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Abstract

Research on human causal learning has largely focused
on strength learning, or on computational-level theories;
there are few formal algorithmic models of how people
learn causal structure from covariations. We introduce a
model that learns causal structure in a local manner via
prediction-error learning. This local learning is then
integrated dynamically into a unified representation of
causal structure. The model uses computationally
plausible approximations of (locally) rational learning,
and so represents a hybrid between the associationist and
rational paradigms in causal learning research. We
conclude by showing that the model provides a good fit
to data from a previous experiment.
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Introduction

From a young age, we spontaneously, and often effortlessly,
come to understand the causal structure of the world, and
then use that knowledge to both predict what might happen
in the future and also design actions that will achieve our
goals (e.g., Gopnik, et al., 2004; Sloman, 2005). Our focus
here is causal learning from covariational data: how do
people learn the causal structure of the world from a
sequence of observations or interventions of that world?
Causal learning can usefully be separated into the related-
but-distinct problems of representation and dynamics—what
is learned and how is it learned. In this paper, we develop a
novel account of causal learning that, at a high level, uses
quasi-associationist processes to learn directed graph-like
causal representations. It is thus a hybrid of the standard
rationalist vs. associationist approaches to causal learning.

Representations of Causal Structure

The development of causal Bayesian networks prompted a
major advance in our understanding of causal knowledge. A
causal Bayes net has two components: (i) a directed acyclic
graph (DAG) whose nodes represent variables and directed
edges represent direct causal relations (see Figure 1); and
(i) a probability distribution that encodes how causes
influence their effects. These two elements represent
qualitative and quantitative causal structure, respectively,

and are connected by a pair of assumptions (Markov and
Faithfulness) that capture the ways in which causal structure
manifests in observed data. Sloman (2005) and Spirtes,
Glymour, & Scheines (1993) provide useful expositions of
the causal Bayes net framework.
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Figure 1: Prototypical 3-variable causal Bayes nets

There is substantial evidence that the type of structural
knowledge captured by a causal Bayes net—or at least, the
directed graphical model part—is necessary to account for
many causal reasoning abilities. One hallmark of causal
reasoning, rather than correlational, is that cases involving
observations vs. interventions are treated differently
(Sloman & Lagnado, 2005; Waldmann & Hagmayer, 2005).
For example, one can infer, from an observation of a
professor’s gray hair, that she likely has many publications.
No such inference follows if she instead intervened to dye
her hair gray. Causal Bayes nets can straightforwardly
account for this difference, as interventions are represented
by ‘graph surgery,” where a variable that is intervened upon
is separated from its typical causes (Spirtes, et al., 1993).
This surgery changes the informational relations, and so
one’s inferences can be different in the two situations.

Some aspects of causal knowledge are not easily
represented by this formalism (e.g. the spatiotemporal
relations between causes and effects), but it seems to
provide a good account of people’s representations of causal
structure. Thus, we aim to develop a theory of causal
learning in which people learn a directed graph (perhaps
acyclic, though we will allow for cyclic structures).

Dynamics of Causal Structure Learning

Theories about how people use covariation to learn directed
graph representations can be divided roughly into rational
and heuristic accounts of causal learning. Rational accounts
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model causal learning as rational inference. These include
constraint-based algorithms (e.g., Glymour, 2003; Gopnik,
et al., 2004), and those based on Bayesian inference (e.g.,
Steyvers, et al., 2003; Griffiths & Tenenbaum, 2005). They
are usually intended at the computational level of analysis,
as they show how the cognitive system’s performance
solves the problem faced by that system, but do not attempt
to characterize the underlying cognitive processes. There
have been some recent attempts to develop algorithmic (i.e.
process) models of causal learning based on approximations
of Bayesian inference (e.g., Bonawitz, et al., 2011). These
models have so far only addressed causal strength learning,
and it is not clear how to extend them (in a computationally
tractable manner) to structure learning.

Heuristic accounts of causal learning propose that people
use various cues to suggest and modify causal hypotheses in
a not-necessarily-rational (though presumably sensible)
manner. Causal model theory (Waldmann, 1996) proposes
that learners use cues such as covariation, temporal order,
and spatial proximity to select an initial causal structure and
adjust it in the face of inconsistent data (Lagnado,
Waldmann, Hagmayer, & Sloman, 2007). Causal model
theory has never been entirely formally specified, though
some parts have received formal treatment.

The local computations model (Fernbach & Sloman,
2009) attempts to explain how learners use data from
interventions to learn a causal structure. The key idea is that,
when a variable is intervened upon and other variables
change, the learner infers that the intervened-upon variable
caused those other variables. Critically, all learning in this
model is local, as people evaluate individual causal relations
rather than entire graphs. The model we present here adopts
this important insight and extends it to all covariation-based
structure learning, including learning from observations.

The single-effect learning model (Waldmann, et al., 2008)
also assumes that people focus on evaluating single causal
relations. It is a model of learning from observations, and
proposes that learners estimate the causal power (Cheng,
1997) of each potential cause of an effect. If a variable has
sufficient (estimated) causal power, then the learner accepts
the causal relation and integrates it with her previous causal
knowledge. This model has found some empirical support in
both humans and rats (Waldmann, et al., 2008).

Our model adopts the single-effect learning model’s focus
on causal power, and the integration of these individually
learned relations into a unified causal structure. However,
the standard causal power theory is a computational theory
that makes no commitment to underlying processes. Danks,
Griffiths, & Tenenbaum (2003) provided a prediction-error-
based model of causal strength learning whose equilibrium
states are causal powers, and so their model can be viewed
as an algorithmic implementation of the causal power
theory. Moreover, its basis in prediction-errors is consistent
with neuroscientific evidence that the right lateral prefrontal
cortex encodes prediction-error signals during causal
learning (Corlett, et al., 2004; Turner, et al., 2004).

Another lacuna in the single-effect learning model is that
it does not explain how the learner uses a causal power
estimate to determine whether a link actually exists. We
thus provide a decision procedure for causal relation
acceptance based on both the learner’s point estimate and
her confidence in that estimate. This addition allows us to
model the dynamics of learning for directed graphs that are
more complex than the single-effect structure.

The LPL Model

The Local Prediction-error Learning (LPL) model aims to
explain how observations and interventions are used to learn
causal structure when one has relatively little prior
knowledge. We do not model many other relevant sources
of information, including verbal communication, reasoning,
or spatiotemporal information. The model does assume that
the learner knows the functional form of the causal relations
and (when relevant) the expected temporal delay between
causes and effects.

The LPL model begins with an initial causal structure
hypothesis: a directed graph representing the individual’s
prior beliefs, where an edge indicates an a priori belief that
there is a causal connection, and absence indicates only
agnosticism.' For typical experiments in which participants
have little prior knowledge, this will be an empty graph. The
model alters this causal structure hypothesis by adding or
removing single edges, thereby reducing the structure
learning problem to the simpler task of evaluating individual
causal relations. Multiple experimental results suggest that
learners focus primarily on single causal relations (e.g.,
Gopnik et al., 2004; Waldmann, et al., 2008), presumably
because of the computational complexity of evaluating
larger structures.

Figure 2 shows a high-level overview of the LPL
algorithm. The key pieces to be explained are the Causal
Strength Estimates, and how the Decision Procedure
changes the Causal Structure Hypothesis.

1 1
1 1
Input ' Process ' Output
: i
1 1
1 1
Covariational | | | Causal Strength ' L.

i . 0 Parameterization
Cues 1 Estimates i
1 1
1 1
1 1
I l I
' Decision '
' Procedure '
I l I
I I
1 1
Background | | | Causal Structure | |

Knowledge | Hypothesis | Graph

1 1
1 1

Figure 2: A high-level description of the LPL model

' The model can also encode a priori belief of definite edge
absence, though we omit this complication for reasons of space.
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Figure 3: (a) Example local learning context (solid / dashed arrows indicate known / potential causal relations); (b) Causal
strength estimates of B (blue) and C (red) using five particles per edge

Causal Strength Estimates

The LPL model generates causal strength estimates for
each possible cause-effect pair that is not ruled out a priori.
That is, for each pair of variables (4, B), the learner
estimates the causal strength of A—B and B—4 unless she
has prior knowledge about potential edge direction. We
assume here that the correct functional form for causal
relations is noisy-OR, and so causal strengths are causal
powers (Cheng, 1997; Griffiths & Tenenbaum, 2005),
though this can change based on background information.

Like the single-effect learning model, we assume that the
appropriate scope for learning causal strength includes the
potential cause, the effect, and any other definite causes of
that effect. For instance, consider Figure 3(a), where the
learner believes that B causes E and is trying to determine
whether C also causes E. Unlike the single-effect learning
model, however, causal strength estimates for C are
generated by a mechanism similar to particle filters in
approximate Bayesian inference, though our “particles”
move by associationist learning.

The LPL model initially draws n particles for each
possible causal relation from a prior strength distribution
determined by the learner’s background knowledge. The
learner’s current beliefs about whether C causes E are

represented by these particles {V},..,V/}. There is a
corresponding set { V,,...,V; } of particles for B. The use of
multiple particles enables the model to capture both strength
estimates and confidence in those estimates. The mean
. = I i . .
particle value, Vi = —E V¢, is the point estimate of C’s
n L =]
causal strength. The average squared deviation of the

. 1 n i = \2 .
particles, D, =—2_ (VC—VC) , is the learner’s (lack of)
n i=1

confidence: low values of D, indicate high confidence.

We define a layer i of particles for an effect £ as the i-th
particle from each known and potential cause of £. In Figure

3(a), for example, layer i would be {Vé,VCi}. A layer of
particles is a specific hypothesis about the strengths of all
known and potential causes of E. Each layer is updated

independently after each data point by prediction-error
learning. Such learning can be represented schematically as:
V™ =V + a (observed — expected)

The learning rate () is a free parameter, and observed has
the value 1 if the effect occurs and 0 if it does not. The value
of expected is typically the expected value of the effect
variable, calculated using the functional form for the cause-
effect relation. Many associationist learning models fit this
schema, including the classic Rescorla-Wagner model and
the causal power estimator of Danks, et al. (2003).

The expected value is computed separately for each
potential cause in a layer. The current structure hypothesis
has an influence because expected is based on only definite,
known causes and the particular target potential cause for
that update; other variables are ignored. This restriction
reduces the computational demands on the learner, and fits
real-world contexts where the learner cannot simultaneously
attend to all the potential causes in her environment. If the
causes combine as causal powers, then the expected value of

E (for layer i and potential cause C) is:
I1 0-v)

expected = HK=WM(1 -V )(1 -
J=present

where J (K) is the set of E’s generative (preventive) causes.

Figure 3(b) shows how initial causal strength estimates
can change over time. Data were generated by Figure 3(a)
with a noisy-OR functional form. At first, the particles are
spread widely around zero, representing the learner’s
uncertainty in her estimate. As the learner observes more
data points, prediction-error learning brings the particles
closer to the true parameter values. The layers of particles
that are further from the true values will generally have
greater errors and thus will shift more towards the true
values during learning. As a result, the estimates in different
layers converge,” representing the learner’s increasing
confidence. This process gives no account of structure
learning, however, so we turn to that now.

2 Though they only stabilize around equilibrium values. If the
learning rate is based on the learner’s current (lack of) confidence,
then true convergence is possible.
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Causal Structure Judgments

The LPL model has a single, definite structure hypothesis at
each point in time, which can then be modified by either
adding or removing an edge. These modifications are based
on a decision procedure applied to the causal strength
estimates after each update.

Since an edge with a causal strength of zero is equivalent
to no edge, the decision procedure uses a t-test on each set
of particles with the null hypothesis that the particles are
drawn from a distribution with mean y = 0. The outcome of
this test depends on both the particles’ mean and deviation.
A free parameter p... guides the decision procedure. If
there is no edge in the graph and the t-test rejects the null
hypothesis (i.e., the p-value p of the test statistic is less than
Peritical), then an edge is added. If there is an edge present
and the t-test does not reach significance (i.e., p > perisical),
then the edge is removed from the graph.

If a C—E edge is added or removed, future calculations of
expected change for other potential causes of E, as those
involve only the known causes of E. Crucially, this form of
causal structure learning satisfices: the learner accepts the
most plausible structure as a working hypothesis rather than
representing and evaluating all possible structure hypotheses
(as in standard Bayesian models).

Other Factors

Temporal information and the data source can influence the
interpretation of covariational data, and so are also
incorporated into the LPL model.

Interventions Given an observation about C and E, the LPL
model updates the causal strength estimates for both C—=F
and £—C whenever the model does not yet know which
direction the causal influence flows (if any). If C’s value is
instead set by intervention, then one knows that C is severed
from its normal causes. Thus, one should not update causal
strength estimates for potential causes of C. Operationally,
if given data about an intervention on C, the LPL model
updates only the C—F particles, and not the £—C ones.

Temporal Information Temporal delays between the cause
and effect influence contingency learning, though mediated
by the learner’s expectations (Buehner & May, 2003;
Buehner & McGregor, 2006). The LPL model compares the
observed temporal difference dg.c between a potential cause
and the effect to the expected temporal difference d,,. If the
learner expects the delay to always be d,,, then the causal
strength estimates update only when that delay occurs. If the
learner expects the timeframe of the causal mechanism to be
noisy, then the model reduces the salience of C—captured
in the learning rate a—as a potential cause of £ in
proportion to de, = dpc — dyy,. We define a learning rate o
d,,
that decreases exponentially as d,,, increases:a'=ae ° ,
where s is a scaling parameter that determines how

sharply ' drops off as d,,, increases.

Evaluating the LPL Model

Data

We evaluate the LPL model using data from Lagnado &
Sloman (2006). In this experiment, participants had to
discover the causal connections between four computers by
sending 100 text messages to computer A and observing
whether those messages were sent on to other computers.
The true causal system is shown in Figure 4, where the
arrows represent noisy causal relations. Messages always
reached computer A, and the probability of a message being
transmitted from one computer to the next was 0.8.
Messages never spontaneously occurred.” Trial order was
randomized both for participants and for modeling.

Figure 4: Causal structure from Lagnado & Sloman (2006)

text message

The original experiment contrasted temporal and
covariational information, so there were four conditions that
varied the temporal order in which messages appeared.
Condition 1 involved no timing information, but conditions
2-4 did (with different delays®).

LPL Model

Participants had no prior knowledge of causal structure, so
the initial model was the empty graph (i.e., agnosticism).
Connections between the computers were clearly generative,
so the model only considered causal strength estimates
between 0 and 1. For each possible edge, five particles were
drawn from a truncated Gaussian (u = 0, o =2).

The LPL Model has four other free parameters. The
expected temporal delay d,, and the temporal scaling
parameter s are not used with simultaneous occurrences (as
in condition 1). We thus first determined the values for the
learning rate a and the critical significance level pgiica bY
maximizing model fit (via a grid search) for condition 1
only. Model fit was based on R* values” for the proportions,
over all possible causal relations CR, of (a) 1000 model runs
that yielded CR, and (b) experimental participants that

? The resulting case distribution (N = 100) was: 51 cases with
ABCD; 13 AB—CD; 13 ABC—D; 3 AB—C—D; and 20 A—-B—C—D.

* The messages always appeared in the same order within
conditions: A-B-D-C in Condition 2, A-D-C-B in Condition 3, and
A-B-CD (C and D simultaneous) in Condition 4.

SRP=1- (SSe / SSi1), where SS,,,. and SS,,, are the sum of
squared differences between the participant endorsement
frequencies and the model proportion or mean endorsement,
respectively.
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Figure 5: Proportion of causal relation endorsements by the LPL model, Bayesian model, and experimental participants

endorsed CR. The optimal model fit (R* = .47) was with
a=0.1 and paiica =T % 107,

These parameter values were used for all subsequent
simulations. Model results for conditions 2-4 thus provide
cross-validation for those parameter values. We set dy,, = 1,
as the natural temporal delay between a computer sending a
text message and one receiving it would be one time-step.
We then searched and found that s = 7 optimized model fit
across conditions 2-4 (R* = .47).

Bayesian Model

We compare the LPL model to a standard Bayesian model
of causal structure learning. The model used a uniform prior
over all possible graphs (cyclic and acyclic) over the four
variables. The posterior probability of a graph H given the j-
th datapoint is:

P(d | ,a’o(A))P(Hi)
P(d;)
If ¢y denotes the time of ¥, then the likelihood is given by:
P(d|H,,do(4)) = P(b.c.dty 115 |H,.do(4))
- P(b,c,d|Hi,do(A))P(tB et |b,c,d,H,.,do(A))
Participants were told the true parameterization, so we use
P(b,c,d|Hl-,do(A)). For

temporal sequences, the Bayesian model also assumed that

P(H |d;)=

that distribution to calculate

delay probabilities followed an exponential decay function:
1 e

Pld, .)=—c¢ *
( E_C) 2s 6

This adjustment introduces a new free parameter, s, that
was estimated by maximizing model fit across conditions 2-
4 (s = 2, R® = 23). To determine Bayesian model
predictions, we assumed that people probability match: the
proportion of “Bayesian endorsements” for each causal
relation CR was simply the posterior probability of CR.

Results and Discussion

Figure 5 shows the LPL and Bayesian model predictions, as
well as the actual participant data. R” values for the models
for each condition are shown in Table 1.

Table 1: R values for the models

LPL Model | Bayesian Model
Condition 1 47 -.03’
Condition 2 40 .81
Condition 3 46 -1.01
Condition 4 .59 .36
Overall 47 23

The LPL model explains roughly half the variance in
participant responses across all conditions, whereas the
Bayesian model fit varies widely. Moreover, the Bayesian
model does much worse than the LPL model in Condition 1

® The probability of a temporal sequence is complicated for
cyclic graphs, as one must consider multiple ways to generate a
temporal sequence. Technical details are available upon request.

"If R? < 0 then the mean predicts more variance than the model.
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(i.e., with no temporal information), suggesting that the
modification of the Bayesian model to allow for temporal
delays does not explain the poor fit.

At the same time, both models provide good qualitative
fits to the data: the model-participant correlations are » = .74
for the LPL model and » = .97 for the Bayesian model.
However, only the LPL model predicts the appropriate
variability in the participants’ responses. For instance, the
data are sufficient in Condition 1 for a Bayesian learner to
determine the true causal structure (except for D—B and
C—B, about which it is indifferent), and so even probability
matchers should exhibit relatively little variation. However,
many experimental participants select causal relations that
are not part of the true structure, and some omit relations
that are. Participants do not seem to be fully rational
learners, and the LPL model is able to explain the types of
errors that occur.

Conclusion

The LPL model aims to provide a formal algorithmic model
of the mechanisms underlying covariation-based causal
structure learning. It provides a computationally well-
specified dynamical model that learns directed graphs, and
so potentially captures the cognitive mechanisms underlying
causal learning. Moreover, this model predicts some of the
sub-optimal learning behaviour exhibited by participants.
Open questions remain about, for example, the suitability of
the t-test-based decision procedure. But the LPL model
provides a model that bridges the gap between associationist
and rational models of causal learning.
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