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Abstract

Autonomous learning is the ability to learn effectively
without much external assistance, which is a desirable
characteristic in both engineering and computational-
modeling. We extend a constructive neural-learning
algorithm, sibling-descendant cascade-correlation, to monitor
lack of progress in learning in order to autonomously abandon
unproductive learning. The extended algorithm simulates
results of recent experiments with infants who abandon
learning on difficult tasks. It also avoids network overtraining
effects in a more realistic manner than conventional use of
validation test sets. Some contributions and limitations of
constructive neural networks for achieving autonomy in
learning are briefly assessed.
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Introduction

Autonomous learning is the ability to learn effectively
without much external assistance. As such, autonomy is a
desired quality in fields such as machine learning and
artificial intelligence where the effectiveness of learning
systems is seriously compromised whenever human
intervention is required. It is likewise a desired feature in
cognitive science where a goal is to understand the adaptive
functioning of human and other biological agents in their
natural environments. An important characteristic of
autonomous learners is that they can shape their own
learning and development, in large part by choosing what
problems to work on. Such choices include selecting a
problem to learn and deciding whether to continue learning
on the selected task or abandon it in favor of something else.

Knowing When to Quit

Knowing when to stop learning has two obvious
components — quitting when the problem has been mastered
and when it is unlikely to be mastered. In the constructive
neural networks that we favor, victory is declared, and
learning terminated, when the network is correct on all
training examples, in the sense of producing outputs that are
within some score-threshold of their target values (Fahlman
& Lebiere, 1990; Shultz, 2003).

Cessation of learning without mastery is considerably
more problematic, despite being an important component of
autonomous learning in biological agents. It may be useful
to analyze such early quitting in terms of costs and benefits.
The total cost of learning can be conceptualized as energy
expenditure (of the learning effort) plus opportunity cost
(the value of the best alternative not chosen, whether other
learning or exploitation of resources): Costrorar =
Energyiearn + CoStopportunicy- Then the net payoff of
learning is the benefit of successful learning minus the total
cost of learning: Payoffye: = Benefit,eqrn — COStrorq. IN
continuing to work on an unlearnable problem, there would
be a large negative payoff, cost without benefit. Having
started to learn such a difficult problem, it could be sensible
to abandon it when lack of progress becomes evident.

Previous Work on Abandoning Learning

Recent computational modeling does suggest that a key
factor in deciding to abandon learning early is whether
learning progress is being made (Schmidhuber, 2005, 2010).
In that work, learning progress is monitored by tracking the
first derivative of error reduction to identify intrinsic
rewards, while a reinforcement-learning module selects
actions to maximize future intrinsic rewards. These models
curiously conflate novelty with learning success, but it
seems more correct to base novelty on initial error, and
compute learning success as recent progress in error
reduction. These models also include a reinforcement-
learning controller that selects actions, and an external
network to track learning progress. It seems simpler to
continue learning by default until lack of progress is
detected, perhaps in terms of stagnation in error reduction.

In an idealized learning model, infant looking was
modeled by information-theoretic properties of stimuli
(Kidd, Piantadosi, & Aslin, 2010). The negative log
probability of an event (corresponding to the number of bits
of information conveyed by a stimulus) was conditioned on
observing previous events. The larger the negative log
probability, the more surprising the current event. As
predicted, 7- to 8-month-old infants were more likely to
look away from either highly informative or uninformative
events. The authors dubbed this the Goldilocks effect as
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infants prefer to work on tasks that are neither too easy nor
too difficult, but just about right in terms of complexity.
Although interesting and consistent with an idealized
statistical model, these findings are not tied to any neural
computational mechanisms. Also, this model is presumably
restricted to repeated sequences of events.

Other recent experiments reported that 17-month-olds
attend longer to learnable versus unlearnable artificial-
language grammars, taking more trials and more time on
grammars in which a valid generalization over input
utterances could be made (Gerken, Balcomb, & Minton,
2011). Thus, there is now independent evidence that infants
may have an implicit metric of their learning progress and
can direct their attention to more learnable material.

Constructive Artificial Neural Networks

Constructive artificial neural networks (CANNSs) grow a
network topology while learning, inspired by principles of
brain function and statistical mechanics. Among the
attractive features of CANNs are graded knowledge
representations, capacity for change and self-organization,
and neurological plausibility. CANNs such as cascade-
correlation (CC) grow by recruiting new hidden units whose
activity correlates with network error (Fahlman & Lebiere,
1990). An extension, sibling-descendant cascade-correlation
(SDCC), dynamically decides whether to install a newly
recruited unit on the current highest layer (as a sibling) or on
its own higher layer (as a descendant), thus optimizing the
network topology for the problem being learned (Baluja &
Fahlman, 1994). Unit recruitment corresponds roughly to
processes of neurogenesis and synaptogenesis in the service
of learning (Shultz, Mysore, & Quartz, 2007). Such CANNSs
have been used to simulate many cognitive, linguistic, and
social phenomena while addressing important and
longstanding issues about development and learning
(Shultz, 2003; Shultz & Fahlman, 2010). They have also
yielded testable predictions, many of which have been
confirmed in psychological research. Moreover, CANNSs
have also made considerable progress on several aspects of
autonomous learning, including network construction in
which new abilities are built on top of earlier achievements.

In the present work, we extend SDCC to abandon learning
that is failing to make progress. This is a natural extension
for SDCC, which already is able to change phases when it
detects lack of progress. Both CC and SDCC operate in two
phases: output phase, in which connection weights entering
output units are adjusted to reduce network error, and input
phase in which weights entering hidden units are adjusted in
order to increase the covariance between candidate-unit
activation and network error, which ends up recruiting the
candidate that best tracks network error. Output phase ends
when error reduction stagnates, whereas input phase ends
when the covariances between candidate activation and
network error stop changing.

We hypothesized that, if error stagnation continues even
after recruitment, this could additionally signal that the
problem might be unlearnable. This would be the case, for

example, on problems with a random structure and
insufficient regularities. Of course, some potentially
learnable problems are so difficult that their patterns may
only seem random. In either case, learning may be
frustratingly slow and thus signal to stop and turn to
something else more feasible. Here, we apply our extended
algorithm to learning problems of varying randomness,
discuss its potential to cover the infant experiments just
reviewed, and briefly assess the overall ability and
limitations of CANNSs to learn autonomously.

Method

Algorithm Extension for Abandoning Learning

As noted, each of the two phases in CC and SDCC assesses
progress within a phase. We define a learning cycle as an
input phase, which recruits a hidden unit, followed by an
output phase, which employs the new recruit to help reduce
network error. (The first learning cycle has only an output
phase, and no input phase.) To assess learning progress
across learning cycles, we implemented a new, outside loop
to assess progress at the end of each output phase, according
to the following algorithm, in which a counter is initialized
to O:
If first learning cycle, then record current error and continue
to input phase
Otherwise, compare current error to previous error as
absolute difference
If absolute difference > threshold x previous error, then
reset counter to 0 and continue to input phase
Otherwise,
If counter = patience, then abandon learning
Otherwise, increment counter by 1 and continue to
input phase
This algorithm is analogous to the progress-assessing
loops already used in the output and input phases of CC and
SDCC, which compute an absolute difference between a
current and previous measure (network error for output-
phase and learning-cycle loops, covariance for input-phase
loops), and test if this difference is greater than a threshold
proportion of the previous value. If the absolute difference
exceeds this product, learning continues. If it does not
exceed this product, then there is a check to determine if a
patience parameter value has been reached. If patience has
been exceeded, then the current loop is terminated;
otherwise the patience counter is incremented by 1 and
learning continues. Resetting the counter to 0 whenever the
threshold proportion is exceeded insures that the number of
cycles without exceeding the threshold proportion must be
consecutive rather than sporadic. Although we rarely alter
the threshold and patience parameters for output and input
phases, here we do explore some parametric variation for
assessing progress across learning cycles.

Continuous XOR

We tested our extended algorithm on a continuous version
of the exclusive-or (XOR) problem. This is a well
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understood problem in which the simplicity of binary XOR
is replaced by a more complex continuous version (Shultz &
Elman, 1994; Shultz, Oshima-Takane, & Takane, 1995).
Starting from 0.1, input values are incremented in steps of
0.1 up to 1, producing 100 x, y input pairs that are
partitioned into four quadrants of the input space, as
illustrated in Figure 1. There is a single output unit with a
sigmoid activation function. Values of x up to 0.5 combined
with values of y above 0.5 produce a positive output target
(0.5), as do values of x above 0.5 combined with values of y
up to 0.5. Input pairs in the other two quadrants yield a
negative output target (-0.5). These constitute the training
patterns for conditions that are completely learnable.

1

X

Figure 1. Schematic drawing of the continuous-XOR
problem. Gray sectors yield a positive output while white
sectors a negative output.

To implement problems of different levels of difficulty,
we vary learnability, defined as the percentage of target
outputs that are not randomly selected: 0, 25, 50, 75, 80, 85,
90, 95, or 100. If a fresh random number in the range [1,
100] > the particular learnability percentage, then the output
target (-0.5 or 0.5) is selected by a .5 chance.

Generalization test patterns are generated by incrementing
x and y values by 0.1 to .94 starting from 0.14. There are 81
such test patterns, all with correct outputs.

In preliminary simulations, it became apparent that
learning results were also sensitive to variation in the
threshold parameter, so we varied threshold systematically
(.05, .1, .15, .2, and .3), while holding patience at 2.

Results

We do not present all of our results here, but only those
needed to make important points about basic principles.

Learning Threshold of .15

Typical training-error results are plotted in Figure 2 for two
networks, one exposed to patterns with 50% learnability and
the other exposed to patterns with 100% learnability.
Learning threshold is here set to .15. The diamonds just
above the error curves indicate the particular output-phase
epochs at which a hidden unit is recruited. As is typical for
all threshold values, error is reduced much further with full
learnability than with 50% learnability. Moreover, as is
typical for thresholds of .1 and higher, learning is
abandoned much earlier with 50% learnability than with
100% learnability. These results suggest that the extended

algorithm is effective at detecting lack of progress in
learning and show what underlies grouped results to follow.

35
30

25

—50%
Hiddens

—100%

Hiddens

[N
o

Training Error
1
w

10

0 100 200 300 400 500
Output Epoch
Figure 2. Training error in two networks. With 50%
learnability, learning stops at 99 epochs. With 100%
learnability, learning stops at 420 epochs.

To see a more general picture, mean per-pattern training
error for 20 networks under each learnability condition is
plotted in Figure 3, again for a learning threshold of .15.
Per-pattern error for a network is computed by dividing total
network error by the number of patterns. Each curve is cut
off at the mean number of output-phase epochs to abandon
learning for that level of learnability, even though some
networks surpass this number. Figure 3 provides a more
complete demonstration that error reduction is greater with
higher learnability and that the extended algorithm is
effective at detecting lack of learning progress. Generally,
the lower the learnability, the earlier learning is abandoned,
at least up to 90% learnability.

Mean Train Error

0 100 200 300 400 500 600
Output Epoch

Figure 3. Mean per-pattern training error for 20 networks
under each learnability condition over learning cycles.

Mean learning times are shown in Figure 4, which plots
the mean output epochs and SE bars for the same 20
networks. This shows more abstractly that low levels of
learnability lead to early abandonment of learning.
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Moreover, the inverted U-shaped curve reveals a substantial
Goldilocks effect wherein networks show more sustained
learning for problems of moderate difficulty, peaking at
90% learnability.
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Figure 4. Mean output epochs (with SE bars) for 20
networks with learning threshold of .15.

However, in these simulations, the prolonged learning
characteristic of the Goldilocks peak does not often yield
superior performance. This is illustrated for these same
networks in Figure 5, which plots mean per-pattern test
error for each learnability condition. Notice the rise in error
on test patterns for learnability conditions in the 50-90%
range. Such increases in test error over training suggest that
networks are over-fitting the training patterns and starting to
memorize the random training patterns instead of
abstracting a function to account for the examples. Their
earlier success in bringing error down is presumably due to
abstracting the continuous-XOR function. But from then on,
their only recourse is to start memorizing the random
patterns. At 0% learnability, it is impossible to abstract even
a basic idea of the exclusive-or problem.
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Figure 5. Mean per-pattern test error averaged across 20
networks under each learnability condition.

A rise in test error in what is typically called the
validation test set is conventionally used by programmers to
determine when to stop network learning. This can be
particularly important when using static networks with

back-propagation, which have no natural stopping point and
where there is no a priori idea of how many hidden units
with which to equip a network. Such validation test sets are
ordinarily unnecessary for CANNs, which start small and
keep growing until the problem is learned. With substantial
numbers of random patterns to be memorized, as here, it can
be beneficial to also use test error as a training aid, even for
CANNSs. With a learning threshold of .15, the extended
SDCC algorithm was unable to detect, from training error
alone, that learning was not progressing, in the sense of
generalization ability. Although validation test sets are
useful for programmers, they are unrealistic for autonomous
learners. Whenever target values and the resulting error
signals are available, it is likely that learners would use
them to adjust connection weights, thus effectively
eliminating such examples from the validation test set.

Learning Threshold of .3

This raises the question of whether other, less sensitive
learning-threshold values could be used to curtail learning
investment in unproductive tasks like our 50-90%
learnability conditions. The answer, as revealed in Figure 6,
is yes for a learning threshold of .3. In this case, there are no
general increases in test error, except at 0% learnability.
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Figure 6. Mean test error averaged across 20 networks under
each learnability condition.

However, the Goldilocks effect for these same networks
disappears, as revealed in Figure 7. The learning-time peak
is now at 100% learnability as all other conditions have
abandoned learning earlier. More generally, we find a trade-
off between the Goldilocks effect and avoidance of rising
test error. As learning threshold increases, the likelihood of
finding a Goldilocks effect drops.

Discussion

Interpretation of Results

Our results show that monitoring progress across learning
cycles can be used to abandon learning that is unlikely to be
successful. This is both realistic and adaptive because, with
many problems and domains to learn, it is wasteful to
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devote time and energy to learn tasks that are too difficult or
impossible. In an abstract sense, on an admittedly different
task, our simulations show the ability to capture results like
those in two new experiments on learning in human infants.
Infants spend more time learning artificial grammars that
are possible to learn than they do on grammars that are
impossible to learn (Gerken, et al., 2011). Similarly, our
neural networks abandon learning impossible tasks, but not
tasks that are possible to learn. Further, the network results
show that the more difficult the task, the earlier that learning
is abandoned, a finding that could serve as a prediction for
new human experiments.
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Figure 7. Mean output epochs (with SE bars) for 20
networks, with learning threshold of .30.

Another infant experiment showed a Goldilocks effect in
the sense of spending more learning effort on problems of
moderate difficulty than on problems that are too easy or too
difficult (Kidd, et al., 2010). Our networks show this effect
as well, but add a qualification that the Goldilocks effect
diminishes at higher levels of a learning-threshold
parameter. This offers another prediction to test in human
experiments. The psychological equivalent of learning
threshold could be sensitivity to changes in error.

In our model, easy tasks are discarded because they have
been learned, whereas overly difficult tasks are abandoned
because learning has stalled. This identifies two different
explanations for turning away from a learning task, one
based on success and the other on failure. In contrast,
learning may continue as long as some detectable progress
is being made.

Our model offers a plausible neural mechanism for such
phenomena that allows for further theoretical exploration
and extensions. We plan to apply our algorithm to alternate
tasks and problems, including those used in psychology
experiments and those that vary on dimensions of difficulty
other than the proportion of random training patterns.

Our model predicts that learners need to have learning
experience with a problem in order to determine whether to
continue with it or not. At least with inexperienced learners,
there is no shortcut to avoid actually trying to learn.
Supporting this idea, we found that amount of first-trial
error does not predict learnability on the problems we
studied here. Learners may need to give it a serious try

before being able to predict whether they might succeed. It
would be interesting to see if this is also true of biological
learners. If learners exhibit shortcuts to avoid attempted
learning, this would imply generalizing across learning
content due to previous experience, as when learning shuts
down in the presence of mathematical equations.

We also found that overtraining effects can be eliminated
with high learning thresholds. This is more realistic for
autonomous agents than is monitoring error increases on a
validation set of test patterns. Moreover, we find that the
Goldilocks and overtraining effects tend to occur in the
same circumstances, at relatively low rather than high
learning thresholds. Goldilocks peaks are due to the
increased learning times caused by low learning thresholds.

There is, of course, more to autonomous learning than
abandoning unsuccessful learning. There is also, for
example, the choice of which problems to try to learn. We
hypothesize that novelty detection, characterized by high
initial error, plays a role in choosing learning problems.
Abandoning fruitless learning is an essential component of
autonomous learning because, as noted, it frees the learner
to search for and work on more appropriate problems.

Achieving Autonomy in Learning

Our results show that a small extension to SDCC can
provide a useful mechanism for detecting lack of progress in
learning, which is an essential component of autonomous
learning. In this context, it is worth considering how
CANNSs such as SDCC fare in terms of other aspects of
autonomous learning (Douglas & Sejnowski, 2007).
Although there are no completely autonomous artificial
learning creatures yet, it is also true that CANNSs have made
considerable progress in increasing autonomy in learning.

In terms of network construction, SDCC, unlike
algorithms for human-designed networks, autonomously
designs and builds a network topology that is well suited to
the problem being learned. The emerging topology can be
flat or deep or anything in between, and learning stops when
the problem has been mastered.

Unlike the ordered hierarchies of some static network
topologies, SDCC implements a potentially deep,
heterarchical topology in which increasingly higher-level,
more abstract concepts are composed of simpler ones. Each
new hidden unit in SDCC receives signals from input units
and any existing lower level hidden units, thus continually
building on existing knowledge. Knowledge-representation
analysis shows that the first hidden units learn to represent
the most obvious and superficial aspects of a problem
domain, whereas later hidden units refine and abstract that
knowledge (Shultz, 2003). This componential structure is
further enhanced in knowledge-based CC (KBCC), where
whole, previously learned sub-networks compete to be
recruited (Shultz & Rivest, 2001; Shultz, Rivest, Egri,
Thivierge, & Dandurand, 2007).

With regard to data selection, like many other artificial
neural networks, SDCC focuses on inputs that predict its
output, quickly ignoring inputs that are not predictive.
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Although such non-predictive inputs are rarely included in
practice, it is important to note that, when they are included,
they are rapidly and functionally eliminated by learning of
near-zero connection weights. It would be feasible to
eliminate such detected irrelevant inputs from training
patterns altogether, effectively allowing learning to focus
attention on what is important while creating a more
efficient network.

Among the issues that remain challenges for CAANS, as
well as for other network learning algorithms, are single-
trial learning, temporal spacing effects, the wake-sleep
cycle, synaptic meta-plasticity, relations between brain
structure and function, real-time learning in a changing
world, and social learning (Douglas & Sejnowski, 2007).

The role of supervision of learning is a complex topic
deserving more extended discussion than we can provide
here. Suffice it to say that CANNs can learn without a
teacher.

For more genuine and more complete autonomy in
learning, we believe that it will be important to examine the
evolution of learning methods and to implement
computational models in robots, with pressures for real-time
behavior in fluid environments. Evolution through natural
selection is the most plausible natural source of learning
mechanisms in both biological and artificial agents (Dunlap
& Stephens, 2009). Based on the cost-benefit analysis we
presented in the Introduction, it might be possible to show
that abandonment of learning itself is favored by natural
selection in evolution simulations. And, of course, robotic
applications pose a particularly challenging test of learning
autonomy.
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