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Abstract

We present initial work on a biologically and cognitively in-
spired model that may allow embodied agents to autonomously
learn sequences of action primitives (forming an overall be-
haviour). Specifically, we combine a flexible model of se-
quence generation with a model of parietal mirror neuron ac-
tivity. The main purpose is to illustrate that the approach is
viable. Although further work is needed to improve the re-
sults sketched out here, the concept is sound and relevant both
to efforts in modelling mirror neuron activity and enabling ar-
tificial embodied agents to autonomously learn sequences of
action primitives.

Keywords: Behavioural sequence learning; Ordinal node
model; Self-organising maps; Mirror neurons

Introduction

We are concerned with the problem of generating sequences
of action primitives which are flexible with respect to the pre-
cise time it takes to execute the different components (primi-
tives) of the same sequence at different times. A thorough dis-
cussion of the issue is given, for instance, by Sandamirskaya
& Schöner (2010). In a nutshell, part of the problem is
that one cannot simply chain together the different primi-
tives through, for example, simple Hebbian learning. Rather,
mechanisms must exist for keeping track of the current loca-
tion in the sequence, including ways of verifying that the cur-
rent action has successfully completed or failed to complete.
Sandamirskaya & Schöner (2010) describe a general frame-
work which can address these issues and we briefly sketch the
main points in the next section.

Overall, the aim of the work in the present paper is to com-
bine said framework with a model of parietal mirror neuron
activity (Thill et al., 2011) and to illustrate that such an ap-
proach is, in principle, viable. Importantly, since the mirror
neuron model used here autonomously organises itself, the
work proposed here may be relevant and helpful in designing
artificial embodied agents that should autonomously learn se-
quences of actions and use them to predict actions of others.

Sequencing via ordinal nodes and conditions of
satisfaction
The gist of the framework by Sandamirskaya & Schöner
(2010) is the existence ofordinal nodes which essentially
count through the sequence. These nodes are implemented
via coupled dynamical systems (seeMethods), designed so
that only one node can be active at a time. Upon comple-
tion of the element of the sequence represented by the ac-
tive node, activation is passed onto the next node in the se-
quence. In their work (e.g. Sandamirskaya & Schöner, 2010;
Sandamirskaya et al., 2011), the action primitives formingthe
sequence exist in the sensorimotor representation of an em-
bodied agent, implemented using techniques from Dynamic
Field Theory (Scḧoner, 2009; Spencer et al., 2009). This has
the advantage that the sensorimotor representations of these
primitives are stable (since they are essentially stable fixed-
point attractors), which makes it particularly simple to link
specific locations in the dynamic fields representing the sen-
sorimotor space of the agent to specific ordinal nodes. Part
of the challenge of the work presented in the present paper
is to illustrate that the ordinal node system could also be at-
tached to a representation with more noise and less stability
than dynamic fields.

The decision that a given action primitive has completed
is implemented a separate system (also exploiting dynamic
fields) that checks for aCondition of Satisfaction (CoS). One
of the open challenges here is the question of how to best
learn the CoS for specific primitives (including identifying
that the primitive has, for whatever reason, failed). It is not
the purpose of the present work to address the open issues
regarding the CoS - rather, we focus on combining the ordinal
node model with a model of mirror neuron activity discussed
in the next section.

Mirror system sequences
One example of sequencing in biology is given by the hy-
pothesised functioning of the mirror system. Without enter-
ing the debate on what higher-level cognitive abilities mirror
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neurons may or may not be useful/essential for (see for in-
stance Hickok, 2008; Rizzolatti & Sinigaglia, 2010, for such
a debate), it appears that parietal mirror neurons in macaque
monkeys organise into pools of neurons responding to spe-
cific motion primitives (e.g. a reach or agrasp but not both;
Fogassi et al., 2005). It has then been hypothesised (e.g.
Chersi et al., 2006) that these pools of neurons can be chained
together to form sequences of simple, often-encountered ac-
tions (such asreach-grasp-bring to mouth for eating). Mod-
els on the basis of this hypothesis have proven useful, for in-
stance, in putting forward theories unifying apparently con-
flicting results on interference and facilitation in actionlan-
guage processing (Chersi et al., 2010).

A particular model that specifically addresses the devel-
opment of parietal mirror neurons has been previously pre-
sented by some of us (Thill et al., 2011). This model uses a
self-organising map (SOM) to illustrate how a “blank” struc-
ture, through the organisational principles of SOMs can au-
tonomously form an organisation whose activity resembles
that of parietal mirror neurons.

The inputs to the model represent an arbitrary encoding
of observed (or executed) motion primitives (e.g. based on
changes in position per time step) and contextual informa-
tion (including, for instance, affordances in the perceived
scenery). These two components are sampled from two dis-
tinct spaces (of arbitrary dimensionality) and concatenated
into a single input vector as required by standard SOM im-
plementations (Kohonen, 1997). The model is trained on re-
peated presentations of all combination of motion primitives
and contexts. After training, the model can be run on-line by
continuously feeding it input vectors and some plasticity (al-
lowing, for instance, the learning of new primitives) can be
retained by not reducing the learning rate to 0 (albeit keeping
it at a low level, see Thill & Ziemke, 2010).

The trained maps organise in a fashion remarkably simi-
lar to that of parietal mirror neurons (Fogassi et al., 2005):
Within the map, different areas encode different action primi-
tives (which could represent motions such asreaching, grasp-
ing or bring-to-mouth, similar to e.g. Chersi et al., 2006).
Within the area encoding one such primitive, some nodes are
active whenever the model input encodes that primitive. Oth-
ers are active only if the action input additionally encodesa
specific context in which the primitive is observed (usually
sufficient to specify the most likely goal of the action, see
Thill et al., 2011). The proportion of context-independent
nodes is a direct consequence of the way inputs are repre-
sented (specifically, of the ratio between the maximal vari-
ability in encoding the primitives and contextual information
respectively, calledβ in the model). Exploring howβ (for
which values between 1 and 5 cover most aspects of interest)
affects the organisation of the maps revealed that, forβ ≈ 3.5,
the proportion of context-independent nodes is similar to the
corresponding neurophysiological data observed in the pari-
etal mirror area of macaques (Fogassi et al., 2005).

Combining models
Previous models of parietal mirror neuron activation tend not
to address the timing aspect of the chains in much detail, fo-
cussing instead on merely linking the different pools forming
a chain through hard-coding (Chersi et al., 2006, 2010) or, for
instance, Hebbian learning (Erlhagen et al., 2007). With the
exception of Chersi et al. (2010), these models do not take
into account that the pools encoding the same primitive under
different goals are not entirely distinct (Fogassi et al., 2005).
Thill et al. (2011), whose main focus is the exact nature of
this overlap between populations, do not specifically address
chain formation at all.

The present paper therefore presents an augmented version
of the model from Thill et al. (2011). Specifically, we now
implement the learning of chains of primitives, using the ap-
proach of Sandamirskaya & Schöner (2010). This new model
then allows us to address a number of open issues: to what ex-
tent is the ability to activate the correct (and only the correct)
sequence of events (given the first element) affected by the
overlap between neural populations? When observing an ac-
tion primitive in an unknown context, is it possible to predict
all possible chains this action could be part of?

These issues are relevant, both for our understanding of
(in particular) sequences in mirror neuron activity and forthe
ability to endow artificial agents with similar abilities. If one
subscribes to the hypothesis that mirror neuron activity helps
us understand the actions of others (see Rizzolatti & Sini-
gaglia, 2010, for a thorough review and discussion), then the
ability to predict the likely outcome of an action given the ini-
tial movement based on the resulting mirror neuron activityis
a desirable ability. This includes the ability to autonomously
learn sequences of actions as well as the ability to both cor-
rectly identify a sequence if the context is clear and predict all
possible sequences if the context is ambiguous (for instance,
a familiar gesture observed in a completely new context).

Methods
Overall model design
The model (Fig. 1) is composed of a self-organising map
which is meant to represent parietal mirror neuron activation
(Thill et al., 2011) and an ordinal node model for sequence
learning (Sandamirskaya & Schöner, 2010). The activity over
time in the SOM is used (1) to train the sequence learning
model, (2) to activate learned sequences and (3) to provide
the input necessary to move from one sequence element to
the next. It therefore combines the idea of chaining pools of
neurons (e.g. Chersi et al., 2006) with the flexible execution
of sequences provided by the ordinal nodes model of San-
damirskaya & Scḧoner (2010).

Self-organising maps as a mirror system
The self-organising maps used in this paper are in essence
identical to those used by Thill et al. (2011) and are trained
in the same manner. The only difference is that the previous
maps explicitly dedicated part of their space to the theoretical
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Figure 1: Overall model architecture. Activation in the
SOM feeds into the ordinal nodes, both to activate the se-
quence (green) and to move between sequence elements (red)
if the CoS is fulfilled (blue). Connections between the SOM
and the nodes are bidirectional; node activity can thus alsobe
used to activate regions in the SOM (omitted in the figure for
clarity).

possibility of learning motion primitives from a second limb
(see Thill & Ziemke, 2010, for details). Since that is irrele-
vant here, the present maps are trained assuming the need to
represent just one limb. The trained maps therefore represent,
as before, five motion primitives observed under two different
contexts. They behave as described in the introduction: input
vectors consisting of a concatenation of observed/executed
motion encoding and contextual information are continuously
fed to the map. Depending on the previously discussed ratio
β, some nodes of the map will be active regardless of the
contextual information whereas others will be sensitive tothe
latter (see Thill et al., 2011, for a complete discussion of the
definition of activity).

Ordinal node model
The ordinal node model used here largely follows San-
damirskaya & Scḧoner (2010) and is described by the fol-
lowing equations:

τḋi (t) = −di (t)+hd + c0 f (di (t)) (1)

−c1 ∑
i′ 6=i

f (di′ (t))+ c2 f
(

dm
i−1 (t)

)

−c3 f (dm
i (t))− cCoSIC (t)+ cinI

τḋm
i (t) = −dm

i (t)+hm + c4 f (dm
i (t)) (2)

−c5 ∑
i′ 6=i

f (di′ (t))+ c6 f (di (t))

where di refers to the activation of theith ordinal node
(and dm

i is the associated memory node needed for proper
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Figure 2:Sequences in the SOM. Shown are the activation of
three primitives (columns) seen under two different contexts
(rows) for a map withβ = 3. Dark regions indicate most ac-
tivity and are clearly in different locations for differentprim-
itives. For the same primitives in different contexts, similar
regions are activated but the overlap between the most active
neurons in each context is limited (see Thill et al., 2011, for a
thorough discussion).

functioning, see Sandamirskaya & Schöner (2010) for de-
tails), f (·) is a sigmoidal nonlinearity and the constants in
the present implementation are chosen as:c0 = 7.2, c1 = 3.6,
c2 = 4.8, c3 = 0.8, c4 = 4, c5 = 2, c6 = 2.6, cin = 0.1,
cCoS = 0.2, hd = −5 andhm = −2. A detailed discussion
of the functioning of the model is given by Sandamirskaya &
Scḧoner (2010). We deviate in two minor aspects: (1) The
term cinI is added and provides an external input (obtained
from the activity in the SOM described above). This is only
used at the beginning of a sequence to activate the first ordinal
node. (2) We simplify the Condition-of-Satisfaction (CoS)
aspect. In the original model, this is given by an additional
dynamic field which is able to “perceive” that the CoS has
been reached. Here, the inhibitory activation is obtained from
the same SOM that would provideI for the activation of the
first node, which simplifies the design of the model. Since
the model is not actually implemented in an agent, there is
also no point in devising a sophisticated ”perception” of the
CoS here. Rather, the CoS is presumed fulfilled after a ran-
domly chosen number of time-steps and the inhibitory acti-
vation released to the ordinal model, thus moving the model
onto the next element of the sequence. This is acceptable for
the present purposes since the point here is to illustrate the
learning of sequences, not the ability to autonomously de-
tect that an element of a sequence has completed (or failed
to complete). An implementation of this model in an agent
would of course need to address this aspect in more detail.
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Task and learning
For eachβ value between 1 and 5 (in increments of.5), 100
maps have been generated. Each map is activated manually
with a series of input vectors which simulate a sequence of 3
motion primitives being executed first in one context and then
in another (see Fig. 2 for an example of two sequences). Two
sets of ordinal nodes are used to learn these two sequences.
Learning is achieved during manual activation of the map by
clamping the relevant ordinal node to an active state and then
using simple Hebbian learning to train weights between this
node and all neurons in the map (with normalised activation).
After training, any weights below a threshold of 0.5 are set to
0 to allow only the SOM nodes with the strongest activation
to connect with the relevant ordinal nodes.

Of particular interest are the following questions: Will both
sets of ordinal nodes correctly activate if the SOM activityis
that of the first element of their respective sequences? Also,
will a set of ordinal nodes trained on the first sequence re-
maininactive if the SOM activity represents the first element
of the second sequence (and vice versa)? Illustrating these
behaviours would confirm good performance of the model
given that sequences are correctly activated if and only if the
map activity corresponds to their first element. It should be
remembered at this point that map activity is noisy and fluc-
tuates over time - the task is therefore not trivial.

An additional interest is the behaviour of the model in case
of ambiguous contextual information. As discussed in the
introduction, this could correspond to observing a familiar
primitive in an unfamiliar context and predicting what the
likely outcome of the action could be. It is of course a matter
of debate what the exact behaviour of the model should be
in this case; one could for instance argue that it should de-
pend on how similar the unfamiliar context is to previously
encountered ones. Here, we simply investigate the behaviour
if the vector encoding contextual information is truly am-
biguous, namely by corresponding to the point in the input
space whose coordinates are equidistant from the subspaces
encoding all known contexts. In other words, the ambigu-
ous context encoding vector cannot be uniquely assigned to
any previously encountered case. We simply postulate that,
in the absence of any information that could favour either of
the chains, the desirable behaviour of the model is to activate
both, essentially predicting that both behaviours are equally
likely.

Results
Correct activation/non-activation
For each value ofβ, 100 sets of 2 sequences have been
learned. Per set, the sequences differ only in the context in
which they have been executed. Asβ increases, the propor-
tion of neurons active in one but not both of the contexts de-
creases (Thill et al., 2011). It can therefore be expected that
the basic task of correctly activating a sequence if the map
activity corresponds to its first element (and not activating
said sequence if the contextual information is that of the sec-

1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

β

P
ro

po
rt

io
n

 

 

Correct activation
Correct non−activation

Figure 3:Correct activation/non-activation. Dark bars in-
dicate the proportion of cases in which presenting the first el-
ement of a sequence correctly triggered the sequence. Light
bars indicate the proportion of the cases that correctly trigger
which correctly remain silent if the first element presented
has the same motion primitive but different contextual infor-
mation.

ond sequence) becomes harder asβ increases. This is indeed
what we find (see Fig. 3). Specifically, it is possible, in most
cases, to correctly activate a sequence by presenting its first
element in map activation (although it does fail on occasion,
likely due to the noisy map activity). Importantly, this is in-
dependent ofβ, which is expected. The light bars in Fig. 3
then show how many (proportionally) of the sequences cor-
rectly activated by their own first element also remain silent
when the first element of the second possible sequence is pre-
sented instead. As expected, this number decreases over time
but remains over.5 in all cases.

However, this measure iterates over sequences that are cor-
rectly activated (or not); it does not measure the number of
maps for which both sequences are correctly activated (or
not). The evolution of this proportion is shown in Fig. 4
(black bars) and is decreasing more dramatically asβ in-
creases. At the same time, it should be noted that fore.g.
β= 4,≈ 60% of nodes in the SOM encoding a given primitive
are active independent of context (leaving only 20% capable
of uniquely identifying each of the contexts).

Correct behaviour under ambiguous context

The second interesting question was whether both sequences
would be activated by the first motion primitive shown in a
perfectly ambiguous context. Considered independently of
the performance on the previous task, we find that a large
number of models indeed activate both sequences given an
ambiguous context In particular, we find that this proportion
increases withβ (from0.4 to> 0.9), likely due to the increas-
ing number of neurons which are active irrespective of con-
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Figure 4: “Perfect” models. Black bars indicate proportion
of cases in which the same model activates the correct se-
quence for each of the two learned sequences if presented
with the first element of each sequence and does not activate
the wrong sequence. Light bars indicate the proportion of
cases fulfilling the first condition which also correctly activate
both sequences if the contextual information is ambiguous
.

text.

This illustrates the expected effect ofβ: as the distinction
between contexts diminishes, activation of both sequencesis
facilitated. However, this measure can again be seen as be-
ing a bit too general since there is not necessarily anything
special about activating both sequences if the same model
failed to not activate a sequence when primed with the first
element (including the contextual information) of the sec-
ond sequence. The more interesting question is therefore
simply how many of the models that correctly behave given
the learned sequences (black bars in Fig. 4also behave as
expected given the first primitive under an ambiguous con-
text (within the context of this work, we can call these mod-
els “perfect”, since they fulfil all the expectations set outto
them). Surprisingly, this proportion appears to be indepen-
dent ofβ (light bars in Fig. 4), although it has to be kept in
mind that forβ ≥ 3, the number of models which fulfill the
first condition is rather low.

In other words, if a model is capable of correctly activating
the relevant sequence (and only that sequence) given a full
first element of that sequence, it is likely toalso activate both
sequences if given the first primitive under an ambiguous con-
text. This is the most significant result in the present paper:
although it is increasingly difficult to find a model which will
correctly activate its sequences given the first element asβ in-
creases, it is then much easier to find a model which can also
activate both sequences in the case of perfectly ambiguous
contextual information.

Discussion
Insights from the model

Most of the results shown have their main purpose in illustrat-
ing that the model works as expected, including the increas-
ing difficulty in obtaining “perfect” models as theβ values
of the underlying maps increase. The exact extent of this in-
crease in difficulty is hard to judge from the work presented
here as several aspects can be improved. First and foremost,
the parameters for the ordinal nodes model are set indepen-
dently of β, even thoughβ has a rather significant effect on
the input into the ordinal nodes and therefore the behaviour
of the sequences. The fact that it was possible at all to create
successful models across the entire range ofβ values under-
lines the potential of the approach. In future work, however,
the focus would have to be onβ values around 3−3.5, since
these are the values for which the activity in the SOM most
resembles that observed by Fogassi et al. (2005) in parietal
mirror neurons (Thill et al., 2011).

The self-organising maps themselves are randomly gener-
ated; nonetheless it seems that some are more suited for a
combination with an ordinal nodes model than others (since
some “perfect” models were found even forβ = 5, although
the number was very low) and more work would be needed
to investigate what features of these maps, if any, facilitate
the task. Insights into this question could prove very valu-
able in more general future work combining the ordinal node
model with sequences that are generated in systems which do
not offer the “nice and clean” activation patterns of dynamic
fields.

The connections between the activity in the map and the or-
dinal nodes are learned with a simple general Hebbian learn-
ing approach and the only transformation of the map activity
consisted of a simple normalisation. Again, this is about the
simplest approach imaginable and it is likely that improve-
ments, including possible non-linear transformations of map
activity, can lead to a higher proportion of “perfect” models
for larger values ofβ (in particular of course forβ ∈ [3,3.5]).

The most interesting result in the present paper was that the
largest difficulty resided in finding models which perform as
expected when started with a first element from either learned
sequence and not, as one might have expected, in finding such
a model thatalso perform correctly on the prediction task.
This is encouraging as it illustrates that the concepts of using
a combination of our previous SOM models of mirror neurons
and the ordinal node model has potential, not just for generat-
ing the sequences one wishes to generate but also for predict-
ing what sequences observed actions can be part of; this both
in the case where the contextual information strongly favours
one of the learned sequences and when the contextual infor-
mation is perfectly ambiguous.

Again, there is a need for future work in this aspect. It
seems reasonable (for the purposes of predicting likely se-
quences an observed primitive could belong to) to expect that
a perfectly ambiguous context should activate all candidates
but it is less clear - and beyond the scope of what can be
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achieved in this space - what should happen if the context is
merely ambiguous but closer in input space to some known
contexts than others. Should the model simply activate the
most likely sequence or would one prefer a mechanism that
could attach a confidence value - indicated for instance by the
time it takes the first ordinal nodes of all candidate sequences
to activate - to indicate most and least likely sequences?

Overall relevance
The work presented here is relevant for at least two areas.
First is the modelling of mirror neurons as it is one of the
first attempts to explicitly include the idea that executingthe
same action primitive at different points in time can lead to
different durations, thus going beyond simple Hebbian-type
associations directly between the primitives forming an over-
all action sequence (e.g. Chersi et al., 2010). Second, by
modelling the specific organisation of parietal mirror neurons
(which can develop autonomously, see Thill et al., 2011) and
using that as an input to the ordinal node system, the model
may provide a way for an artificial agent to learn sequences
of primitives online and autonomously, which is still an open
challenge (Sandamirskaya & Schöner, 2010).

The practical future applications are thus primarily in the
design of future artificial cognitive systems; however all as-
pects of the model are inspired by biology; any implementa-
tion of the model could thus also be relevant to improve our
understanding of the analogous biological systems.

Conclusion
We presented an initial implementation of a mirror system ac-
tivity model augmented with a framework for generating se-
quences. The main purpose was that it is in principle feasible
to use the ordinal node framework to this effect. Although
further work is needed to improve the quality, it was possi-
ble to show that the model can learn sequences based on the
noisy SOM activity as well as correctly predict the likely se-
quence an observed initial primitive can belong to (including
predicting both if both are equally likely). Since the SOM
autonomously organises, the model presented here may be a
viable candidate for autonomous sequence learning using the
ordinal node framework (Sandamirskaya & Schöner, 2010).
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