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Abstract

The paper applies a limited version of the resources of
Ontological Semantic Technology to the descriptions of
animals in the American Heritage First Dictionary and
constructs a partial ontology from them. The explicitly
mentioned properties in the descriptions are then
supplemented by common-sense knowledge that the
descriptions assume available to their young readership, and
the output is compared to the previous one. The results, albeit
modest, shed some interesting light on the most similar and
dissimilar pairs of animals, as described in text.

Keywords: common-sense knowledge; Ontological Semantic
Technology; children’s dictionary; animal dataset; similarity.

Introduction

The paper explores the common-sense knowledge that is
necessary to fully understand the definitions/descriptions
(henceforth, just descriptions) of around 100 animals in the
2007 edition of the American Heritage First Dictionary
(AHFD 2007) aimed at children in grades K-2 (ages 5-8). It
does not address common-sense reasoning. The purpose is
to get a grasp on how implicit information affects the
structure of perceived knowledge, in this case of animal
descriptions, and similarity among entities.

The AHFD contains about 2,000 entries, claimed, almost
entirely correctly, to be written with a controlled vocabulary
so that that every description contains only words that also
have entries in the dictionary. What is challenging in this
design for our task is the possible implication of self-
sufficiency, that is, of a much reduced dependency on the
child’s knowledge of the world, unstated explicitly in the
natural language descriptions but (unconsciously) assumed
to be present for full comprehension.

Most AFHD definitions for animals follow the “genus
proximum, differentia specifica” format that is common for
dictionaries, in particular for the classification of animal
species: “Goldfish is a kind of fish [genus]. Goldfish are
usually small and orange [differential.” Apart from the
differentiating specifics (small, orange) and the few
properties that are specifics for the genus (in the AHFD, fish

live in water, have tails, can swim well) and are thus
inherited, the remaining knowledge necessary to understand
such definitions remains implicit, because it is presumed to
be common-sense of different kinds. There is, for example,
no mention of a fish’s gills or fins.

Capturing common-sense knowledge is a daunting task.
We are assuming that descriptions of the (animal) world of
this dictionary requires less common-sense knowledge
simply because this world is more restricted than that of an
adult and the dictionary was obviously designed to
accommodate that. If that is so, then getting a grasp of that
knowledge may be more feasible than in case of a common,
unlimited, adult-level natural language communication'.

The goal is, then, to illustrate how much information is
lost when common-sense knowledge is not made explicit.
Using the methods of computational semantics, specifically
our Ontological Semantic Technology, we are taking
advantage of the unique design of the dictionary to identify
the required common-sense knowledge for a reasonably full
comprehension of its animal descriptions. In this way, we
aim to get a sense of its common-sense knowledge
dependency. As a result, we also hope to clarify some issues
concerning the very nature of common-sense knowledge
and the feasibility of its computational acquisition and use,
which is, as a matter of act, our primary and real concern.

In Section 1, we introduce the notions of ‘hard’ and ‘soft’
common-sense knowledge and explore its relation to
underdetermination of reality by language and to saliency
and, then, to ontology and natural language meaning,
contingency, and instantiation.. In Section 2, we will briefly
survey pertinent prior work. Section 3 will sketch out the
Ontological Semantic Technology, our research tool as we
applied it to the material. Section 4 compares the worldview
on the animals that the descriptions define with the one
complemented by the common-sense knowledge necessary
to understand them. Section 5 discusses the results,

' The distinction between children as “novices” who know less
about many domains than “expert” adults is well established (e.g.,
Carey 1985)-for better or worse.
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identifies the strengths and weaknesses of our approach, and
discusses the future lines of research.

Kinds of Common-Sense Knowledge

Hard and Soft Common-Sense Knowledge

We are introducing this new pair of terms to differentiate
between two kinds of common-sense knowledge that a
reader of the AHFD must possess to fully comprehend a
description. If that reader does not understand a word in the
description and that word has its own AHFD entry, he or
she may access the required knowledge from that entry,
where it is explicitly stated. So, from the point of the initial
entry, this information is implied but from the point of the
dictionary, it is explicitly stated. We call this information
the ‘soft common-sense knowledge.” If, on the contrary,
some information that is needed for a full comprehension of
the entry is not stated explicitly anywhere in the dictionary,
we refer to it as the ‘hard common-sense knowledge.” The
paper focuses on the latter.

Starting with the randomly selected AHFD description of
snake, we line up (see graph in http://web.ics.purdue.edu
/~vraskin/snake new_label.pdf) the lexical chains under-
lying the entry dependency: if entry E(x) uses word y in the
description of word x, and y is not previously mentioned in
the chain, E(x) leads to E(y). If E(i) does not evoke any new
words in its description, it becomes a terminal in the
dependency line. The longest, 10-node dependency line
holds, starting with the topmost leftmost node and ending
with the rightmost node at the bottom of the picture: SNAKE
is-a REPTILE is-a ANIMAL is-a-not PLANT agent-of MAKE has-
agent BEE agent-of FILL result-in FULL precondition-of-not
HOLD unspecified ROOM. What this perfectly representative
branch illustrates is that there is no consistent or predictable
semantic dependency in the chain and that the vagaries of
lexicographic connection can traverse the domain of
knowledge, common-sense and other, in all directions, with
some connections not easily explained.

Altogether, the knowledge required to understand every
word in the description of snake as well as every word in the
descriptions of those words, and, in turn, every word in the
descriptions of those words, and so on to the end of the
chain, is expressed in 86 entries. Realistically speaking, no
5-year-old will read all the entries: much more likely, they
will have the requisite knowledge of the words.
Nevertheless, this information is made available by the
AHFD compilers, perhaps similarly to the glosses,
footnotes, and explanatory appendices in adult-level
materials. Its availability makes it not quite common-sense
knowledge—so we refer to this explicit, but remote
information, as weak common-sense knowledge.

Underdetermination and Saliency

It is known that language underdetermines reality (see, for
instance, Barwise and Perry 1983; Nirenburg and Raskin
2004): no matter how fine-grained or verbose the
description of an event, there will be tons of details about

the situation that will remain unmentioned. If two men walk
into the room, a report of that may include what they look
like, what they wear, the speed of their movement, etc. But
it will mention nothing about their places of birth, parents’
names and occupations, what cars they drive, what they had
for breakfast, etc.

Now, all that knowledge exists, and common-sense
knowledge includes that these people have a birth place,
have parents, likely drive cars (especially if they’re
Americans), etc. What is essential, however, is that most of
the existing but implicit information is not prominent: much
more likely, the prominence goes with the purpose of those
people’s entrance into the room, whether there is any cause
for alarm or displeasure, etc. The amount of prominent, or
salient common- sense knowledge is much more limited in
any situation.

Unfortunately, saliency (see Giora 2003: 13-38 and
references there) is dynamic and fluctuates very rapidly. In
AHFD, however, saliency may be conveniently seen as
deliberately delimited by the availability of entries for
words, thus reflecting the compilers’ notion of the mental
model for a five-year-old’s world.

Instantiation and contingency

In Ontological Semantic Technology (OST), the ontology
consists of concepts and relations between them that are
determined by properties. The concepts anchor lexical
senses that are defined in the separate lexicon. Thus, one
sense of the word cat is anchored in the ontological concept
CAT. In a sentence, A4 cat can jump from the floor to the top
of a bookcase, CAT is what the word cat means, i.e., a
generic, any member of the class.

In the sentence, Kisa the cat can jump from the floor to
the top of a six-foot tall bookcase, however, it is no longer a
generic cat, but a specific instance of the concept, and the
relationship between the meaning of the word cat and the
ontological concept CAT is no longer that of generic
anchoring. This instantiation makes the sentence contingent
on a number of indices, such as the identities of the speaker
and hearer, time, place, etc. (see Lewis 1972—cf. Bar
Hillel’s 1954 comment on rare non-contingent sentences,
such as, Ice floats on water).

We understand common-sense knowledge as non-
contingent and involving concepts, not their instances. It is
about what exists in the world, not what we know about
particular objects or events. Our common-sense knowledge
includes the fact that houses may be painted in various
colors; it does not include the fact that Tom’s house is grey
with burgundy trim.

So the common-sense knowledge left implicit by the
AHFD is strong, non-contingent, and definitely less salient
than the knowledge explicitly supplied by the AHFD in its
descriptions.
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Prior Pertinent Work on Common-Sense
Knowledge

Distinguishing common-sense knowledge from other
implicit types of knowledge has been an issue in approaches
to knowledge engineering, and while it always is a central
one, it often remains implicit. Knowledge-based NLP has
(re-)matured enough both to be able to need as well as to
accommodate the type of “deep” knowledge that overlaps
with the varying notions of common sense.

McCarthy (1959) is often cited as the earliest mention of
common sense in the literature, but Bar-Hillel’s (1954) well-
known example, “Little John played in his pen,” is already a
clear indication of the necessity and importance of the
common-sense knowledge—in this case, about relative sizes
of objects.

Prominently, Lenat (1990) started an early large-scale
systematic project on acquisition of common-sense
knowledge, CyC. His method was hand-coding by a large
number of research engineers, with a high turnaround and
no well-defined acquisition methodology, which affected
results and rendered them unusable for the NLP community.

Gordon and Schubert’s overview (2010) classifies current
approaches to common-sense knowledge acquisition as:
hand-authoring of rules, as in CyC; abstracting from clusters
of propositions (e.g., Van Durme 2009); and directly
interpreting general statements, such as glosses in
dictionaries (e.g., Clark et al. 2008), akin to the approach of
the present paper. Other researchers have used tagging,
annotating, and/or generic machine learning techniques for
automatically extracting implied common-sense knowledge
from explicit text on the Web, about which Lin et al. (2004)
have legitimate reservations, because explicit statements on
the Web do not necessarily express common-sense
knowledge.

Finally, we need to mention the area of research on
common sense dedicated to children’s development of such
knowledge, not least related to their overall linguistic-
cognitive development. In particular, children’s knowledge
about animals is one of the applications. Results that inform
our present approach include that children focus on external
features rather than internal organs, on habitats, on behavior
relevant for humans (dangerous, edible) rather than cladistic
accuracy (“Is a camel an ungulate?”), and that children’s
knowledge is derived from observations as much as
instructions, parents, or media (see Prokop et al. (2007),
Tunnicliffe et al. (2007), Byrne et al. (2010)).

In our own previous work (Taylor et al. 2011a), we
include in the common-sense knowledge rules of a separate
resource the knowledge-of-the-world information that is not
already contained in the ontology and lexicon (see next
section). in the experiment there, we processed text with our
system, and as part of routine quality assurance, added the
necessary common-sense knowledge wherever we failed to
interpret the text correctly because of the unavailability of
this information in our resources (after we have excluded
other, more banal reasons for the failure, such as an error in
the resources or a bug in the software). Thus, we identified

as missing, for example, size classes necessary to
understand spatial relations between physical objects, such
as the understanding that a containing object should have
greater dimensions than the (solid) object it contains.

In contrast to previous work, which addressed the
identification and acquisition of common-sense knowledge
by OST for the general purpose of processing text, this
paper applies an appropriately limited version of our
resources to a very limited corpus of a specific genre in an
attempt to compare the ontological information following
from the AHFD descriptions only with the ontological
information arising from the descriptions supplemented by
the common-sense knowledge that the descriptions imply in
their readership.

Brief Introduction to OST

Charniak’s (1972) often (mis)cited children’s story is used
primarily to discuss inferencing and, hence, reasoning. It is
even more suitable for exemplifying (in square brackets) the
most common common-sense knowledge that OST has to
deal with in order to fulfill its function of representing the
meaning of natural language text accurately and
comprehensively.

Jane was invited to Jack’s birthday party. [One brings
presents to a birthday party. Presents are often purchased.
To purchase something, one needs money.] She wondered if
he would like a kite. She went into her room and shook her
piggy bank. [Piggy banks contains money, usually coins.
Coins make noise when shaken] It made no sound. [Coins
make noise.] —>(either there was no money in the piggy
bank or just no coins but rather bills> in the former case,
Jane may have lacked the money to buy the present)].

The italicized part is the original story; our formulation of
the common-sense knowledge is in square brackets; the
parenthesized part following the first arrow represents our
formulation of inferences in reasoning, and while definitely
pertinent to common-sense knowledge, it will be left out of
this paper. It is noteworthy that the reasoning statements are
contingent on the story while common-sense knowledge is
generic.

The first and essential function of OST is to interpret the
text of the story. The OST processor reads each sentence
linearly and looks it up, word by word, in the OST English
lexicon. Every sense of every (non-auxiliary, non-
parametric) word in the lexicon is anchored in an
ontological concept, with its properties and fillers, and the
fillers can be restricted by the sense. The OST ontology,
unlike its lexicons, is language-independent (see Nirenburg
and Raskin 2004 for the basic theory of Ontological
Semantics, and Raskin et al. 2010, Hempelmann et al. 2010,
Taylor and Raskin 2011, Taylor et al. 2010, 2011a,b, for the
much revised OST).

To use a greatly simplified example, the sense of the
English word invite will be anchored in the ontological
concept, probably also labeled “INVITE.” The label does not
contain any but distinguishing information for the computer
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and can be any ASCII combination—it is there just for the
convenience of the human acquirer.

INVITE
is-a communicative event
agent human
beneficiary human
theme social-gathering
purpose entertainment
invite
Invite
agent [preceding NP]
beneficiary [following NP]
theme [to NP]

And the text meaning representation (TMR) of the first
sentence of the story will result from matching the meaning
of the NPs in the appropriate EVENT slots. The reality is, of
course, harder, with more complex syntax, ambiguity, etc.
The unenhanced-OST problem with the story is still more
advanced: while TMR for each sentence is not hard to
produce, the system will not be able to relate the sentences
to each other, and the text will lack cohesiveness.
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Figure 1: OST Architecture

In OST, the information processed prior to computing the
TMR of the current sentence is used to clarify, complement,
and disambiguate the current representation process. In this
case, that information would be helpless and useless
because, other than Jane as the agent, no previous sentence
in the story even mentions objects in the following
sentences, and it is the common objects (or events) that the
anaphora/coreference resolution establishes as bridges
between and among sentences. Jane will emerge from the
story, as interpreted by the unenhanced OST, as performing
three unrelated actions. It is the common-sense knowledge
statements in the square brackets above that have to provide
such common objects to make OST processing possible: the
bridge words are underlined in the story above., and the
common-sense knowledge enhanced text can be processed
by OST normally.

This is why we recently added to the OST architecture
(Figure 1 above) the common-sense knowledge resource
(Taylor et al. 2011a) and the methodology of adding to it
when the TMRs fall short of the (often hypothetical) gold
standard (cf. Allen et al. 2008). .

Ontology of Descriptions and Ontology With
Common-Sense Knowledge

In general, we are interested not only in reading and
understanding a text, but also in structuring information that
this text contains, as well as enhancing our ontology when
newly acquired information requires. We are using
information about animals from AHFD to see whether such
task is possible. ~We then check whether supplying
additional information (common-sense knowledge left
implicit in the dictionary) would help with the task (cf.
Perfors et al. 2005; Kemp et al. 2006).

Typically, a hierarchy is perceived as one of the most
important properties in ontology construction. All animal
descriptions of the dictionary provide such information.
Unfortunately, sometimes a word is used that may have
multiple senses (such as cat being a domestic cat or feline)
thus creating a flawed hierarchy. One of the goals, then, is
to identify such descriptions.

The proposed measure is conditional on an accepted
membership assumption. If we assume the veracity of “B is
A” as a reference point, which gives us a certain amount of
knowledge about B in terms of its properties, we estimate
the extent to which “C is B” is (dis)confirmed as

EZ"’ *w* hier, c p)
num(i)
1,PbeEDg &PceED-&b=c
-1,PbEDy &P.cED  &b=c
0.1, PED. &P €& Dy
0, otherwise

Placement in the hierarchy as well as concepts’ properties
(may) affect similarity between concepts. For the purposes
of this paper, we assumed that the properties that are taken
into account are all equally weighted. We measure similarity

where w is a property weight, and

hierp ¢ gy =

s s
22 W Simp )

of two concepts as _i where simpjs gy is

num(i)
defined as:
I, PAED, &PbEDy &a=b
, 1, PaED, &PHEDy &axb
MEAB =101, PED, &P & Dy IPE D, &P € Dy

0, otherwise

Results and Conclusion

We first wanted to see what kind of structure we would
get from the descriptions without the use of common sense.
We calculated pair-wise similarity measurements for all
animals with AHFD descriptions. The similarities ranged
from -1.25 to 0.78. It is possible for the similarity to be —-N
where N is the number of properties in both descriptions and
all properties in the descriptions match but their fillers do
not. Having calculated the mean and standard deviation, we
looked at the results that were at least 3 standard deviations
away from the mean as most similar cases and most
dissimilar ones. The dissimilar pairs were: ant/chicken, ant/
crocodile, ant/pony, ant/whale, bee/chicken, beetle/chicken,
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bug/chicken, bug/shark, bug/whale, butterfly/chicken,
caterpillar/chicken,  caterpillar/crow,  caterpillar/whale,
chicken/cricket, chicken/fly, chicken/mosquito, chicken/
moth, chicken/whale, cricket/whale, crocodile/whale,

mosquito/whale, moth/shark, moth/whale, turtle/whale.

It should be noted that, with the exception of the
chicken/whale, turtle/whale, and crocodile/whale pairs, the
dissimilar pairs contain insects. One member of the pair is
(typically) a bird or a mammal that is somehow different
from the rest of its class, thus deserves an explicit
clarification, such as a whale being a mammal. For some
reason, insects also received a fairly large amount of
description and thus were easy to contrast with other
animals.

The similar pairs are: ape/monkey, bear/panda, bee/moth,
beetle/butterfly, beetle/cricket, beetle/fly, bug/caterpillar,
butterfly/cricket, butterfly/fly, camel/giraffe, caterpillar/
cricket, caterpillar/moth, cricket/fly, donkey/zebra, eagle/
hawk, fox/wolf, goose/turkey, horse/pony, leopard/lion,
lion/tiger. Again, (an expected) a pattern can be noticed
here: those animals that received a lot of similar descriptions
are being selected.

There were 7 animals or categories in the dictionary that
were used in the is-a relations other than to indicate an
offspring of an animal. These categories were: animal,
insect, bird, fish, reptile, cat, and horse. Mammal got an
entry in the dictionary but was not used in any of the
descriptions. We excluded entries that indicated a young
animal, such a kitten is a young cat. We calculated the mean
and standard deviation of each animal relative to the above
7 categories using the hier metric described above. We
assumed that if an entry had a description that X is Y, and
hier(X, Y) was lower than the mean for that overall
category, the definition should be questioned and should not
be used for hierarchy construction. The following entries
were so affected: bat is-a animal, crab is-a animal, goat is-a
animal, hippo is-a animal, sheep is-a animal, whale is-a
animal, ostrich is-a bird, tiger is-a cat, lion is-a cat.

There are several explanations for the results: cat is
defined as a domestic animal, and thus, of course, cannot be
a parent of wild animals. Crab has more features that puts it
next to fish, and so does whale, including the description of
the habitat. Hippo is mostly described swimming in lakes
and rivers. Bat is similar in its description to a bird. Goat
and sheep created a puzzle for us. However, we considered
it to be a success to have only 2 problematic entries.

Interestingly, contradicting the dictionary, the metric
suggests that donkey and zebra should be types of horse;
dog and hamster should be types of cat. These entries
suggest that there is not enough differentiation between the
affected animals for them to be correctly classified.

We therefore wanted to see if the ratio changes when the
omitted common-sense knowledge is added to the
descriptions and if some puzzling results are corrected. The
common-sense knowledge consisted of a number of
additional animal properties, explicitly stated in some

descriptions but omitted from others, with clearly implied
values, so we added that information directly to the
ontology as it emerged from the descriptions. The addition
to common-sense knowledge solved the hierarchy problem
of animal in the previous experiment not being an animal,
and did not introduce any additional problems.

The distribution of the resulting similarity is shown in
Figure 2. As seen there, listing results that are 3 standard
deviations away from the mean proved to be impractical,
although that was done in the first experiment,. Thus, the
results below reflect the same number of dissimilar pairs as

the first experiment: ape/duck, ape/swan, duck/snail,
crocodile/snail, chicken/snail, crow/snail, alligator/snail,
ape/goose, beaver/snail, eagle/snail, hawk/snail,
goose/monkey, fox/snail, hamster/snail, duck/monkey,

ape/snail, deer/swan, ape/crab, goose/snail, camel/snail,
jellyfish/monkey, ape/penguin, bear/snail, goat/snail. As
with previous results, there is a concept that is most
dissimilar to others (snail), and the dissimilarity looks
plausible (all below 0).

-0.2 0 0.2 0.4 0.6 0.8 1 1.2
=100

Figure 2. Distribution of similarity of animals

The pairs that are most similar are again several insects
and birds, as well as eagle/hawk, crab/lobster, hippo/
rhinoceros, bull/cow, dolphin/whale, horse/pony, cow/
sheep, cow/pony, cow/sheep, frog/toad, pig/pony, lion/tiger,
mouse/rat, jellyfish/octopus, donkey/zebra, spider/worm.
As expected, the similarity results look (more?) reasonable
with common-sense knowledge (Figure 3).

—&— Dictionary
—#—Osherson(1990)

added common sense

o 5 10 15 20 25 30

Figure 3: Pair-wise similarity of 7 animals.

While the most similar and least similar results look good,
the middle section will need to be improved. Figure 4 shows
pair-wise comparisons of perceived similarity between cow,
dolphin, elephant, horse, mouse, rhino, seal, and squirrel.
We anticipate these results to improve when weights are
added to properties.
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Conclusion

We have demonstrated, on a very limited corpus of
animal descriptions intended for a very young audience, that
it is possible to detect semantic structure in natural language
descriptions as well as pointing to flawed descriptions. The
results improve with the addition of common-sense
knowledge omitted from but implied by the descriptions.
The specific material, from a children’s dictionary that was
designed to limit the amount of world knowledge that the
young reader could be counted on contributing, helped us
delimit the common-sense knowledge. It is clear, of course,
that this method of defining this elusive resource is not
useful outside of this artificially restricted environment but
the convenient handle to it was too tempting to resist.
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