Visual Attention is Attracted by Text Features Even in Scenes without Text
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Abstract

Previous studies have found that viewers’ attention is
disproportionately attracted by texts, and one possible reason
is that viewers have developed a “text detector” in their visual
system to bias their attention toward text features. To verify
this hypothesis, we add a text detector module to a visual
attention model and test if the inclusion increases the model’s
ability to predict eye fixation positions, particularly in scenes
without any text. A model including text detector, saliency,
and center bias is found to predict viewers’ eye fixations
better than the same model without text detector, even in text-
absent images. Furthermore, adding the text detector — which
was designed for English texts — improves the prediction of
both English- and Chinese-speaking viewers’ attention but
with a stronger effect for English-speaking viewers. These
results support the conclusion that, due to the viewers’
everyday reading training, their attention in natural scenes is
biased toward text features.

Keywords: real-world scenes; text detector; eye movements;
visual attention.

Introduction

When inspecting real-world scenes, human observers
continually shift their gaze to retrieve information. Viewers’
attention has been found to be biased toward visually salient
locations, e.g., high-contrast areas, during scene viewing or
search (Itti & Koch, 2001) or toward the center of the screen
when viewing scenes on computer monitors (Tatler, 2007).
Since it is also known that viewers pay a disproportionate
amount of attention to faces (Cerf, Frady, & Koch, 2009),
Judd, Ehinger, Durand, and Torralba (2009) equipped their
model of visual saliency with a face detector (Viola &
Jones, 2004) and a person detector (Felzenszwalb,
McAllester, & Ramanan, 2008). In those images that
contained depictions of people, their model with all features
combined outperformed models trained on typical saliency
features such as color, orientation, intensity, and contrast.
Cerf et al. (2009) refined the “standard” saliency model by
adding a channel of manually-defined regions of faces,
texts, and cellphones, and demonstrated that the
enhancement of the model significantly improved its ability
to predict eye fixations in natural images.

Besides depictions of people, texts in natural scenes are
usually important pieces of information, which could be
shown on depictions of signs, banners, advertisement
billboards, license plates, and other objects. Human text

detection in natural scenes is critically important for people
to survive in everyday modern life, for example, by drawing
attention to traffic signs or displays showing directions to a
hospital or grocery store. Our previous studies (Wang &
Pomplun, 2011; under revision) suggested that attention
seems disproportionately attracted by texts but that the
specific visual features of texts, e.g., edge density, rather
than typically salient features such as color, orientation,
intensity, or contrast, are the main attractors of attention.
This finding was in line with the results in Baddeley and
Tatler (2006) that high spatial frequency edges, not
contrasts, predict where we fixate.

Automatic text detection has been a hot topic in the fields
of computer vision and pattern recognition for its practical
applications. The special features of texts, e.g., the small
variation of the stroke width (see Epshtein, Ofek, & Wexler,
2010; Jung, Liu, & Kim, 2009) or edge density (Lu,
submitted) have been used to develop text detectors.
Although many text detection techniques, i.e., texture-
based, region-based, and stroke-based methods, have been
reported, many non-text objects, such as windows, fences,
or brick walls, easily cause false alarms (see Lu, submitted;
Ye, Jiao, Huang, & Yu, 2007, for a review). Furthermore,
many established text detectors are restricted under
commercial patents. Therefore, only few text detectors are
freely available or have been tested in visual attention
studies.

Lu, Wang, Lim, and Pomplun (submitted) developed
specialized text features, e.g., histograms of edge width and
edge density, trained with Support Vector Machine (SVM)
classifiers. The study reported better performance compared
with earlier studies (e.g., Epshtein, et al., 2010; Jung, et al.,
2009) on public text-detecting competition datasets
(ICDAR2003 and ICDAR2005). In the present study, we
used the automatic text detector developed by Lu et al.
(submitted) to test whether it can improve the prediction of
viewers’ fixations. This detector employs contrast of strokes
over background, width of strokes, joints of horizontal and
vertical strokes, and stroke structure as key variables

Although manually-defined regions of texts were shown
to improve the prediction of eye fixations in text-present
images (Cerf et al., 2009), it is unclear if viewers’ attention
is biased toward any non-text objects which share some
features of texts, particularly in text-absent images. In the
present study, two eye-movement datasets obtained in our
previous investigations (Wang & Pomplun, under revision)
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are re-analyzed. The goals of the present study are (1) to
investigate the contribution of the automatic text detector to
the prediction of eye fixations in real-world scenes, and (2)
to verify the hypothesis that viewers’ text detection skills
are “trained” through exposure to language and affect
attentional control even in text-absent scenes

Experiment 1: Unconstrained Texts

We superimposed unconstrained texts onto real-world
scenes, i.e., placed them in unexpected locations, in front of
either homogeneous background, i.e., in regions with the
lowest luminance contrast in the image before placing the
text parts, or inhomogeneous background, i.e., those areas
with the highest luminance contrast, and found that texts
attracted more attention than non-text objects. This dataset
is chosen for re-analysis in the present study since the
stimuli contain both text-present and text-absent images.
Two models, both including saliency and center-bias maps
(channels), but one with and one without text-detector map
are compared in order to determine whether the inclusion of
the text detector improves the prediction of fixations,
particularly in text-absent images.

Method

Participants. Twelve students from the University of
Massachusetts at Boston participated. All had normal or
corrected-to-normal vision and were between 19 and 40
years old. Each participant received 10 dollars for a half-
hour session.

Apparatus. Eye movements were recorded using an SR
Research EyeLink Remote system with a sampling
frequency of 1000 Hz. Subjects sat 65 cm from an LCD
monitor approximately 34 x 25 degrees of visual angles. A
chin rest was provided to minimize head movements. After
calibration, the average error of visual angle in this system
is 0.5°. Stimuli were presented on a 19-inch Dell P992
monitor with a refresh rate of 85 Hz and a screen resolution
of 1024x768 pixels. Although viewing was binocular, eye
movements were recorded from the right eye only.

Stimuli. Two hundred natural-scene images were selected
from the LabelMe dataset (Russell, Torralba, Murphy &
Freeman, 2008). Eighty out of these images were randomly
selected to be superimposed with one text and one line
drawing. The other 120 images were presented without any
modification. For the placement of texts and line drawings,
two different items (items A and B in Table 1) were chosen
for each scene, and their addition to the scene was
performed under four different conditions: either (1) a word
describing item A (e.g., “sled” as shown in Table 1) and a
drawing of item B, (2) a word describing item B (e.g.,
“yoyo”) and a drawing of item A, (3) a scrambled version of
a word describing item A (e.g., “dsle”) and a drawing of
item B, and (4) a scrambled version of a word describing
item B (e.g., “yyoo0”) and a drawing of item A. All four
conditions of text-drawing pairs were presented in a
between-subject design, i.e., each participant only viewed
one of these conditions. Half of the words (object labels)

were placed in front of homogeneous background and the
other half were placed on inhomogeneous background.
Figure 1 shows an example of all four conditions with
words and drawings on homogeneous background. The
eccentricity of the text or the drawing was randomly
assigned and varied between 200 and 320 pixels (average:
253 pixels). The minimum polar angle, measured from the
screen center, between the text and the drawing in each
image was set to 60 degrees to avoid crowding of the
artificial items. All texts and drawings were resized to cover
approximately 2500 pixels.

Table 1: Examples of texts (words and scrambled words)
and object drawings used in Experiment 1.

Item A Item B
Texts sled (dsle) yoyo (yyoo)
Object |
Drawing

(©) )

Figure 1. An example of 4 conditions of stimuli for low-
frequency words drawn on homogeneous background. (a)
Word of Item A (sled) vs. drawing of Item B, (b) word of
Item B (yoyo) vs. drawing of Item A, (c) scrambled word of
Item A (dsle) vs. drawing of Item B, and (d) scrambled
word of Item B (yyoo) vs. drawing of Item A.

Procedure. Equal numbers of subjects freely viewed
stimuli from conditions 1, 2, 3, and 4 in a counter-balanced
design (described below), and each stimulus was presented
for 5 seconds. The free viewing task has been widely used
in previous studies (e.g., Judd et al, 2009; Cerf et al., 2009).
The software “Eyetrack” developed by Jeffrey D. Kinsey,
David J. Stracuzzi, and Chuck Clifton, University of
Massachusetts Amherst, was used for recording eye
movements.
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Analysis. Two eye movement measures were taken:
correlation (R) and Receiver Operating Characteristic
(ROC). The Pearson correlation coefficient R between two
maps is computed according to sampling points taken every
10 pixels along the x and y axes, and then the correlation
coefficient between saliency/center-bias/text-detector and
attentional maps (described below) are obtained. An
example of a stimulus image and its attention, saliency,
center-bias, and text-detector maps is shown in Figure 2.
The computation of the ROC measure is described in
Hwang, Higgins & Pomplun (2009). If a map had higher
correlation or ROC values with regard to the subjects’
fixations, the map was considered a better predictor of
visual attention. The chance level is 0.5 for ROC and 0 for

(€)

Figure 2. An example of (a) stimulus image, (b) attention
(3-second viewing) (c) saliency, (d) center-bias, and (e)
text-detector maps.

Saliency was calculated by the freely available computer
software “Saliency Map Algorithm” using the standard Itti,
Koch, and Niebur (1998) saliency map based on color,
intensity, orientation, and contrast. A center-bias map was
obtained using a two-dimensional Gaussian distribution at
the center of the screen with 3 degrees of visual angle (90
pixels in our experiment setting). The text-detector maps
were computed using the automatic text detector which
analyzes features such as variation of edge width and edge
density.

For the attentional map, we excluded the initial center
fixation and included all other fixations within a given
viewing duration. The attentional map was built according
to each fixation in an image by a two-dimensional Gaussian
distribution centered at the fixation point, where the
standard deviation was one degree of visual angle to
approximate the size of the human fovea. Then we simply
summed up these Gaussian distributions for fixations
weighted by their durations (see Pomplun, Ritter, &
Velichkovsky, 1996).

We computed the attentional maps for each image
inspected by each viewer for the initial 1.5, 2, ..., 5 seconds.

The averages of correlations and ROC values for each
viewer were calculated for all, text-present, text-absent, text
in front of homogeneous (H-BG), and text in front of
inhomogeneous backgrounds (INH-BG) images, and an
ANOVA and paired t-tests were performed to analyze the
differences between these values

Results and Discussion

Models with and without Text-Detector Maps. The
average R and ROC values of all 12 viewers are shown in
Table 2. Text-detector maps overlap attentional maps the
best when the images contain text in front of homogeneous
background, and the worst in text-absent images. These
results are consistent with the finding by Judd et al. (2009)
that object detectors by themselves do not predict attention
well when the objects are absent and therefore should be
used in conjunction with other features.

Table 2: The average R and ROC of saliency (Sali),
center-bias (Center), text-detector (TextDet), saliency
combined with center-bias (SC), and all combined (SCT)
maps as predictors of the attentional maps for 3-second
viewing. H-BG represents images in front of homogeneous

background, and INH-BG represents images on
inhomogeneous background.
Sali  Cen TextDet SC SCT
R -All 0.14 0.16 0.15 0.18 0.20
Text-Present  0.11 0.12 0.20 0.14 0.16
H-BG 0.09 0.10 0.24 0.10 0.12

INH-BG 0.14 0.15 0.15 0.17 0.19
Text-Absent  0.15 0.19 0.12 021 0.22

ROC - All 0.65 0.63 0.63 0.69 0.72
Text-Present  0.61 0.61 0.66 0.64 0.70
H-BG 0.55 0.60 0.67 0.58 0.67

INH-BG 0.67 0.62 0.64 0.70 0.72
Text-Absent  0.67 0.64 0.62 0.72 0.73

One-way ANOVAs with the factor “predictor” showed
that the performances of Sali, Cen, TextDet, SC, and SCT
maps differed significantly in all, text-present, H-BG, INH-
BG, and text-absent images for R, all Fs(4; 55) > 3.64, ps <
.05, and ROC, all Fs(4; 55) > 11.17, ps < .01. SC (without
text-detector) obtained significantly lower measures than
SCT (with text-detector maps) for all, text-present, H-BG,
INH-BG, and text-absent images for R, all ts(11) > 3.93, ps
< .01, and ROC, all ts(11) > 7.68, ps < .001. The results
indicate that the text detector improved the prediction of
viewers’ visual attention. It is interesting to see that the SCT
obtained higher R and ROC than the SC even in text-absent
images. One plausible explanation is that some non-objects
containing text-like features catch a disproportionate
amount of attention.

Text-Present vs. Text-Absent and H-BG vs. INH-BG
Images. The five predictors were analyzed in one-way
ANOVAs with the factor “image type,” and the results
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demonstrate that both R and ROC values significantly
differed in all, text-present, text-absent, H-BG, and INH-BG
images, all Fs(4; 55) > 4.91, ps < .01, and all Fs(4; 55) >
4.72, ps < .01, respectively, except ROC for Cen, F(4; 55) =
0.92, p > .4. The text detector (TextDet) performed better
for text-present images than text-absent ones with regard to
R, t(11) = 10.67, p < .001 as well as ROC, t(11) = 5.66, p
< .001. Homogeneous background images obtained higher
values than inhomogeneous background images for both R,
t(11) = 7.31, p < .001, and ROC, t(11) = 3.94, p < .01.
Visual Attention over Time. SCT outperformed SC
(without text detector) for all viewing durations for R and
ROC in both text-present images, both ts(11) > 9.68, ps
< .001, and text-absent ones, both ts(11) > 3.93, ps < .01.
The difference between SCT and SC was larger in text-
present images than in text-absent ones. In text-present
images, the R of TextDet initially dominated but decreased
over time, while the R of Sali increased (see Figure 3a)..
These data suggest that texts are typically detected early
during the inspection process and receive sustained attention
while the viewers are reading them, thereby elevating the
occurrence of text features near fixation. Later in the
process, viewers tended to be guided more strongly by
saliency as defined by the Itti and Koch algorithm. In text-
absent images, the R of Sali, Cen, and TextDet increased
over time, indicating that the corresponding mechanisms
became more important during the later — likely more
focused and fine-grained (Unema, Pannasch, Joos, &
Velichkovsky, 2005) — stages of inspection. Clearly, Sali
and Cen played more important roles when texts are absent.
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Figure 3. Correlations for 1.5-, 2-, ..., and 5-second viewing
of (a) text-present and (b) text-absent images.

Experiment 2: English vs. Chinese Texts and
Native Speakers

In Experiment 1, we showed that the addition of a text-
detector map to saliency and center-bias maps makes the
model a better predictor of viewers’ visual attention. Our

hypothesis is that viewers have developed a “text detector”
because they are exposed to texts everyday and become
sensitive to text-patterns. Wang and Pomplun (under
revision) found that native speakers of English and Chinese-
speakers were both attracted by English and Chinese texts in
real-world scenes but were attracted more strongly by the
texts of their native languages. The reason might be that
English and Chinese texts share some common features,
such as the histogram of edge width, but also contain their
unique features, e.g., Chinese texts usually contain vertical,
horizontal, and diagonal strokes but fewer “curves” (such as
in “O” or “G” in English). In Experiment 2, the dataset in
Wang and Pomplun (submitted) was reanalyzed and our
expectation was that the text detector (Lu, submitted)
designed for English texts will perform better prediction of
gaze fixations for English-speaking viewers than for
Chinese-speaking ones.

Method

Participants. In the group of non-Chinese English
speakers, 14 students from the University of Massachusetts
at Boston participated. All of them were native speakers of
English, and none of them had learnt any Chinese or had
participated in Experiment 1. For the group of Chinese
speakers, 16 native speakers of Chinese were recruited at
China Medical University, Taiwan. Each participant
received 10 US dollars or 100 Taiwan dollars, respectively,
for participation in a half-hour session. All had normal or
corrected-to-normal vision.

Apparatus. At both sites, the experiment setup was
identical to Experiment 1.

Stimuli. As shown in Figure 4, the original texts were
either rotated by 180 degrees or replaced by Chinese texts.
The rationale for using upside-down English texts was to
keep the low-level features such as regular spacing and
similarity of letters but reduce possible influences of higher-
level processing such as meaning. Figure 4a illustrates C1,
in which half of the original texts were rotated and the other
half was replaced with Chinese texts. In C2, as

demonstrated in Figure 4b, the upside-down texts in C1
were replaced with Chinese texts, and the Chinese texts in
C1 were replaced with the original, but upside-down,
English texts.

Figure 4. Example of Chinese and upside-down English
texts used in Experiment 2. (a) Condition C1 (b) Condition
c2.

2508



Procedure. The procedure was identical to Experiments
1 except that half of the subjects viewed condition 1 (C1)
stimuli and the others viewed condition 2 (C2) stimuli in a
between-subject counter-balanced design.

Analysis. The analyses were identical to Experiment 1.

(©) (d)

Figure 5. An example of (a) stimulus image, (b) text-
detector map, (c), attentional map of an English-speaking
viewer (5-second viewing), and (d) attentional map of a
Chinese-speaking viewer (5-second viewing).

Results and Discussion

Models with and without Text-Detector Maps. The
average R and ROC of all 14 English-speaking and 16
Chinese-speaking viewers are shown in Table 3. For
English-speaking viewers, one-way ANOVAs showed that
the Sali, Cen, TextDet, SC, and SCT maps performed
differently in all, text-present, and text-absent images for R,
all Fs(4; 65) > 8.47, ps < .01, and for ROC, all Fs(4; 65) >
53.78, ps < .001. SCT predicted attentional maps better than
SC in all, text-present, and text-absent images for R, all
ts(13) > 3.49, ps < .01, and ROC, all ts(13) > 6.61, ps <
.001. For Chinese-speaking viewers, similar results were
obtained - the performances of Sali, Cen, TextDet, SC, and
SCT maps significantly differed for both R, all Fs(4; 75) >
33.91, ps <.001, and ROC, all Fs(4; 75) > 22.86, ps < .001.
SCT vyielded better prediction of attentional maps than SC
for both R, all ts(15) > 4.85, ps < .001, and ROC, all ts(15)
> 5.29, ps < .001. The results of SCT are consistent with
Experiment 1 in that the text detector improved the
prediction of viewers’ visual attention, even in text-absent
images.

Text-Present vs. Text-Absent Images. For English-
speaking viewers, TextDet performed better in text-present
images than in text-absent ones for both R, t(13) = 6.41, p <
.001, and ROC, t(13) = 5.58, p < .001. For Chinese-
speaking viewers, similar results were found: text-present
images obtained higher R and ROC than text-absent ones,
t(15) = 4.97, p < .001, and t(15) = 7.35, p < .001,
respectively.

English vs. Chinese-Speaking Viewers. As shown in
Figure 6, TextDet predicted English-speaking viewers’
attention better than Chinese-speaking viewers’ attention for
all viewing durations in both text-present images, t(7) =
23.12, p < .001, and text-absent images, t(7) = 5.38, p <.01.
These results indicate that the text detector that was
designed for English texts performed better at predicting the
allocation of attention for English-speaking viewers than for
Chinese-speaking ones.

Table 3: The average R and ROC of saliency (Sali),
center-bias (Cen), text-detector (TextDet), saliency
combined with center-bias (SC), and all combined (SCT)
maps as predictors of attentional maps for 5-second
viewing. En represents English-speaking viewers, and Ch
means Chinese-speaking viewers.

Sali  Cen TextDet SC SCT

R (En) 0.17 0.17 0.14 020 0.21
Text-Present 0.15 0.16 0.16 019 0.21
Text-Absent 0.18 0.17 0.12 021 0.22

R (Ch) 0.17 0.16 0.12 0.19 0.20
Text-Present 0.15 0.15 0.14 0.18 0.19
Text-Absent 0.18 0.17 0.11 020 0.21

ROC (En) 0.69 0.61 0.60 0.72 0.73
Text-Present 0.68 0.62 0.63 0.71 0.73
Text-Absent 0.69 0.61 0.59 0.72 0.73

ROC (Ch) 0.68 0.60 0.60 0.70 0.71
Text-Present 0.67 0.61 0.62 0.69 0.71
Text-Absent 0.68 0.60 0.58 0.70 0.70
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Figure 6. The R values of TextDet for 1.5-, 2-, ..., and 5-
second viewing of text-present and text-absent images by
English-speaking (En) and Chinese-speaking (Ch) viewers.

General Discussion

In Experiment 1, we found that adding a text detector to
an attention model improved its prediction of viewers’
visual attention, even in text-absent images. Our results
suggest that non-text objects whose features resemble those
of texts (such as high spatial frequency edges) catch a
disproportionate share of attention. Based on the current
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data, it seems that the viewers’ “biological text detectors”
are somewhat similar to the artificial system and influence
the viewers’ distribution of attention when viewing real-
world images. From a time-course analysis, it appears that
the biological text detector influences the allocation of
attention particularly strongly during later stages of image
inspection when viewers are increasingly likely to attend to
detailed local structures (see Unema et al., 2005) for
semantic interpretation of perceived text.

Whereas the results of Experiment 1 could have been
caused by the text detection algorithm being sensitive to
visual features that generally attract attention, such as edge
density, this interpretation becomes implausible given the
results of Experiment 2. We found that the text detector
designed for English texts predicted English-speaking
viewers’ attention better than Chinese-speaking viewers’,
supporting the hypothesis that viewers have developed a
“text detector” that is sensitive to text patterns they are
familiar with. It is interesting to see that the way we learn to
read influences our allocation of visual attention in everyday
life, even when there are no texts presented and we are not
specifically looking for any texts.

While the present study has demonstrated the influence of
language on visual attention in real-world scenes, further
research needs to identify the visual features that underlie
this effect. This could be achieved by using text detection
algorithms for different writing systems and test their
individual components as predictors of native and non-
native speakers’ attention in natural scenes. Besides a more
comprehensive understanding of attentional control in
humans, such studies may also result in technological
advances. Human viewers can easily locate texts in natural
scenes, performing clearly better than current text-detection
techniques even when the texts are degraded by noise,
rotated, distorted, or shown from unusual perspectives.
Consequently, the results of this line of research, such as
analyzing what features or local structures are actually
learned by the biological text detector, might contribute to
the development of more effective automatic text detectors,
which could, for example, make a great difference to
visually challenged people’s lives.
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