we described are
correlated and logically go together. However, arguments
about whether certain dimensions are conceptually related
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or conceptually independent should be separated from
subjective impressions concerning the co-occurrence of
dimensions across the users of different modeling systems.

In order to progress in understanding the various
cognitive modeling spaces, the impacts of these and other
dimensions need to be further deliberated.
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