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Abstract 
Autonomous learning is the ability to learn effectively 
without much external assistance, which is a desirable 
characteristic in both engineering and computational-
modeling. We extend a constructive neural-learning 
algorithm, sibling-descendant cascade-correlation, to monitor 
lack of progress in learning in order to autonomously abandon 
unproductive learning. The extended algorithm simulates 
results of recent experiments with infants who abandon 
learning on difficult tasks. It also avoids network overtraining 
effects in a more realistic manner than conventional use of 
validation test sets. Some contributions and limitations of 
constructive neural networks for achieving autonomy in 
learning are briefly assessed.  

Keywords: autonomous learning; abandoning learning; 
constructive neural networks; SDCC.  

Introduction 
Autonomous learning is the ability to learn effectively 
without much external assistance. As such, autonomy is a 
desired quality in fields such as machine learning and 
artificial intelligence where the effectiveness of learning 
systems is seriously compromised whenever human 
intervention is required. It is likewise a desired feature in 
cognitive science where a goal is to understand the adaptive 
functioning of human and other biological agents in their 
natural environments. An important characteristic of 
autonomous learners is that they can shape their own 
learning and development, in large part by choosing what 
problems to work on. Such choices include selecting a 
problem to learn and deciding whether to continue learning 
on the selected task or abandon it in favor of something else.  

Knowing When to Quit 
Knowing when to stop learning has two obvious 
components – quitting when the problem has been mastered 
and when it is unlikely to be mastered. In the constructive 
neural networks that we favor, victory is declared, and 
learning terminated, when the network is correct on all 
training examples, in the sense of producing outputs that are 
within some score-threshold of their target values (Fahlman 
& Lebiere, 1990; Shultz, 2003).  

Cessation of learning without mastery is considerably 
more problematic, despite being an important component of 
autonomous learning in biological agents. It may be useful 
to analyze such early quitting in terms of costs and benefits. 
The total cost of learning can be conceptualized as energy 
expenditure (of the learning effort) plus opportunity cost 
(the value of the best alternative not chosen, whether other 
learning or exploitation of resources): 𝐶𝑜𝑠𝑡𝑇𝑜𝑡𝑎𝑙 =
𝐸𝑛𝑒𝑟𝑔𝑦𝐿𝑒𝑎𝑟𝑛 + 𝐶𝑜𝑠𝑡𝑂𝑝𝑝𝑜𝑟𝑡𝑢𝑛𝑖𝑡𝑦. Then the net payoff of 
learning is the benefit of successful learning minus the total 
cost of learning: 𝑃𝑎𝑦𝑜𝑓𝑓𝑁𝑒𝑡 = 𝐵𝑒𝑛𝑒𝑓𝑖𝑡𝐿𝑒𝑎𝑟𝑛 − 𝐶𝑜𝑠𝑡𝑇𝑜𝑡𝑎𝑙 .  In 
continuing to work on an unlearnable problem, there would 
be a large negative payoff, cost without benefit. Having 
started to learn such a difficult problem, it could be sensible 
to abandon it when lack of progress becomes evident.   

Previous Work on Abandoning Learning  
Recent computational modeling does suggest that a key 
factor in deciding to abandon learning early is whether 
learning progress is being made (Schmidhuber, 2005, 2010). 
In that work, learning progress is monitored by tracking the 
first derivative of error reduction to identify intrinsic 
rewards, while a reinforcement-learning module selects 
actions to maximize future intrinsic rewards. These models 
curiously conflate novelty with learning success, but it 
seems more correct to base novelty on initial error, and 
compute learning success as recent progress in error 
reduction. These models also include a reinforcement-
learning controller that selects actions, and an external 
network to track learning progress. It seems simpler to 
continue learning by default until lack of progress is 
detected, perhaps in terms of stagnation in error reduction.  

In an idealized learning model, infant looking was 
modeled by information-theoretic properties of stimuli 
(Kidd, Piantadosi, & Aslin, 2010). The negative log 
probability of an event (corresponding to the number of bits 
of information conveyed by a stimulus) was conditioned on 
observing previous events. The larger the negative log 
probability, the more surprising the current event. As 
predicted, 7- to 8-month-old infants were more likely to 
look away from either highly informative or uninformative 
events. The authors dubbed this the Goldilocks effect as 
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infants prefer to work on tasks that are neither too easy nor 
too difficult, but just about right in terms of complexity. 
Although interesting and consistent with an idealized 
statistical model, these findings are not tied to any neural 
computational mechanisms. Also, this model is presumably 
restricted to repeated sequences of events. 

Other recent experiments reported that 17-month-olds 
attend longer to learnable versus unlearnable artificial-
language grammars, taking more trials and more time on 
grammars in which a valid generalization over input 
utterances could be made (Gerken, Balcomb, & Minton, 
2011). Thus, there is now independent evidence that infants 
may have an implicit metric of their learning progress and 
can direct their attention to more learnable material.  

Constructive Artificial Neural Networks 
Constructive artificial neural networks (CANNs) grow a 
network topology while learning, inspired by principles of 
brain function and statistical mechanics. Among the 
attractive features of CANNs are graded knowledge 
representations, capacity for change and self-organization, 
and neurological plausibility. CANNs such as cascade-
correlation (CC) grow by recruiting new hidden units whose 
activity correlates with network error (Fahlman & Lebiere, 
1990). An extension, sibling-descendant cascade-correlation 
(SDCC), dynamically decides whether to install a newly 
recruited unit on the current highest layer (as a sibling) or on 
its own higher layer (as a descendant), thus optimizing the 
network topology for the problem being learned (Baluja & 
Fahlman, 1994). Unit recruitment corresponds roughly to 
processes of neurogenesis and synaptogenesis in the service 
of learning (Shultz, Mysore, & Quartz, 2007). Such CANNs 
have been used to simulate many cognitive, linguistic, and 
social phenomena while addressing important and 
longstanding issues about development and learning 
(Shultz, 2003; Shultz & Fahlman, 2010). They have also 
yielded testable predictions, many of which have been 
confirmed in psychological research. Moreover, CANNs 
have also made considerable progress on several aspects of 
autonomous learning, including network construction in 
which new abilities are built on top of earlier achievements.  

In the present work, we extend SDCC to abandon learning 
that is failing to make progress. This is a natural extension 
for SDCC, which already is able to change phases when it 
detects lack of progress. Both CC and SDCC operate in two 
phases: output phase, in which connection weights entering 
output units are adjusted to reduce network error, and input 
phase in which weights entering hidden units are adjusted in 
order to increase the covariance between candidate-unit 
activation and network error, which ends up recruiting the 
candidate that best tracks network error. Output phase ends 
when error reduction stagnates, whereas input phase ends 
when the covariances between candidate activation and 
network error stop changing.  

We hypothesized that, if error stagnation continues even 
after recruitment, this could additionally signal that the 
problem might be unlearnable. This would be the case, for 

example, on problems with a random structure and 
insufficient regularities. Of course, some potentially 
learnable problems are so difficult that their patterns may 
only seem random. In either case, learning may be 
frustratingly slow and thus signal to stop and turn to 
something else more feasible. Here, we apply our extended 
algorithm to learning problems of varying randomness, 
discuss its potential to cover the infant experiments just 
reviewed, and briefly assess the overall ability and 
limitations of CANNs to learn autonomously.  

Method  

Algorithm Extension for Abandoning Learning 
As noted, each of the two phases in CC and SDCC assesses 
progress within a phase. We define a learning cycle as an 
input phase, which recruits a hidden unit, followed by an 
output phase, which employs the new recruit to help reduce 
network error. (The first learning cycle has only an output 
phase, and no input phase.) To assess learning progress 
across learning cycles, we implemented a new, outside loop 
to assess progress at the end of each output phase, according 
to the following algorithm, in which a counter is initialized 
to 0: 
If first learning cycle, then record current error and continue 
to input phase 
Otherwise, compare current error to previous error as 
absolute difference 

If absolute difference > threshold x previous error, then 
reset counter to 0 and continue to input phase 
Otherwise,  

If counter = patience, then abandon learning 
Otherwise, increment counter by 1 and continue to 
input phase  

This algorithm is analogous to the progress-assessing 
loops already used in the output and input phases of CC and 
SDCC, which compute an absolute difference between a 
current and previous measure (network error for output-
phase and learning-cycle loops, covariance for input-phase 
loops), and test if this difference is greater than a threshold 
proportion of the previous value. If the absolute difference 
exceeds this product, learning continues. If it does not 
exceed this product, then there is a check to determine if a 
patience parameter value has been reached. If patience has 
been exceeded, then the current loop is terminated; 
otherwise the patience counter is incremented by 1 and 
learning continues. Resetting the counter to 0 whenever the 
threshold proportion is exceeded insures that the number of 
cycles without exceeding the threshold proportion must be 
consecutive rather than sporadic. Although we rarely alter 
the threshold and patience parameters for output and input 
phases, here we do explore some parametric variation for 
assessing progress across learning cycles.  

Continuous XOR 
We tested our extended algorithm on a continuous version 
of the exclusive-or (XOR) problem. This is a well 
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understood problem in which the simplicity of binary XOR 
is replaced by a more complex continuous version (Shultz & 
Elman, 1994; Shultz, Oshima-Takane, & Takane, 1995). 
Starting from 0.1, input values are incremented in steps of 
0.1 up to 1, producing 100 x, y input pairs that are 
partitioned into four quadrants of the input space, as 
illustrated in Figure 1. There is a single output unit with a 
sigmoid activation function. Values of x up to 0.5 combined 
with values of y above 0.5 produce a positive output target 
(0.5), as do values of x above 0.5 combined with values of y 
up to 0.5. Input pairs in the other two quadrants yield a 
negative output target (-0.5). These constitute the training 
patterns for conditions that are completely learnable.   
 

 
Figure 1. Schematic drawing of the continuous-XOR 

problem. Gray sectors yield a positive output while white 
sectors a negative output. 

 
To implement problems of different levels of difficulty, 

we vary learnability, defined as the percentage of target 
outputs that are not randomly selected: 0, 25, 50, 75, 80, 85, 
90, 95, or 100. If a fresh random number in the range [1, 
100] ≥ the particular learnability percentage, then the output 
target (-0.5 or 0.5) is selected by a .5 chance.  

Generalization test patterns are generated by incrementing 
x and y values by 0.1 to .94 starting from 0.14. There are 81 
such test patterns, all with correct outputs.  

In preliminary simulations, it became apparent that 
learning results were also sensitive to variation in the 
threshold parameter, so we varied threshold systematically 
(.05, .1, .15, .2, and .3), while holding patience at 2. 

Results 
We do not present all of our results here, but only those 
needed to make important points about basic principles.  

Learning Threshold of .15 
Typical training-error results are plotted in Figure 2 for two 
networks, one exposed to patterns with 50% learnability and 
the other exposed to patterns with 100% learnability. 
Learning threshold is here set to .15. The diamonds just 
above the error curves indicate the particular output-phase 
epochs at which a hidden unit is recruited. As is typical for 
all threshold values, error is reduced much further with full 
learnability than with 50% learnability. Moreover, as is 
typical for thresholds of .1 and higher, learning is 
abandoned much earlier with 50% learnability than with 
100% learnability. These results suggest that the extended 

algorithm is effective at detecting lack of progress in 
learning and show what underlies grouped results to follow.  
 

 
Figure 2. Training error in two networks. With 50% 
learnability, learning stops at 99 epochs. With 100% 

learnability, learning stops at 420 epochs.  
 

To see a more general picture, mean per-pattern training 
error for 20 networks under each learnability condition is 
plotted in Figure 3, again for a learning threshold of .15. 
Per-pattern error for a network is computed by dividing total 
network error by the number of patterns. Each curve is cut 
off at the mean number of output-phase epochs to abandon 
learning for that level of learnability, even though some 
networks surpass this number. Figure 3 provides a more 
complete demonstration that error reduction is greater with 
higher learnability and that the extended algorithm is 
effective at detecting lack of learning progress. Generally, 
the lower the learnability, the earlier learning is abandoned, 
at least up to 90% learnability.  

 

 
Figure 3. Mean per-pattern training error for 20 networks 

under each learnability condition over learning cycles. 
 
Mean learning times are shown in Figure 4, which plots 

the mean output epochs and SE bars for the same 20 
networks. This shows more abstractly that low levels of 
learnability lead to early abandonment of learning. 
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Moreover, the inverted U-shaped curve reveals a substantial 
Goldilocks effect wherein networks show more sustained 
learning for problems of moderate difficulty, peaking at 
90% learnability.  

 

 
Figure 4. Mean output epochs (with SE bars) for 20 

networks with learning threshold of .15.  
 

However, in these simulations, the prolonged learning 
characteristic of the Goldilocks peak does not often yield 
superior performance. This is illustrated for these same 
networks in Figure 5, which plots mean per-pattern test 
error for each learnability condition. Notice the rise in error 
on test patterns for learnability conditions in the 50-90% 
range. Such increases in test error over training suggest that 
networks are over-fitting the training patterns and starting to 
memorize the random training patterns instead of 
abstracting a function to account for the examples. Their 
earlier success in bringing error down is presumably due to 
abstracting the continuous-XOR function. But from then on, 
their only recourse is to start memorizing the random 
patterns. At 0% learnability, it is impossible to abstract even 
a basic idea of the exclusive-or problem.  

 

 
Figure 5. Mean per-pattern test error averaged across 20 

networks under each learnability condition. 
 

A rise in test error in what is typically called the 
validation test set is conventionally used by programmers to 
determine when to stop network learning. This can be 
particularly important when using static networks with 

back-propagation, which have no natural stopping point and 
where there is no a priori idea of how many hidden units 
with which to equip a network. Such validation test sets are 
ordinarily unnecessary for CANNs, which start small and 
keep growing until the problem is learned. With substantial 
numbers of random patterns to be memorized, as here, it can 
be beneficial to also use test error as a training aid, even for 
CANNs. With a learning threshold of .15, the extended 
SDCC algorithm was unable to detect, from training error 
alone, that learning was not progressing, in the sense of 
generalization ability. Although validation test sets are 
useful for programmers, they are unrealistic for autonomous 
learners. Whenever target values and the resulting error 
signals are available, it is likely that learners would use 
them to adjust connection weights, thus effectively 
eliminating such examples from the validation test set.  

Learning Threshold of .3 
This raises the question of whether other, less sensitive 
learning-threshold values could be used to curtail learning 
investment in unproductive tasks like our 50-90% 
learnability conditions. The answer, as revealed in Figure 6, 
is yes for a learning threshold of .3. In this case, there are no 
general increases in test error, except at 0% learnability. 
 

 
Figure 6. Mean test error averaged across 20 networks under 

each learnability condition.  
 

However, the Goldilocks effect for these same networks 
disappears, as revealed in Figure 7. The learning-time peak 
is now at 100% learnability as all other conditions have 
abandoned learning earlier. More generally, we find a trade-
off between the Goldilocks effect and avoidance of rising 
test error. As learning threshold increases, the likelihood of 
finding a Goldilocks effect drops.  

Discussion 

Interpretation of Results 
Our results show that monitoring progress across learning 
cycles can be used to abandon learning that is unlikely to be 
successful. This is both realistic and adaptive because, with 
many problems and domains to learn, it is wasteful to 
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devote time and energy to learn tasks that are too difficult or 
impossible. In an abstract sense, on an admittedly different 
task, our simulations show the ability to capture results like 
those in two new experiments on learning in human infants. 
Infants spend more time learning artificial grammars that 
are possible to learn than they do on grammars that are 
impossible to learn (Gerken, et al., 2011). Similarly, our 
neural networks abandon learning impossible tasks, but not 
tasks that are possible to learn. Further, the network results 
show that the more difficult the task, the earlier that learning 
is abandoned, a finding that could serve as a prediction for 
new human experiments.  

 

 
Figure 7. Mean output epochs (with SE bars) for 20 
networks, with learning threshold of .30.  
  

Another infant experiment showed a Goldilocks effect in 
the sense of spending more learning effort on problems of 
moderate difficulty than on problems that are too easy or too 
difficult (Kidd, et al., 2010). Our networks show this effect 
as well, but add a qualification that the Goldilocks effect 
diminishes at higher levels of a learning-threshold 
parameter. This offers another prediction to test in human 
experiments. The psychological equivalent of learning 
threshold could be sensitivity to changes in error.  

In our model, easy tasks are discarded because they have 
been learned, whereas overly difficult tasks are abandoned 
because learning has stalled. This identifies two different 
explanations for turning away from a learning task, one 
based on success and the other on failure. In contrast, 
learning may continue as long as some detectable progress 
is being made.  

Our model offers a plausible neural mechanism for such 
phenomena that allows for further theoretical exploration 
and extensions. We plan to apply our algorithm to alternate 
tasks and problems, including those used in psychology 
experiments and those that vary on dimensions of difficulty 
other than the proportion of random training patterns.  

Our model predicts that learners need to have learning 
experience with a problem in order to determine whether to 
continue with it or not. At least with inexperienced learners, 
there is no shortcut to avoid actually trying to learn. 
Supporting this idea, we found that amount of first-trial 
error does not predict learnability on the problems we 
studied here. Learners may need to give it a serious try 

before being able to predict whether they might succeed. It 
would be interesting to see if this is also true of biological 
learners. If learners exhibit shortcuts to avoid attempted 
learning, this would imply generalizing across learning 
content due to previous experience, as when learning shuts 
down in the presence of mathematical equations.  

We also found that overtraining effects can be eliminated 
with high learning thresholds. This is more realistic for 
autonomous agents than is monitoring error increases on a 
validation set of test patterns. Moreover, we find that the 
Goldilocks and overtraining effects tend to occur in the 
same circumstances, at relatively low rather than high 
learning thresholds. Goldilocks peaks are due to the 
increased learning times caused by low learning thresholds.  

There is, of course, more to autonomous learning than 
abandoning unsuccessful learning. There is also, for 
example, the choice of which problems to try to learn. We 
hypothesize that novelty detection, characterized by high 
initial error, plays a role in choosing learning problems. 
Abandoning fruitless learning is an essential component of 
autonomous learning because, as noted, it frees the learner 
to search for and work on more appropriate problems.   

Achieving Autonomy in Learning 
Our results show that a small extension to SDCC can 
provide a useful mechanism for detecting lack of progress in 
learning, which is an essential component of autonomous 
learning. In this context, it is worth considering how 
CANNs such as SDCC fare in terms of other aspects of 
autonomous learning (Douglas & Sejnowski, 2007). 
Although there are no completely autonomous artificial 
learning creatures yet, it is also true that CANNs have made 
considerable progress in increasing autonomy in learning.  

In terms of network construction, SDCC, unlike 
algorithms for human-designed networks, autonomously 
designs and builds a network topology that is well suited to 
the problem being learned. The emerging topology can be 
flat or deep or anything in between, and learning stops when 
the problem has been mastered.  

Unlike the ordered hierarchies of some static network 
topologies, SDCC implements a potentially deep, 
heterarchical topology in which increasingly higher-level, 
more abstract concepts are composed of simpler ones. Each 
new hidden unit in SDCC receives signals from input units 
and any existing lower level hidden units, thus continually 
building on existing knowledge. Knowledge-representation 
analysis shows that the first hidden units learn to represent 
the most obvious and superficial aspects of a problem 
domain, whereas later hidden units refine and abstract that 
knowledge (Shultz, 2003). This componential structure is 
further enhanced in knowledge-based CC (KBCC), where 
whole, previously learned sub-networks compete to be 
recruited (Shultz & Rivest, 2001; Shultz, Rivest, Egri, 
Thivierge, & Dandurand, 2007).  

With regard to data selection, like many other artificial 
neural networks, SDCC focuses on inputs that predict its 
output, quickly ignoring inputs that are not predictive. 
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Although such non-predictive inputs are rarely included in 
practice, it is important to note that, when they are included, 
they are rapidly and functionally eliminated by learning of 
near-zero connection weights. It would be feasible to 
eliminate such detected irrelevant inputs from training 
patterns altogether, effectively allowing learning to focus 
attention on what is important while creating a more 
efficient network.  

Among the issues that remain challenges for CAANs, as 
well as for other network learning algorithms, are single-
trial learning, temporal spacing effects, the wake-sleep 
cycle, synaptic meta-plasticity, relations between brain 
structure and function, real-time learning in a changing 
world, and social learning (Douglas & Sejnowski, 2007).  

The role of supervision of learning is a complex topic 
deserving more extended discussion than we can provide 
here. Suffice it to say that CANNs can learn without a 
teacher.  

For more genuine and more complete autonomy in 
learning, we believe that it will be important to examine the 
evolution of learning methods and to implement 
computational models in robots, with pressures for real-time 
behavior in fluid environments. Evolution through natural 
selection is the most plausible natural source of learning 
mechanisms in both biological and artificial agents (Dunlap 
& Stephens, 2009). Based on the cost-benefit analysis we 
presented in the Introduction, it might be possible to show 
that abandonment of learning itself is favored by natural 
selection in evolution simulations. And, of course, robotic 
applications pose a particularly challenging test of learning 
autonomy.  
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