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Abstract

Saito and Shimazaki (2012) found that people rely upon
covariation information rather than temporal order
information as cues to causal structure, whereas Lagnado and
Sloman (2006) reported an opposite finding, indicating
relatively greater influence of temporal order cues. The
present research examines the hypothesis that such conflicting
findings result from differences in task complexity.
Specifically, it is proposed that covariation information
becomes less influential as the number of variables increases.
Experiment 1 investigated the relationship between the
judgment strategy (i.e., covariation vs. temporal order) and
the number of variables comprising a causal structure. As a
result, people favored covariation cues primarily in tasks with
simple causal structure. Experiment 2 used more complex
causal structure. The results demonstrated that the tendency to
emphasize covariation cues or to rely upon temporal order
cues changes as a function of task complexity. These results
were consistent with both previous findings and discussed in
terms of causal Bayes net theories and heuristic models.
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Introduction

Many psychological studies have shown that both children
and adults easily form representations of causal relations
(Sloman, 2005; see also Holyoak & Cheng, 2011 for a
review). Causal relations lead to associations of various
kinds of events and they may form part of complex causal
structures. Knowledge about the causal structure plays an
important role in explanations, predictions, control, as well
as decision making (Pearl, 2000). Despite its importance, in
many cases, actual causal connections among constituent
elements are often difficult to discern or to tease out of a
complicated pattern of contingencies. For instance, if one
hears a bit of gossip from colleague, X, and then hears same
story from another colleague, Y, this might lead to the
inference that X had passed the rumor to Y (i.e., X—Y)
based on the temporal order in which one receives this
information. However, it is also possible that, earlier, Y had
initially gossiped to X and then it is heard from X prior to
seeing Y (i.e., Y—X). Or, a third party, such as the boss, Z,
may have spread this rumor (i.e., X<—Z—Y). In light of this,
how might be people acquire knowledge about causal
structure?

As Hume (1739/2000) has argued that causal relations
are unobservable and therefore must be induced from

observable events, covariation among observable events
serves as a fundamental cue to learn causal structure.
Covariation is formally represented as a joint probability
distribution and is specifically explained as patterns of
presence and absence for binary variables. When a causal
relation exists, strong covariation between a cause and its
effect will be expected except for the possibility that both
variables are caused by a common cause. In contrast, the
absence of covariation indicates that two variables are not
related to each other—except for the effects of other
variables. However, there are several limitations to the use
of covariation cues. First, covariation information becomes
more complex as the number of variables increases. With
two binary variables, for example, covariation is represented
by a 2 x 2 contingency table of 4 data patterns; however, 32
data patterns result from five binary variables. In addition,
covariation itself is inadequate for distinguishing a unique
causal structure from models that represent the same joint
probability distribution (i.e., Markov equivalent). When
event X covaries with event Y, for instance, it is difficult to
determine the precise cause. These examples suggest the
difficulty of learning causal structure using only covariation
Cues.

In addition to covariation, another important cue to
causal structure is temporal order in which people observe
the states of variables. Because causes are often observed to
happen prior to their effects, when event X precedes event Y,
it is probable that X causes Y. However, the observed
temporal order does not always serve as an accurate cue.
First, temporal order may mislead people with regard to the
direction of causal relations. In situations where people
observe effects prior to their causes, temporal order
information indicates the opposite causal direction. A
second issue concerns spurious correlation. Even if event X
precedes event Y, their co-occurrence might be the result of
a hidden common cause Z. In this case, a temporal delay
between two variables will result in a false belief that the
earlier event causes the later, despite the fact that no causal
relation exists. Thus, although temporal order cues can
facilitate causal structure learning, they may also mislead
causal inferences.

Combined with information indicating hidden causes are
absent, both kinds of information become more useful.
When event X covariates with event Y, three possible causal
structures are presumed (i.e., X—Y, XY, or X—Z-Y).
The absence of hidden causes enables people to exclude the
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possibility that both events are caused by a hidden cause. If
event X occurs alone in this situation, then it is suggested
that X causes Y. Since nothing happens without a cause (i.e.,
necessity), an event that occurs alone must be a cause
variable but not an effect variable.

Previous studies on causal structure learning have
provided conflicting evidence regarding the use of
covariation cues and temporal order cues (e.g., Lagnado &
Sloman, 2006; Saito & Shimazaki, 2012; White, 2006). On
one hand, Lagnado and Sloman (2006) demonstrated that
people preferred temporal order cues to covariation cues. In
their experiment, participants were required to send
messages from a master computer to one of four computers
in a network (e.g., computer A), to observe whether other
computers also received the messages (e.g., computer B, C,
& D), and then to infer the structure of network. Participants
observed the states of the computers in the order different
from the causal order (e.g., temporal order: A—~D—C—B,
causal order: A—-B—C & D). Although participants were
given instructions including information on the unreliability
of temporal order and the absence of hidden causes, their
judgments were based on temporal order cues rather than
covariation cues. White (2006) reported similar results
indicating that participants relied heavily on temporal order
information, in spite of the fact that they received explicit
instructions regarding the way in which causal structures are
induced from covariation information.

On the other hand, Saito and Shimazaki (2012) showed
the opposite results that people use covariation cues rather
than temporal order cues. The experimental task was to
observe occurrences of two types of bacteria and to infer
their causal relationship. As in Lagnado and Sloman (2006),
participants were instructed that temporal order cues were
unreliable and that there were no hidden causes. In the
condition in which covariation cues contradicted temporal
order cues, participants heavily favored covariation
information over temporal order information. Furthermore,
these judgments were made after several observations.

A possible interpretation of these conflicting findings
involves differences in task complexity, especially as this is
reflected by number of variables. It is possible that task
complexity modulates an individual’s judgment strategy. A
critical difference between the preceding experiments is the
number of variables that constitute the causal structure.
Whereas Lagnado and Sloman (2006) required participants
to learn causal directions among four variables, and White
(2006) adopted five variables in constituting a causal
structure, the design of Saito and Shimazaki (2012)
presented a causal structure involving only two variables—
the minimum unit for causal structures. Since increasing the
number of variables complicates covariation information, it
therefore would be difficult to induce a complex causal
structure based solely on covariation cues.

Several studies have revealed the role of task complexity
in causal learning and inference (e.g., Marsh & Ahn, 2006;
Reips & Waldmann, 2008). Marsh and Ahn (2006)
demonstrated that the task complexity served as a

determinant of a primacy effect and a recency effect. When
a few variables were observed, information presented earlier
weighted more than information presented later (i.e.,
primacy effect); in contrast, information presented later was
emphasized more than information presented earlier when
many kinds of variables existed (i.e., recency effect). In a
similar vein, Reips and Waldmann (2008) showed that
accurate diagnostic inferences depended on the number of
variables in the experimental task. These studies suggest the
importance of task complexity in causal judgment.

The purpose of the present study is to investigate the
relationship between task complexity and the judgment
strategy in causal structure learning. In order to manipulate
task complexity, the number of variables composing the
causal structures was manipulated in Experiment 1.
Experiment 2 employed different forms of causal structures.
The hypothesis predicts that people use covariation cues
rather than temporal order cues in learning simple causal
structures whereas they rely more upon temporal order cues
than covariation cues in inferring complex causal structures.

Experiment 1

Experiment 1 was designed to investigate how strategies
change as a function of the number of variables in learning a
causal structure. The experimental task was to observe states
of the variables and to infer causal relations among these
variables. The number of variables in the causal structure
was varied for the manipulation of task complexity. The
authors predicted that when the number of variables was
small covariation would be more emphasized rather than
temporal order and that when the number of variables was
large temporal order would be more reflected than
covariation.

Method

Participants and design A total of 24 undergraduates from
Kwansei Gakuin University received course credit for
taking part in this experiment. The number of variables
(three, four, and five) was manipulated within participants.
Each participant performed three causal learning tasks with
different causal structures.

Instructions Participants received verbal and written
instructions in Japanese. An English translation of outlines
of the instructions was as follows:

Imagine that you are a scientist who is attempting to
reveal causal relations among several newly
discovered bacteria. Whether one bacterium
propagates another bacterium, or whether they are
irrelevant to each other are unknown to you. In order
to investigate the relations among the bacteria, you
put one type of bacterium into the 40 containers of
liquid nutrient medium. Then you observe the states
of other bacteria under the microscope. Before
performing each task, you will be informed about
which bacterium is put into the nutrient medium. (The
bacterium serves as a first cause.)
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Additionally, the following three facts should help
you consider causal relations among bacteria. First, it
is not always true that one bacterium is certain to
propagate other bacterium even if there is a causal
relation between them. That is, a causal relation
among bacteria is probabilistic. Second, there are no
hidden causes as this is a controlled situation.
Therefore, when a bacterium exists, except for the one
originally put into the liquid nutrient medium by
yourself (i.e., first cause), there is another bacterium
that acts to propagate it. Third, the states of bacteria
develop in order. This is either because it takes time
for a bacterium to propagate another bacterium or
because it takes time to identify the presence and
absence of bacteria due to their invisibility without
the use of microscope. Therefore, it could be that a
bacterium has propagated another bacterium before it
turned out to be present.

Your task is to observe the occurrences and non-
occurrences of these bacteria and to infer causal
relations among them. Note that the experimental task
does not require any knowledge of biology. (The
remaining instructions describe how to progress
through the learning phase and test phase.)

After receiving the instructions, participants were asked

whether they understood the instructions. In this cover story,
the number of variables (three vs. four wvs. five)
corresponded to the number of bacteria participants
observed in each task.
Learning phase At the beginning of the learning phase,
participants were taught how many kinds of bacteria would
appear (e.g., three, four, or five) and which bacterium would
be put into the 40 containers of nutrient medium (i.e., first
cause) in each condition. The learning phase consisted of 40
trials that presented information about the presence and
absence of the bacteria. Participants were asked to observe
the states of the bacteria and to consider their causal
relations. First, a button labeled “NEXT” was displayed on
a screen. After clicking the button, the shapes of the several
number of bacteria labeled with question marks were shown
(i.e., they remained unknown). The number of bacteria
varied across conditions. There were three bacteria in the
three variables condition, four bacteria in the four variables
condition, and five bacteria in the five variables condition.
Then, information about the state of the bacterium was
given in order. The presence of bacteria was indicated by
the appearance of bacteria; in contrast, the absence of
bacteria was represented by the appearance of bacteria
labeled with a cross mark. The inter-stimulus interval was
1s, and the screen was returned to its primary state (i.e.,
“NEXT™) 2s after the all bacteria appeared.

Figure 1 illustrates the causal order in which causes
produced effects and the temporal order in which
participants observed the states of variables. Covariation
information was arranged based on these causal structures
and the causal strength of the relation. As the instructions

4 variables condition 5 variables condition
Figure 1: Causal structures in Experiment 1.
Continuous lines represent causal relations, whereas
dotted lines indicate temporal orders.

3 variables condition

stated causal relations among bacteria were probabilistic,
the probability that causes produced effects was 80 percent.
In the three variables condition in which participants
observed 40 cases, for example, 26 cases included the
presence of bacteria A, B, and C. In 6 cases, bacteria A and
B were present; bacteria A and C were present in additional
6 cases. The remaining 2 cases included the presence of
bacterium A and the absence of bacteria B and C. While the
first cause was always present, other variables did not occur
unless their specific cause was present. As the number of
variables increased, covariation information became more
complex. As is evident in Figure 1, temporal order was
inconsistent with causal order. Arranging the temporal order
to be different from the causal order enabled assessment of
the degree to which covariation cues and temporal order
cues were used to infer causal structure.

Test phase After observing 40 cases, participants were told
to infer causal structure in the test phase. Participants
received a sheet in which bacteria were displayed in the
same way as they were shown in the learning phase, with
light gray lines between the bacteria. The instructions
required participants to judge whether a casual relation
existed and to draw an arrow from a cause to an effect on
the line when a causal relation was assumed. Participants
had to consider three lines in the three variables condition,
six lines in the four variables condition, and ten lines in the
five variables condition.

Results and Discussion

To investigate judgment strategy in causal structure learning,
the authors defined usage rates as measures of the degree to
which participants used covariation cues and temporal order
cues. The usage rate of covariation was calculated by
dividing the number of links drawn by participants to be
consistent with covariation cues by the number of all links
suggested by covariation information. In the three variables
condition, for example, the link from A to B and the link
from A to C were supported by covariation cues (see Figure
1). If participants gave these two links as their answer, their
covariation usage rates were 100 percent; in contrast, when
they failed to answer both links, the usage rates were 0
percent. The usage rate of temporal order was calculated in
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a similar manner. In the above example, temporal order cues
sustained the link from B to C and the link from C to A
respectively (see Figure 1). If participants responded either
of the links, their temporal order usage rates were 50%.
These indices represent the amount of use of each cue by
participants.

Figure 2 shows the usage rates of two types of cues in
each condition. When the number of variables was three or
four, participants used covariation rather than temporal
order; however, there seemed to be no difference in the five
variables condition. A two-way repeated measures ANOVA
with the type of cue (covariation vs. temporal order) and the
number of variables (three vs. four vs. five) as within-
participants factors revealed a significant main effects of the
type of cue, F(1, 23) = 14.01, p < .01, and the number of
variables, F(2, 46) = 4.43, p < .05. The interaction between
the type of cue and the number of variables was also
significant, F(2, 46) = 6.76, p < .01. Subsequent tests of the
simple main effect of the type of cue were significant in the
three and four variables condition, F(1, 69) = 21.03, p
<.001, F(1, 69) = 10.11, p < .01 respectively, but not in the
five variables condition, F < 1, indicating the task

complexity served as the modulator of the judgment strategy.

Although the judgment strategy varied across the number
of variables, the result of the four variables condition was
inconsistent with previous findings in which the temporal
order information had a greater impact than covariation in
learning the causal structure composed of four variables
(Lagnado & Sloman, 2006). In their experiment, the 58%
usage rate of temporal order cues was higher than the 39%
usage rate of covariation cues when the causal order
(A—->B—C & D) differed from the temporal order
(A—D—C—B). The opposite results might stem from
differences in cover stories. Whereas the present study dealt
with the causal relations of several types of bacteria, the
previous study used computer networks in which
participants sent a message to one computer and observed
whether other computers received. Prior knowledge and
experience about computer message would give more
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Figure 2: Usage rates for covariation cues and
temporal order cues in Experiment 1. Error bars
reflect standard errors.

weight to temporal order cues. In fact, Saito and Shimazaki
(2012) have reported that the use of temporal order cues
depends on its reliability.

In summary, Experiment 1 showed that covariation cues
were used more often than temporal order cues when
participants learned causal relations among three or four
variables. However, when the causal structure consisted of
five variables, the preference for covariation disappeared.
This pattern of results supports the claim that judgment
strategy changes as a function of increasing the number of
variables.

Experiment 2

The results of Experiment 1 demonstrated that task
complexity modulates participant’s judgments about causal
structures. However, these findings did not reveal a
tendency to rely upon temporal order rather than covariation.
The goal of Experiment 2 was to provide further evidence
about the relationship between task complexity and the
judgment strategy. In order to ascertain whether temporal
order cues were more influential than covariation cues in
learning complex causal structures, different forms of causal
structures were used. Specifically, causal structures with
multiple causal links were adopted. This is because
increasing the number of causal links leads to more
complicated covariation information. Again, the authors
predicted that participants’ judgments will be based more on
covariation than on temporal order when the causal structure
was relatively simple, whereas temporal order cues should
be more influential than covariation cues when participants
inferred the complex causal structure.

Method

Participants and design A total of 24 undergraduates from
Kwansei Gakuin University participated for course credit.
None of them took part in Experiment 1. As in Experiment
1, the number of variables (three, four, and five) was varied
within participants. Participants were asked to perform three
causal learning tasks with different causal structures.
Procedure Each participant completed the tasks of
observing states of the bacteria and inferring their causal
relations. The procedure was identical to Experiment 1 with
the exception that different forms of causal structures were
used. Although the number of variables was constant across
two experiments, the number of causal links in Experiment
2 was larger than that in Experiment 1 (see Figure 1 and 3).
Increasing causal links resulted in more complex patterns of
covariation information. For example, the four variables
condition in Experiment 2 provided seven types of co-
occurrence information, whereas there were five kinds of
co-occurrence information in the four variables condition in
Experiment 1.

Instructions explained the cover story and indicated to
the participants that they were required to judge causal
relations among bacteria. As in Experiment 1, participants
were informed that causal relations were probabilistic, that
there were no hidden causes, and that temporal order was
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4 variables condition

3 variables condition 5 variables condition
Figure 3: Causal structures in Experiment 2.
Continuous lines represent causal relations, whereas
dotted lines indicate temporal orders.

not always an accurate cue. In the learning phase,
participants received information on 40 cases of bacteria
states through observation. Each condition differed in the
number of bacteria participants observed. As can be seen in
Figure 3, there were three variables with two causal links in
the three variables condition, four variables with four causal
links in the four variables condition, and five variables with
six causal links in the five variables condition. Moreover,
the causal order differed from the temporal order in each
condition, allowing assessment of the degree to which each
cue was used. In the test phase, participants were told to
infer the causal structure in the same way as in Experiment
1.

Results and Discussion

Participants’ responses were analyzed in a manner similar to
Experiment 1. Figure 4 shows the usage rates of covariation
cues and temporal order cues in each condition. The results
of the three variables condition indicated that covariation
cues were emphasized over temporal order cues, replicating
this effect in Experiment 1. In contrast, participants in the
four and five variables conditions based their judgment
more upon temporal order than upon covariation. A 2 (the
type of cue: covariation vs. temporal order) x 3 (the number
of variables: three vs. four vs. five) repeated measures
ANOVA vyielded a significant main effect of the number of
variables, F(2, 46) = 9.31, p < .001, and a significant
interaction between the type of cue and the number of
variables, F(2, 46) = 9.66, p < .001. To explore the
interaction, an analysis of the simple main effect of the type
of cue was conducted for each condition. The tendency to
emphasize covariation rather than temporal order was
marginally significant in the three variables condition, F(1,
69) = 3.36, p < .10. There was no significant difference in
the four variables condition, F(1, 69) = 1.75, ns. In the five
variables condition, however, the usage rate of temporal
order cues was reliably higher than that of covariation cues,
F(1, 69) = 7.94, p < .01. These results suggest that task
complexity determines whether participants rely on
covariation cues or temporal order cues.

In order to investigate effects of forms of causal relations
on judgment strategy, a 2 (causal structure: Exp.1 vs. Exp.2)
x 2 (the type of cue: covariation vs. temporal order) x 3 (the
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Figure 4: Usage rates for covariation cues and
temporal order cues in Experiment 2. Error bars
reflect standard errors.

number of variables: three vs. four vs. five) mixed ANOVA
was performed, with causal structure as a between-
participants factor and the type of cue and the number of
variables as within-participants factors. As a result, a main
effect of the number of variables, F(2, 92) = 12.03, p <.001,
an interaction between causal structure and the type of cue,
F(1, 46) = 11.21, p < .01, and an interaction between the
type of cue and the number of variables, F(2, 92) = 15.11, p
< .001 were significant. To explore the interaction between
causal structure and the type of cue in greater detail, the
simple main effects of causal structure were tested. The
usage rate of covariation cues in Experiment 1 was higher
than that in Experiment 2, F(1, 92) = 5.92, p < .05. On the
contrary, the usage rate of temporal order cues in
Experiment 1 was lower than that in Experiment 2, F(1, 92)
= 8.14, p < .01. These results indicate that forms of causal
structures also modulate judgment strategy.

Taken together with the results of Experiment 1,
Experiment 2 provides further evidence on the relationship
between task complexity and the judgment strategy.
Participants in the three variables condition emphasized
covariation over temporal order; on the other hand, temporal
order cues were given more weight than covariation cues in
the five variables condition. These results bridge the gap
between the findings about the preferential use of
covariation (Saito & Shimazaki, 2012) and about the
preferential use of temporal order (Lagnado & Sloman,
2006; White, 2006). In addition, the comparison between
experiments demonstrates that judgment strategy is affected
not only by the number of variables but also by the form of
the causal structure.

General Discussion

The present study clarifies conflicting evidence concerning
the use of covariation cues and temporal order cues in
causal structure learning. Lagnado and Sloman (2006)
showed temporal order to be more influential on judgments
than covariation; however, Saito and Shimazaki (2012)
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reported that covariation was favored over temporal order.
In the present study, the authors interpreted these results
from the viewpoint of the task complexity and manipulated
the number of variables which consisted of a causal
structure. Experiment 1 demonstrated that covariation cues
were carried more weight than temporal order cues in
learning simple causal structure and that this preference
disappeared as the number of variables increased. In
addition, Experiment 2 investigated the relationship
between the judgment strategy and the number of variables
with different forms of causal structures. The results of
Experiment 2 are consistent with both findings concerning
the preferential use of covariation cues in a simple task
(Saito & Shimazaki, 2012) and the preferential use of
temporal order cues in a complex task (Lagnado & Sloman,
2006; White, 2006). These results show the task complexity,
composed of the number of variables and the form of the
causal structure, serves as a modulator of the judgment
strategy in causal structure learning.

The results of the present study can be interpreted in
terms of salience and validity in multiple-cue probability
learning (Kruschke & Johansen, 1999). According to
Kruschke and Johansen (1999), irrelevant cues have a
deleterious effect on the use of valid cues and this effect
becomes more apparent as the salience of irrelevant cues
increase. In the present experiment, covariation served as
valid cue whereas temporal order was high salient but less
reliable cue. Increasing the number of variables in the causal
structure brought lower salience of covariation and higher
salience of temporal order, which resulted in a deleterious
effect on the use of covariation cues. These similar findings
imply the tight coupling between causal learning and
category learning.

The present study has several implications for models in
causal structure learning. The use of covariation cues is
easily explained by constraint-based methods (Gopnik,
Glymour, Sobel, Schulz, Kushnir, & Danks, 2004) and
Bayesian methods (Steyvers, Tenenbaum, Wagenmakers, &
Blum, 2003) in causal Bayes nets and broken link heuristics
(Mayrhofer & Waldmann, 2011). Whereas Constraint-based
methods compute independence and dependence in bottom-
up process, Bayesian methods make probabilistic inferences
for each causal model using Bayes' theorem in top-down
process. Broken link heuristics offers a simple explanation
with a determinism bias and a sufficiency bias. In contrast,
the use of temporal order cues is well accounted for by local
computations (Fernbach & Sloman, 2009). According to
this heuristic model, people focused not on covariation cues
but instead on temporal order cues because of their quick
accessibility and lower computational demands. The
tendency to use temporal order cues is also explained by
temporal strategy (Rottman & Keil, 2012), which induces
causal directionality from temporal change over time.
Although these models focus on either covariation cues or
temporal order cues, the present results suggest the
importance of both cues in causal learning. An intriguing
question for future research concerns how people integrate

covariation with temporal order for

structure.

inferring causal
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