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Abstract

Development is about change over time. Computational
models have provided insights into the developmental
changes seen in different cognitive phenomena, including
within the domain of word learning. The present paper uses a
computational model to investigate the interdependencies
between the emergence of different word learning biases. This
model allows investigation of how the emergence of the shape
bias influences novel noun generalization to two other types
of items. The results suggest that the emerging shape bias for
solids can either strengthen or weaken other types of biases
depending on the strength of the cues to solidity or non-
solidity; further, these results make predictions about
children’s biased word learning over time.

Keywords: Computational models; neural networks;
trajectories; word learning; shape bias.

Introduction

Computational models have proven to be an important tool
for investigating many issues within cognitive development
(e.g., Munakata & McClelland, 2003). Such models can
provide insights about the mechanisms that underlie
learning patterns seen across childhood. In the domain of
word learning, various models have been used to investigate
fast mapping and the taxonomic shift (Mayor & Plunkett,
2010), variability effects in learning phonetically similar
words (Apfelbaum & McMurray, 2011), task effects in
novel noun generalization (Samuelson, Schutte, & Horst,
2009), and word learning at different levels of abstraction
(Xu & Tenenbaum, 2007). In this paper we focus on using
connectionist models to examine developmental trajectories
in word learning. This approach has the potential to guide
novel and testable predictions about children’s language
development.

This paper employs a computational modeling approach
to investigate the emergence of word learning biases that
support early language acquisition. This approach allows us
to analyze in detail how different word learning biases
interact and influence one another over the course of word
learning. For example, does a later emerging bias build onto
and benefit from an earlier bias, or is there a period of
conflict as new knowledge is assimilated with prior

knowledge? Our results indicate that different biases do
interact, and the emergence of one bias can either strengthen
or weaken other biases depending on the strength of cues
provided in the learning context . These results allow us to
make predictions about the timing of children’s word
learning and generalization as biases emerge.

Word Learning Biases

One of the reasons that children are such skilled language
learners is because of biases. In the context of word
learning, biases are constraints on the range of things that
children will consider in deciding what a new word refers
to. Rather than assuming that any word can be used to label
any item, children exhibit principled patterns of behavior in
the ways in which they learn words. The main constraint we
will focus on in this paper is found within the domain of
noun learning: the shape bias. The shape bias refers to
young children’s tendency to generalize newly learned
nouns to other objects based on similarity in shape (Landau,
Smith, & Jones, 1988). That is, if a child is taught a novel
name for a novel solid object, he or she will extend that
name to other objects that match the original in shape, even
if that shape match differs in texture, color, or size. Children
show a reliable shape bias by 2 years of age (Samuelson &
Smith, 1999).

A related phenomenon in noun learning is the material
bias. While the shape bias is seen in children’s
generalization of labels to solid objects, the material bias
concerns the labeling of non-solid substances. The material
bias has been found using the same novel noun
generalization (NNG) paradigm typically used in studies of
the shape bias. Children taught a novel name for a novel
non-solid substance tend to generalize that name to other
non-solids that match the original in material rather than to
non-solids matching in features like shape and size but made
out of a different material (e.g., Soja, 1992; Soja, Carey, &
Spelke, 1991). The material bias is typically seen slightly
later than the shape bias, at 3 years of age (Yoshida &
Smith, 2005).

Altogether, the evidence suggests that over the first years
of life children develop preferential attention to different
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features of items in noun learning, first to shape in naming
solid objects and then to material in naming non-solid
substances. This raises the question of whether and how
these biases interact with each other. Does development of
the shape bias earlier on have any impact on the material
bias? Research looking at naming and generalization of
other, ambiguous kinds of items hints at this possibility. For
example, deformable items usually have a characteristic
shape, but are also often categorized as being similar to each
other in material (e.g., an item such as fowel; Samuelson,
Horst, Schutte, & Dobbertin, 2008). Previous research
shows that young children categorize deformable items
based on similarity in material when they are not labeled,
but categorize based on similarity in shape when the items
are labeled (Samuelson & Smith, 2000). Samuelson and
colleagues (2008) hypothesize that this behavior represents
an overgeneralization of the shape bias. This suggests that
the emergence of the shape bias can influence how children
learn and generalize names for other, more ambiguous kinds
of items as well.

The Emergence of Biases

Although there is some debate over the origin of word
learning biases (e.g., see Samuelson & Bloom, 2008), there
is strong evidence to suggest the link between vocabulary
growth and the emergence of word learning biases. This has
been explored especially in relation to the shape bias, with
several pieces of evidence suggesting interactions and
feedback between attending to shape in the context of
learning names for solid objects and overall word learning.
First, there is evidence that the emergence of the shape
bias influences subsequent word learning. For example,
Smith, Jones, Landau, Gershkoff-Stowe, and Samuelson
(2002) intensively trained 17-month-old children on labels
for novel shape-based categories. The children exposed to
this training not only developed a shape bias earlier than is
typically seen, they also showed a dramatic increase in
vocabulary size compared to a control group. These results
suggest that the development of the shape bias accelerates
children’s learning of object names outside of the lab.
Evidence for a feedback relationship between word
learning and the emergence of the shape bias comes from a
study by Gershkoff-Stowe and Smith (2004). In this study,
children were longitudinally tested on their attention to
shape in generalizing a novel label. The researchers also
collected diaries tracking children’s vocabulary growth. The
results showed that children’s attention to shape increased
as the number of nouns in their vocabularies increased.
Together these studies suggest an interesting pattern of
interactions between language acquisition and the
emergence of word learning biases. As children add more
nouns to their growing vocabularies, they show an
increasing preference to attend to shape in the context of
naming solid objects. This preference to attend to shape in
turn facilitates subsequent word learning. This leaves open
the question of how different biases may interact over the

course of language development. Modeling word learning
offers a unique way to investigate this question.

Modeling Word Learning & Biases

Computational models of word learning have been used to
investigate the conditions that support word learning biases.
For example, Colunga and Smith (2005) trained a network
with a vocabulary structure of half solid objects
characterized by shape and half nonsolid objects
characterized by material—a vocabulary structure which
should directly promote the development of shape and
material biases. Results of the virtual analog of the NNG
task confirmed this prediction in that the network showed a
shape bias for solids and a material bias for nonsolids. In a
second simulation, they trained the same network on a
realistic early vocabulary, structured like that of a typical
30-month-old. The earliest nouns that children typically
learn are dominantly comprised of solid objects
characterized by shape (e.g., ball, spoon), and include fewer
non-solid substances characterized by material. The typical
early noun vocabulary also includes types of items that can
be characterized by both shape and material. When trained
on this more complex vocabulary structure, the network
again treated novel test items in ways consistent with shape
and material biases. Colunga and Smith (2005) also reported
behavioral data with young children confirming the
predictions of this network. More recently, Colunga and
Sims (2011) used the same kind of network to successfully
predict differences in novel noun generalization patterns
between early- and late-talker children.

These studies show that computational modeling is a
powerful tool for exploring the emergence of word learning
biases. However, no one has yet used this approach to
investigate the relationships between different biases as they
emerge over the course of word learning. Our approach
offers a new perspective by modeling different word
learning biases together on a developmental timescale.

Approach and Overview

Our approach is to train a network on a typical early child
vocabulary and then test it on generalization of three
different kinds of items over the course of word learning.
The goal is to see how the shape bias emerges over word
learning and how the emergence of the shape bias impacts
generalization performance on other kinds of items. To test
for a shape bias, we implement a virtual NNG task by
exposing networks to novel solid items and seeing if they
treat those alike in shape more similarly than those alike in
material (as in Colunga & Smith, 2005). We also test the
network on two types of novel non-solid items: simply-
shaped, clearly material-based non-solids and complex-
shaped, ambiguous non-solids. An example of a simply-
shaped nonsolid would be a glob of paint. While it can take
on slightly different shapes, it always maintains its “blob-
like” shape. Simply-shaped non-solids are inherently
material-based because there is more variation in the
material than in the shape, making the material of an item a
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more useful cue in classification. Complex-shaped,
ambiguous non-solids, on the other hand, can take on
virtually any shape, e.g. paint smeared in the shape of a
peace symbol. In this case, shape and material have equal
variability and either one could be a cue to classifying an
item. We explore whether the network develops a material
bias for these types of non-solids, and whether that
development depends on the emergence of the shape bias
for solids.

Simulation

Method

Computational models use the Leabra algorithm (Local,
Error-driven and Associative, Biologically Realistic
Algorithm), which combines Hebbian and error-driven
learning. Weights are adjusted based on correlations
between activation units and feedback of errors through
back propagation (O’Reilly et al., 2012).

Architecture The architecture is adapted from Colunga and
Smith (2005) and is implemented as shown in Figure 1.
Words are represented discretely and are input on the Word
Layer. Referents are represented as distributed patterns over
several dimensions on the Perceptual Layer. For example,
the shape and material of an object (say the roundness of a
particular ball and its yellow rubbery material) are
represented by an activation pattern along the Perceptual
Layer, with 12 units for shape and 12 units for material.
Solidity is represented discretely; one unit stands for Solid
and another for Non-Solid. Finally, there is a 25 unit Hidden
Layer that is connected to all the other layers and to itself.
The Hidden Layer serves as the bridge between the Word
Layer and the Perceptual Layer and it is where learning
occurs. Learning progresses as internal representations, or
weights, update and form links between the other two
layers.

Word Layer

] ~

Shape Material Solidm
@ I M U
wientos | o) W OOO0 0
ball
/ I \ O T NEn O )
[T [T
Shape Material ~ Solidity

Perceptual Layer

Figure 1: Architecture of the network and example input
patterns.

Table 1: Noun category proportions used to create the input
vocabulary structure. Beneath each proportion is an example
noun belonging to that category.

Shape Material Both
Solid 52% 10% 12%
ball cheese crayon
Non-solid 4% 16% 6%
bubble glue Jjeans

Input Patterns The input patterns consisted of training and
testing patterns. The training patterns were structured to
capture the same correlational structure as the vocabulary of
a typical 30-month-old child (Fenson et al., 1993). The
structure of this training input was based on that used in
Colunga and Smith (2005). Using adult judgments, nouns
were categorized by both solidity (either solid or non-solid)
and characteristic feature (either shape, material, or both).
The structure of the typical early noun vocabulary could
then be expressed as proportions of each type of category.
See Table 1 for the 6 categories and proportions used in the
current study. The network in this study was trained to learn
50 noun representations, designed to have approximately the
category structure of the typical 30-month-old’s vocabulary.
Note that these 50 noun representations are word inputs to
the network and do not necessarily correspond to 50 nouns
that a child learns.

The test input patterns consisted of three kinds of items
represented along the Perceptual Layer: solids, simply-
shaped non-solids, and complex-shaped non-solids. Test
patterns were made up of triplets of novel items: an
exemplar and two choice items.

For solid test items, this pattern was instantiated by
manipulating activation across all shape and material units
of the network. For clear non-solids, half of the shape units
were kept constant to capture the fact that non-solid
substances are typically seen in simple shapes like smears
and splashes.' That is, these simply-shaped, clear non-solids
had some variability in the shapes they could take on, but
also had some imposed limitations. Finally, the ambiguous
non-solid test patterns were represented by manipulating
activation across all of the shape and material units. This
type of non-solid test pattern is called ambiguous because,
unlike other non-solids the network was exposed to, they
can take on more complex shapes and thus be construed as
having a characteristic material or a characteristic shape.
Therefore, testing involved generalization to novel solid and
simply-shaped, non-solid items as well as generalization to
a new, ambiguous type of non-solid item.

Progression of Word Learning To chart the course of bias
development, we tested the network at multiple points
throughout word learning. Weights were recorded at
initialization, every five words from 0 to 30 words learned,
and every ten words from 30 to 50 words learned. The

! This method for simplifying the shapes of non-solids was also
used in the training input patterns.
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endpoint of learning was recorded as either asymptotic
performance of learning all 50 words, or at the end of 500
epochs of training. This resulted in ten checkpoints along
the trajectory of word learning. Although other measures
such as duration of training could capture how much a
network has learned, we used number of words learned
because this is the key factor driving the development of
biases.

Training. On each trial of training, a word was paired with
a referent. The patterns associated with each word were
determined based on which noun category that word was
meant to represent. For example, a word for a solid item
characterized by shape (like a ball; see Figure 1) should be
used to label things that are like each other in shape but
differ from each other in material. To simulate this pattern,
we randomly selected an input vector to represent, for
example, ball shape. On individual training trials, we paired
that shape pattern with the label bal/l and a randomly
selected material pattern. Therefore over multiple training
trials, a word for a solid item characterized by shape would
be represented by the same shape but different material
patterns. We did this for each of the 50 nouns in the training
set. This part of the simulation was intended to put into the
network the lexical knowledge that a typical child would
bring to the laboratory NNG task.

Testing Following training, the next step was to identify
what sort of word learning biases each run of the network
had developed. We addressed this question with a virtual
version of the NNG task. We presented the network with
three NNG tasks, one for each of the three types of items:
solids, clear non-solids, and ambiguous non-solids. On each
test trial of these tasks, we presented the network with a
triad of novel entities (one at a time) on the perceptual layer.
The triad consisted of an exemplar and two choice items,
one matching the exemplar in shape only and one matching
in material only. The only difference between the trials for
the clear non-solids and those for ambiguous non-solids was
that for clear non-solids, the material-matching choice item
had a simplified pattern along the shape layer, as discussed
in the input patterns section. For each of these three inputs,
we recorded the resulting pattern of activation on the hidden
layer. This is a measure of how the network represents these
items. If the network emphasizes the shape of the item, then
the similarities of the internal representations for the
exemplar and its shape matching choice should be greater
than the similarity of the internal representations for the
exemplar and the material matching choice. If this same
relationship is /ess, then the internal representations
highlight the material of the items. We used these
similarities along with Luce’s choice rule (Luce, 1963) to
calculate probability of choice in order to predict
performance in the NNG task.

Results

We averaged over 10 runs with different initial random
weights. First we looked at the network’s test output across
the entire course of learning. As shown in Figure 2, the
network preferred the shape match choices at test to
different extents depending on both the solidity of the item
presented and the size of its vocabulary at that point. For
example, before training, the network showed no preference
for either the shape match or the material match test choice
for solid items, tending to choose the shape match about half
the time (M = .50, SD = .02). In contrast, by the end of
training the network chose the shape match for solid items
about three quarters of the time at test (M = .78, SD = .04).

On the other hand, while the network started at a similar
state for complex-shaped, ambiguous non-solids, it showed
a different preference by the end of training. Specifically,
the network began with no preference for shape or material,
but developed a shape preference for these non-solids, albeit
to a lesser extent than it did with solid items (M = .62, SD =
.03). This pattern shows an overgeneralization of the shape
bias to this particular kind of non-solid item.
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Figure 2: Mean proportion of shape match choices at test for
each kind of test item. Error bars represent standard error.

Still another pattern was seen in how the network treated
simple-shaped, clear non-solids at test. In this case, the
network actually began with a preference for material,
choosing the shape match test choices slightly but
significantly less than 50% of the time (M = .47, SD = .01,
t(9) = -8.31, p < .001). This inherent material bias was
present at initialization due to the input structure of the clear
non-solids items. Recall that for this type of item, half of the
shape units were kept constant across all of the input.
Because of this, at the time of initialization the networks had
less information about variations in shape on which to base
representations. Instead, the networks harnessed the
relatively richer material information immediately available
about clear non-solid items, and thus showed a slight
preference for this feature initially. However, by the end of
learning the initial preference for material was gone (M =
.50, SD = .02). What caused the network to lose this early
preference for material in the context of clear non-solids?
And more specifically, did it have anything to do with what
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was concurrently being learned about solid items? To get at
this question, we next focused our analysis on the time
window in which the shape bias emerged in learning.
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Figure 3: Mean proportion of shape match choices at test for
solids and ambiguous non-solids immediately before and
after the emergence of the shape bias for solids.

Identifying the point in learning at which the network first
developed a shape bias involved several steps. First we
examined the output of each of the ten runs and picked out
when in learning the network chose the shape match test
choice for solid items greater than 55% of the time.” This
happened on average around the time the network had
learned 15 words from the training set. The next step was to
identify how this point of emergence of the shape bias in
solids affects the network’s behavior concerning the two
kinds of non-solids. We isolated the closest time points in
learning both preceding and following the emergence of the
shape bias. Using this focused time window, we examined
how the network treated each type of non-solid item in
relation to solid items as the shape bias for solids emerged.

To examine the interaction between the emerging shape
bias and the network’s choices among complex-shaped,
ambiguous non-solid test items, proportion of shape choices
were submitted to a 2 (test item type: solid or ambiguous
non-solid) x 2 (time point in learning: before or after the
emergence of the shape bias) mixed design analysis of
variance (ANOVA).” This analysis yielded a significant
main effect of time point, F(1, 30) = 13.41, p = .001, with
no other significant effects. This shows that as the shape
bias for solids emerges in the course of learning, a similar
bias develops for ambiguous non-solids (see Figure 3),
suggesting an overgeneralization of the shape bias to
ambiguous non-solids. Further, this shape bias for both
types of items increases over the time window of interest.

Next we examined the interaction between the emerging
shape bias and the network’s choices among simply-shaped,
clear non-solid test items. Proportion of shape choices were

% 55% was chosen as the threshold for emergence because at this
value the network chose shape matches reliably greater than
chance across the ten runs, #9) = 12.54, p <.001.

? This type of analysis was chosen following Colunga & Smith
(2005) in their analyses of similar networks.

submitted to a similar 2 (test item type: solid or clear non-
solid) x 2 (time point) ANOVA. This analysis yielded main
effects of both test item type (F(1, 30) = 25.47, p < .001)
and time point (F#(1, 30) = 11.14, p < .01). These main
effects are qualified by a significant interaction between test
item type and time point in learning, F(1, 30) = 8.73, p <
.01. As can be seen in Figure 4, as the shape bias for solids
emerges, the network’s preference for shape choices for
clear non-solids also increases, however the nature of these
changes differs between item types. In fact, the network
shows a preference for material test choices for clear non-
solids, even just after the emergence of the shape bias for
solids. Although this preference for material diminishes
somewhat over the time window in question (as shown by
an increase in proportion of shape choices), it does not do so
at a rate proportional to the growth of the shape bias for
solids. This suggests that the emergence of the shape bias
may have a slight diminishing influence on the material bias
for clear non-solids.
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Figure 4: Mean proportion of shape match choices at test
for solids and clear non-solids immediately before and after
the emergence of the shape bias for solids.

Finally, to check that these patterns were specific to the
time window surrounding the emergence of the shape bias,
we ran the same analyses for the immediately following
time window. The only effect that reached significance was
a main effect of item type between solid and clear non-solid
test items, F(1, 32) = 37.62, p < .001. As in the above
analysis, this reflects an ongoing difference in the extent of
shape choices that the network made in the context of these
two types of items. The fact that no other effects were
significant supports the argument that the preceding results
are specific to the time window in learning immediately
surrounding the emergence of the shape bias.

Discussion

The current study investigated the dynamics involved in the
development of the shape bias for solid items and learning
about other kinds of items in early language acquisition. We
found that the emergence of the shape bias for solids led to
either an overgeneralization of the shape bias or a
diminishment of the material bias, depending on the
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strength of the cues to solidity or non-solidity provided by
the test items. depending on the type of test item used.

First, for complex-shaped, ambiguous non-solid test
items, we observed an overgeneralization of the shape bias.
This is consistent with findings that 3-year-old children
overgeneralize the shape bias in extending names to
deformable items (Samuelson et al., 2008). This suggests
that for ambiguous categories, the word learning bias that is
already established, typically the shape bias, takes
precedence and guides generalization.

Second, for simply-shaped, clear non-solid test items, the
material bias diminished as the shape bias for solids
developed, although it did so at a slower rate compared to
the growth of the shape bias. This suggests that the material
bias for clear non-solids was more resistant to the influence
of the developing shape bias, perhaps in part due to the
inherent material preference for these items. This inherent
bias was due to the structure of the input itself, but a similar
early material bias has also been seen in children if they are
tested with simply-shaped non-solid substances on the NNG
task (Colunga & Smith, 2005).

The mechanisms driving the observed changes in bias
learning and development in our networks speak directly to
possible mechanisms in children. The current work suggests
that the network can mainly develop one bias at a time,
which would explain why as the shape bias for solids takes
off, the network also shows a growing preference for shape
for the two other types of items. If this is the case, we would
predict that as the network continued to train on more
words, the material bias for non-solids would come online
(as seen in children) and cause a dip in the established shape
bias for solids. However, by this time the shape bias for
solids would be well established and thus largely resilient
against the network’s shift to focusing on material. After
enough exposure to the vocabulary structure, we would
expect the network to have acquired both a shape bias for
solids and a material bias for non-solids, as is seen in
children later in language development.

This work could be extended to make predictions about
and map to specific places of bias emergence in individual
children’s word learning. By using longitudinal MCDI data
from individual children, one could use networks to analyze
the development of language biases in early- and late-
talkers (as done in Colunga and Sims 2011), looking
specifically at how the emergence of certain word learning
biases affects other biases over time. These biases could
show different patterns of interaction among early- and late-
talkers. In sum, this work opens the door for further
modeling and can make novel, testable predictions about the
development of children’s word learning.
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