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Abstract 

The paper applies a limited version of the resources of 
Ontological Semantic Technology to the descriptions of 
animals in the American Heritage First Dictionary and 
constructs a partial ontology from them. The explicitly 
mentioned properties in the descriptions are then 
supplemented by common-sense knowledge that the 
descriptions assume available to their young readership, and 
the output is compared to the previous one. The results, albeit 
modest, shed some interesting light on the most similar and 
dissimilar pairs of animals, as described in text. 

Keywords: common-sense knowledge; Ontological Semantic 
Technology; children’s dictionary; animal dataset; similarity. 

Introduction 
The paper explores the common-sense knowledge that is 

necessary to fully understand the definitions/descriptions 
(henceforth, just descriptions) of around 100 animals in the 
2007 edition of the American Heritage First Dictionary 
(AHFD 2007) aimed at children in grades K-2 (ages 5-8). It 
does not address common-sense reasoning. The purpose is 
to get a grasp on how implicit information affects the 
structure of perceived knowledge, in this case of animal 
descriptions, and similarity among entities.  

The AHFD contains about 2,000 entries, claimed, almost 
entirely correctly, to be written with a controlled vocabulary 
so that that every description contains only words that also 
have entries in the dictionary. What is challenging in this 
design for our task is the possible implication of self-
sufficiency, that is, of a much reduced dependency on the 
child’s knowledge of the world, unstated explicitly in the 
natural language descriptions but (unconsciously) assumed 
to be present for full comprehension. 

Most AFHD definitions for animals follow the “genus 
proximum, differentia specifica” format that is common for 
dictionaries, in particular for the classification of animal 
species: “Goldfish is a kind of fish [genus]. Goldfish are 
usually small and orange [differentia].” Apart from the 
differentiating specifics (small, orange) and the few 
properties that are specifics for the genus (in the AHFD, fish 

live in water, have tails, can swim well) and are thus 
inherited, the remaining knowledge necessary to understand 
such definitions remains implicit, because it is presumed to 
be common-sense of different kinds. There is, for example, 
no mention of a fish’s gills or fins. 

Capturing common-sense knowledge is a daunting task. 
We are assuming that descriptions of the (animal) world of 
this dictionary requires less common-sense knowledge 
simply because this world is more restricted than that of an 
adult and the dictionary was obviously designed to 
accommodate that. If that is so, then getting a grasp of that 
knowledge may be more feasible than in case of a common, 
unlimited, adult-level natural language communication1. 

 The goal is, then, to illustrate how much information is 
lost when common-sense knowledge is not made explicit. 
Using the methods of computational semantics, specifically 
our Ontological Semantic Technology, we are taking 
advantage of the unique design of the dictionary to identify 
the required common-sense knowledge for a reasonably full 
comprehension of its animal descriptions. In this way, we 
aim to get a sense of its common-sense knowledge 
dependency. As a result, we also hope to clarify some issues 
concerning the very nature of common-sense knowledge 
and the feasibility of its computational acquisition and use, 
which is, as a matter of act, our primary and real concern. 

 In Section 1, we introduce the notions of ‘hard’ and ‘soft’ 
common-sense knowledge and explore its relation to 
underdetermination of reality by language and to saliency 
and, then, to ontology and natural language meaning, 
contingency, and instantiation.. In Section 2, we will briefly 
survey pertinent prior work. Section 3 will sketch out the 
Ontological Semantic Technology, our research tool as we 
applied it to the material. Section 4 compares the worldview 
on the animals that the descriptions define with the one 
complemented by the common-sense knowledge necessary 
to understand them. Section 5 discusses the results, 

                                                             
1 The distinction between children as “novices” who know less 

about many domains than “expert” adults is well established (e.g., 
Carey 1985)-for better or worse. 
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identifies the strengths and weaknesses of our approach, and 
discusses the future lines of research. 

Kinds of Common-Sense Knowledge 

Hard and Soft Common-Sense Knowledge 
We are introducing this new pair of terms to differentiate 
between two kinds of common-sense knowledge that a 
reader of the AHFD must possess to fully comprehend a 
description. If that reader does not understand a word in the 
description and that word has its own AHFD entry, he or 
she may access the required knowledge from that entry, 
where it is explicitly stated. So, from the point of the initial 
entry, this information is implied but from the point of the 
dictionary, it is explicitly stated. We call this information 
the ‘soft common-sense knowledge.’ If, on the contrary, 
some information that is needed for a full comprehension of 
the entry is not stated explicitly anywhere in the dictionary, 
we refer to it as the ‘hard common-sense knowledge.’ The 
paper focuses on the latter. 

Starting with the randomly selected AHFD description of 
snake, we line up (see graph in http://web.ics.purdue.edu 
/~vraskin/snake_new_label.pdf) the lexical chains under-
lying the entry dependency: if entry E(x) uses word y in the 
description of word x, and y is not previously mentioned in 
the chain, E(x) leads to E(y). If E(i) does not evoke any new 
words in its description, it becomes a terminal in the 
dependency line. The longest, 10-node dependency line 
holds, starting with the topmost leftmost node and ending 
with the rightmost node at the bottom of the picture: SNAKE 
is-a REPTILE is-a ANIMAL is-a-not PLANT agent-of MAKE has-
agent BEE agent-of FILL result-in FULL precondition-of-not 
HOLD unspecified ROOM. What this perfectly representative 
branch illustrates is that there is no consistent or predictable 
semantic dependency in the chain and that the vagaries of 
lexicographic connection can traverse the domain of 
knowledge, common-sense and other, in all directions, with 
some connections not easily explained. 

Altogether, the knowledge required to understand every 
word in the description of snake as well as every word in the 
descriptions of those words, and, in turn, every word in the 
descriptions of those words, and so on to the end of the 
chain, is expressed in 86 entries. Realistically speaking, no 
5-year-old will read all the entries: much more likely, they 
will have the requisite knowledge of the words. 
Nevertheless, this information is made available by the 
AHFD compilers, perhaps similarly to the glosses, 
footnotes, and explanatory appendices in adult-level 
materials. Its availability makes it not quite common-sense 
knowledge—so we refer to this explicit, but remote 
information, as weak common-sense knowledge. 

Underdetermination and Saliency 
It is known that language underdetermines reality (see, for 
instance, Barwise and Perry 1983; Nirenburg and Raskin 
2004): no matter how fine-grained or verbose the 
description of an event, there will be tons of details about 

the situation that will remain unmentioned. If two men walk 
into the room, a report of that may include what they look 
like, what they wear, the speed of their movement, etc. But 
it will mention nothing about their places of birth, parents’ 
names and occupations, what cars they drive, what they had 
for breakfast, etc.  

Now, all that knowledge exists, and common-sense 
knowledge includes that these people have a birth place, 
have parents, likely drive cars (especially if they’re 
Americans), etc. What is essential, however, is that most of 
the existing but implicit information is not prominent: much 
more likely, the prominence goes with the purpose of those 
people’s entrance into the room, whether there is any cause 
for alarm or displeasure, etc. The amount of prominent, or 
salient common- sense knowledge is much more limited in 
any situation.  

Unfortunately, saliency (see Giora 2003: 13-38 and 
references there) is dynamic and fluctuates very rapidly. In 
AHFD, however, saliency may be conveniently seen as 
deliberately delimited by the availability of entries for 
words, thus reflecting the compilers’ notion of the mental 
model for a five-year-old’s world.  

Instantiation and contingency 
In Ontological Semantic Technology (OST), the ontology 
consists of concepts and relations between them that are 
determined by properties. The concepts anchor lexical 
senses that are defined in the separate lexicon. Thus, one 
sense of the word cat is anchored in the ontological concept 
CAT. In a sentence, A cat can jump from the floor to the top 
of a bookcase, CAT is what the word cat means, i.e., a 
generic, any member of the class.  

In the sentence, Kisa the cat can jump from the floor to 
the top of a six-foot tall bookcase, however, it is no longer a 
generic cat, but a specific instance of the concept, and the 
relationship between the meaning of the word cat and the 
ontological concept CAT is no longer that of generic 
anchoring. This instantiation makes the sentence contingent 
on a number of indices, such as the identities of the speaker 
and hearer, time, place, etc. (see Lewis 1972—cf. Bar 
Hillel’s 1954 comment on rare non-contingent sentences, 
such as, Ice floats on water). 

We understand common-sense knowledge as non-
contingent and involving concepts, not their instances. It is 
about what exists in the world, not what we know about 
particular objects or events. Our common-sense knowledge 
includes the fact that houses may be painted in various 
colors; it does not include the fact that Tom’s house is grey 
with burgundy trim. 

So the common-sense knowledge left implicit by the 
AHFD is strong, non-contingent, and definitely less salient 
than the knowledge explicitly supplied by the AHFD in its 
descriptions. 
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Prior Pertinent Work on Common-Sense 
Knowledge 

Distinguishing common-sense knowledge from other 
implicit types of knowledge has been an issue in approaches 
to knowledge engineering, and while it always is a central 
one, it often remains implicit. Knowledge-based NLP has 
(re-)matured enough both to be able to need as well as to 
accommodate the type of “deep” knowledge that overlaps 
with the varying notions of common sense. 

McCarthy (1959) is often cited as the earliest mention of 
common sense in the literature, but Bar-Hillel’s (1954) well-
known example, “Little John played in his pen,” is already a 
clear indication of the necessity and importance of the 
common-sense knowledge—in this case, about relative sizes 
of objects. 

Prominently, Lenat (1990) started an early large-scale 
systematic project on acquisition of common-sense 
knowledge, CyC. His method was hand-coding by a large 
number of research engineers, with a high turnaround and 
no well-defined acquisition methodology, which affected 
results and rendered them unusable for the NLP community. 

Gordon and Schubert’s overview (2010) classifies current 
approaches to common-sense knowledge acquisition as: 
hand-authoring of rules, as in CyC; abstracting from clusters 
of propositions (e.g., Van Durme 2009); and directly 
interpreting general statements, such as glosses in 
dictionaries (e.g., Clark et al. 2008), akin to the approach of 
the present paper. Other researchers have used tagging, 
annotating, and/or generic machine learning techniques for 
automatically extracting implied common-sense knowledge 
from explicit text on the Web, about which Lin et al. (2004) 
have legitimate reservations, because explicit statements on 
the Web do not necessarily express common-sense 
knowledge. 

Finally, we need to mention the area of research on 
common sense dedicated to children’s development of such 
knowledge, not least related to their overall linguistic-
cognitive development. In particular, children’s knowledge 
about animals is one of the applications. Results that inform 
our present approach include that children focus on external 
features rather than internal organs, on habitats, on behavior 
relevant for humans (dangerous, edible) rather than cladistic 
accuracy (“Is a camel an ungulate?”), and that children’s 
knowledge is derived from observations as much as 
instructions, parents, or media (see Prokop et al. (2007), 
Tunnicliffe et al. (2007), Byrne et al. (2010)). 

In our own previous work (Taylor et al. 2011a), we 
include in the common-sense knowledge rules of a separate 
resource the knowledge-of-the-world information that is not 
already contained in the ontology and lexicon (see next 
section). in the experiment there, we processed text with our 
system, and as part of routine quality assurance, added the 
necessary common-sense knowledge wherever we failed to 
interpret the text correctly because of the unavailability of 
this information in our resources (after we have excluded 
other, more banal reasons for the failure, such as an error in 
the resources or a bug in the software). Thus, we identified 

as missing, for example, size classes necessary to 
understand spatial relations between physical objects, such 
as the understanding that a containing object should have 
greater dimensions than the (solid) object it contains. 

In contrast to previous work, which addressed the 
identification and acquisition of common-sense knowledge 
by OST for the general purpose of processing text, this 
paper applies an appropriately limited version of our 
resources to a very limited corpus of a specific genre in an 
attempt to compare the ontological information following 
from the AHFD descriptions only with the ontological 
information arising from the descriptions supplemented by 
the common-sense knowledge that  the descriptions imply in 
their readership.  

Brief Introduction to OST 
Charniak’s (1972) often (mis)cited children’s story is used 
primarily to discuss inferencing and, hence, reasoning. It is 
even more suitable for exemplifying (in square brackets) the 
most common common-sense knowledge that OST has to 
deal with in order to fulfill its function of representing the 
meaning of natural language text accurately and 
comprehensively.  

Jane was invited to Jack’s birthday party. [One brings 
presents to a birthday party. Presents are often purchased. 
To purchase something, one needs money.] She wondered if 
he would like a kite.  She went into her room and shook her 
piggy bank. [Piggy banks contains money, usually coins. 
Coins make noise when shaken] It made no sound. [Coins 
make noise.] (either there was no money in the piggy 
bank or just no coins but rather bills in the former case, 
Jane may have lacked the money to buy the present)]. 

The italicized part is the original story; our formulation of 
the common-sense knowledge is in square brackets; the 
parenthesized part following the first arrow represents our 
formulation of inferences in reasoning, and while definitely 
pertinent to common-sense knowledge, it will be left out of 
this paper. It is noteworthy that the reasoning statements are 
contingent on the story while common-sense knowledge is 
generic. 

The first and essential function of OST is to interpret the 
text of the story. The OST processor reads each sentence 
linearly and looks it up, word by word, in the OST English 
lexicon. Every sense of every (non-auxiliary, non-
parametric) word in the lexicon is anchored in an 
ontological concept, with its properties and fillers, and the 
fillers can be restricted by the sense. The OST ontology, 
unlike its lexicons, is language-independent (see Nirenburg 
and Raskin 2004 for the basic theory of Ontological 
Semantics, and Raskin et al. 2010, Hempelmann et al. 2010, 
Taylor and Raskin 2011, Taylor et al. 2010, 2011a,b, for the 
much revised OST).  

To use a greatly simplified example, the sense of the 
English word invite will be anchored in the ontological 
concept, probably also labeled “INVITE.” The label does not 
contain any but distinguishing information for the computer 
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and can be any ASCII combination—it is there just for the 
convenience of the human acquirer. 

INVITE 
 is-a  communicative event 
 agent   human 
 beneficiary  human 
 theme  social-gathering 
 purpose  entertainment 
invite  
 Invite 
  agent   [preceding NP] 
  beneficiary  [following NP] 
  theme  [to NP] 
  … 
And the text meaning representation (TMR) of the first 

sentence of the story will result from matching the meaning 
of the NPs in the appropriate EVENT slots. The reality is, of 
course, harder, with more complex syntax, ambiguity, etc. 
The unenhanced-OST problem with the story is still more 
advanced: while TMR for each sentence is not hard to 
produce, the system will not be able to relate the sentences 
to each other, and the text will lack cohesiveness. 

 

 
Figure 1: OST Architecture 

In OST, the information processed prior to computing the 
TMR of the current sentence is used to clarify, complement, 
and disambiguate the current representation process. In this 
case, that information would be helpless and useless 
because, other than Jane as the agent, no previous sentence 
in the story even mentions objects in the following 
sentences, and it is the common objects (or events) that the 
anaphora/coreference resolution establishes as bridges 
between and among sentences. Jane will emerge from the 
story, as interpreted by the unenhanced OST, as performing 
three unrelated actions. It is the common-sense knowledge 
statements in the square brackets above that have to provide 
such common objects to make OST processing possible: the 
bridge words are underlined in the story above., and the 
common-sense knowledge enhanced text can be processed 
by OST normally. 

This is why we recently added to the OST architecture 
(Figure 1 above) the common-sense knowledge resource 
(Taylor et al. 2011a) and the methodology of adding to it 
when the TMRs fall short of the (often hypothetical) gold 
standard (cf. Allen et al. 2008). . 

Ontology of Descriptions and Ontology With 
Common-Sense Knowledge 

In general, we are interested not only in reading and 
understanding a text, but also in structuring information that 
this text contains, as well as enhancing our ontology when 
newly acquired information requires. We are using 
information about animals from AHFD to see whether such 
task is possible.  We then check whether supplying 
additional information (common-sense knowledge left 
implicit in the dictionary) would help with the task (cf. 
Perfors et al. 2005; Kemp et al. 2006). 

Typically, a hierarchy is perceived as one of the most 
important properties in ontology construction.  All animal 
descriptions of the dictionary provide such information.  
Unfortunately, sometimes a word is used that may have 
multiple senses (such as cat being a domestic cat or feline) 
thus creating a flawed hierarchy.  One of the goals, then, is 
to identify such descriptions.  

The proposed measure is conditional on an accepted 
membership assumption. If we assume the veracity of “B is 
A” as a reference point, which gives us a certain amount of 
knowledge about B in terms of its properties, we estimate 
the extent to which “C is B” is (dis)confirmed as 

! 

2"n *w * hierPi (C ,B )
i
#

num(i)
where w is a property weight, and 

! 

hierPi (C ,B ) =

1,  P.b" DB & P.c" DC & b = c
#1,  P.b" DB & P.c" DC & b $ c

0.1,  P " DC & P % DB

0,  otherwise

& 
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( 
( 

) 
( 
( 

 

Placement in the hierarchy as well as concepts’ properties 
(may) affect similarity between concepts. For the purposes 
of this paper, we assumed that the properties that are taken 
into account are all equally weighted. We measure similarity 

of two concepts as 

! 

2"n *w * simPi (A ,B )
i
#

num(i)
 where simPi(A,B) is 

defined as: 

! 

simPi (A ,B ) =

1,   P.a" DA & P.b" DB & a = b
-1,   P.a" DA & P.b" DB & a # b

0.1,   P " DA & P $ DB || P $ DA & P " DB

0,  otherwise

% 

& 
' 
' 

( 
' 
' 

 

Results and Conclusion 
We first wanted to see what kind of structure we would 

get from the descriptions without the use of common sense. 
We calculated pair-wise similarity measurements for all 
animals with AHFD descriptions. The similarities ranged 
from -1.25 to 0.78. It is possible for the similarity to be –N 
where N is the number of properties in both descriptions and 
all properties in the descriptions match but their fillers do 
not. Having calculated the mean and standard deviation, we 
looked at the results that were at least 3 standard deviations 
away from the mean as most similar cases and most 
dissimilar ones. The dissimilar pairs were: ant/chicken, ant/ 
crocodile, ant/pony, ant/whale, bee/chicken, beetle/chicken, 
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bug/chicken, bug/shark, bug/whale, butterfly/chicken, 
caterpillar/chicken, caterpillar/crow, caterpillar/whale, 
chicken/cricket, chicken/fly, chicken/mosquito, chicken/ 
moth, chicken/whale, cricket/whale, crocodile/whale, 
mosquito/whale, moth/shark, moth/whale, turtle/whale.   

It should be noted that, with the exception of the 
chicken/whale, turtle/whale, and crocodile/whale pairs, the 
dissimilar pairs contain insects. One member of the pair is 
(typically) a bird or a mammal that is somehow different 
from the rest of its class, thus deserves an explicit 
clarification, such as a whale being a mammal.  For some 
reason, insects also received a fairly large amount of 
description and thus were easy to contrast with other 
animals.  

The similar pairs are: ape/monkey, bear/panda, bee/moth, 
beetle/butterfly, beetle/cricket, beetle/fly, bug/caterpillar, 
butterfly/cricket, butterfly/fly, camel/giraffe, caterpillar/ 
cricket, caterpillar/moth, cricket/fly, donkey/zebra, eagle/ 
hawk, fox/wolf, goose/turkey, horse/pony, leopard/lion, 
lion/tiger.  Again, (an expected) a pattern can be noticed 
here: those animals that received a lot of similar descriptions 
are being selected.  

There were 7 animals or categories in the dictionary that 
were used in the is-a relations other than to indicate an 
offspring of an animal. These categories were: animal, 
insect, bird, fish, reptile, cat, and horse. Mammal got an 
entry in the dictionary but was not used in any of the 
descriptions. We excluded entries that indicated a young 
animal, such a kitten is a young cat. We calculated the mean 
and standard deviation of each animal relative to the above 
7 categories using the hier metric described above. We 
assumed that if an entry had a description that X is Y, and 
hier(X, Y) was lower than the mean for that overall 
category, the definition should be questioned and should not 
be used for hierarchy construction. The following entries 
were so affected: bat is-a animal, crab is-a animal, goat is-a 
animal, hippo is-a animal, sheep is-a animal, whale is-a 
animal, ostrich is-a bird, tiger is-a cat, lion is-a cat.  

There are several explanations for the results: cat is 
defined as a domestic animal, and thus, of course, cannot be 
a parent of wild animals. Crab has more features that puts it 
next to fish, and so does whale, including the description of 
the habitat. Hippo is mostly described swimming in lakes 
and rivers. Bat is similar in its description to a bird.  Goat 
and sheep created a puzzle for us. However, we considered 
it to be a success to have only 2 problematic entries.   

Interestingly, contradicting the dictionary, the metric 
suggests that donkey and zebra should be types of horse; 
dog and hamster should be types of cat. These entries 
suggest that there is not enough differentiation between the 
affected animals for them to be correctly classified. 

We therefore wanted to see if the ratio changes when the 
omitted common-sense knowledge is added to the 
descriptions and if some puzzling results are corrected. The 
common-sense knowledge consisted of a number of 
additional animal properties, explicitly stated in some 

descriptions but omitted from others, with clearly implied 
values, so we added that information directly to the 
ontology as it emerged from the descriptions. The addition 
to common-sense knowledge solved the hierarchy problem 
of animal in the previous experiment not being an animal, 
and did not introduce any additional problems.   

The distribution of the resulting similarity is shown in 
Figure 2. As seen there, listing results that are 3 standard 
deviations away from the mean proved to be impractical, 
although that was done in the first experiment,. Thus, the 
results below reflect the same number of dissimilar pairs as 
the first experiment: ape/duck, ape/swan, duck/snail, 
crocodile/snail, chicken/snail, crow/snail, alligator/snail, 
ape/goose, beaver/snail, eagle/snail, hawk/snail, 
goose/monkey, fox/snail, hamster/snail, duck/monkey, 
ape/snail, deer/swan, ape/crab, goose/snail, camel/snail, 
jellyfish/monkey, ape/penguin, bear/snail, goat/snail. As 
with previous results, there is a concept that is most 
dissimilar to others (snail), and the dissimilarity looks 
plausible (all below 0). 

 

 
Figure 2. Distribution of similarity of animals 

The pairs that are most similar are again several insects 
and birds, as well as eagle/hawk, crab/lobster, hippo/ 
rhinoceros, bull/cow, dolphin/whale, horse/pony, cow/ 
sheep, cow/pony, cow/sheep, frog/toad, pig/pony, lion/tiger, 
mouse/rat, jellyfish/octopus, donkey/zebra, spider/worm.  
As expected, the similarity results look (more?) reasonable 
with common-sense knowledge (Figure 3). 

 

 
Figure 3: Pair-wise similarity of 7 animals. 

While the most similar and least similar results look good, 
the middle section will need to be improved. Figure 4 shows 
pair-wise comparisons of perceived similarity between cow, 
dolphin, elephant, horse, mouse, rhino, seal, and squirrel.  
We anticipate these results to improve when weights are 
added to properties. 
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Conclusion 
We have demonstrated, on a very limited corpus of 

animal descriptions intended for a very young audience, that 
it is possible to detect semantic structure in natural language 
descriptions as well as pointing to flawed descriptions. The 
results improve with the addition of common-sense 
knowledge omitted from but implied by the descriptions. 
The specific material, from a children’s dictionary that was 
designed to limit the amount of world knowledge that the 
young reader could be counted on contributing, helped us 
delimit the common-sense knowledge. It is clear, of course, 
that this method of defining this elusive resource is not 
useful outside of this artificially restricted environment but 
the convenient handle to it was too tempting to resist. 
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