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Abstract 

Saito and Shimazaki (2012) found that people rely upon 
covariation information rather than temporal order 
information as cues to causal structure, whereas Lagnado and 
Sloman (2006) reported an opposite finding, indicating 
relatively greater influence of temporal order cues. The 
present research examines the hypothesis that such conflicting 
findings result from differences in task complexity. 
Specifically, it is proposed that covariation information 
becomes less influential as the number of variables increases. 
Experiment 1 investigated the relationship between the 
judgment strategy (i.e., covariation vs. temporal order) and 
the number of variables comprising a causal structure. As a 
result, people favored covariation cues primarily in tasks with 
simple causal structure. Experiment 2 used more complex 
causal structure. The results demonstrated that the tendency to 
emphasize covariation cues or to rely upon temporal order 
cues changes as a function of task complexity. These results 
were consistent with both previous findings and discussed in 
terms of causal Bayes net theories and heuristic models. 

Keywords: causal structure learning; causal reasoning; 
covariation; temporal order; task complexity. 

Introduction 

Many psychological studies have shown that both children 

and adults easily form representations of causal relations 

(Sloman, 2005; see also Holyoak & Cheng, 2011 for a 

review). Causal relations lead to associations of various 

kinds of events and they may form part of complex causal 

structures. Knowledge about the causal structure plays an 

important role in explanations, predictions, control, as well 

as decision making (Pearl, 2000). Despite its importance, in 

many cases, actual causal connections among constituent 

elements are often difficult to discern or to tease out of a 

complicated pattern of contingencies. For instance, if one 

hears a bit of gossip from colleague, X, and then hears same 

story from another colleague, Y, this might lead to the 

inference that X had passed the rumor to Y (i.e., X→Y) 

based on the temporal order in which one receives this 

information. However, it is also possible that, earlier, Y had 

initially gossiped to X and then it is heard from X prior to 

seeing Y (i.e., Y→X). Or, a third party, such as the boss, Z, 

may have spread this rumor (i.e., X←Z→Y). In light of this, 

how might be people acquire knowledge about causal 

structure? 

As Hume (1739/2000) has argued that causal relations 

are unobservable and therefore must be induced from 

observable events, covariation among observable events 

serves as a fundamental cue to learn causal structure. 

Covariation is formally represented as a joint probability 

distribution and is specifically explained as patterns of 

presence and absence for binary variables. When a causal 

relation exists, strong covariation between a cause and its 

effect will be expected except for the possibility that both 

variables are caused by a common cause. In contrast, the 

absence of covariation indicates that two variables are not 

related to each other—except for the effects of other 

variables. However, there are several limitations to the use 

of covariation cues. First, covariation information becomes 

more complex as the number of variables increases. With 

two binary variables, for example, covariation is represented 

by a 2 × 2 contingency table of 4 data patterns; however, 32 

data patterns result from five binary variables. In addition, 

covariation itself is inadequate for distinguishing a unique 

causal structure from models that represent the same joint 

probability distribution (i.e., Markov equivalent). When 

event X covaries with event Y, for instance, it is difficult to 

determine the precise cause. These examples suggest the 

difficulty of learning causal structure using only covariation 

cues. 

In addition to covariation, another important cue to 

causal structure is temporal order in which people observe 

the states of variables. Because causes are often observed to 

happen prior to their effects, when event X precedes event Y, 

it is probable that X causes Y. However, the observed 

temporal order does not always serve as an accurate cue. 

First, temporal order may mislead people with regard to the 

direction of causal relations. In situations where people 

observe effects prior to their causes, temporal order 

information indicates the opposite causal direction. A 

second issue concerns spurious correlation. Even if event X 

precedes event Y, their co-occurrence might be the result of 

a hidden common cause Z. In this case, a temporal delay 

between two variables will result in a false belief that the 

earlier event causes the later, despite the fact that no causal 

relation exists. Thus, although temporal order cues can 

facilitate causal structure learning, they may also mislead 

causal inferences. 

 Combined with information indicating hidden causes are 

absent, both kinds of information become more useful. 

When event X covariates with event Y, three possible causal 

structures are presumed (i.e., X→Y, X←Y, or X←Z→Y). 

The absence of hidden causes enables people to exclude the 
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possibility that both events are caused by a hidden cause. If 

event X occurs alone in this situation, then it is suggested 

that X causes Y. Since nothing happens without a cause (i.e., 

necessity), an event that occurs alone must be a cause 

variable but not an effect variable. 

 Previous studies on causal structure learning have 

provided conflicting evidence regarding the use of 

covariation cues and temporal order cues (e.g., Lagnado & 

Sloman, 2006; Saito & Shimazaki, 2012; White, 2006). On 

one hand, Lagnado and Sloman (2006) demonstrated that 

people preferred temporal order cues to covariation cues. In 

their experiment, participants were required to send 

messages from a master computer to one of four computers 

in a network (e.g., computer A), to observe whether other 

computers also received the messages (e.g., computer B, C, 

& D), and then to infer the structure of network. Participants 

observed the states of the computers in the order different 

from the causal order (e.g., temporal order: A→D→C→B, 

causal order: A→B→C & D). Although participants were 

given instructions including information on the unreliability 

of temporal order and the absence of hidden causes, their 

judgments were based on temporal order cues rather than 

covariation cues. White (2006) reported similar results 

indicating that participants relied heavily on temporal order 

information, in spite of the fact that they received explicit 

instructions regarding the way in which causal structures are 

induced from covariation information. 

 On the other hand, Saito and Shimazaki (2012) showed 

the opposite results that people use covariation cues rather 

than temporal order cues. The experimental task was to 

observe occurrences of two types of bacteria and to infer 

their causal relationship. As in Lagnado and Sloman (2006), 

participants were instructed that temporal order cues were 

unreliable and that there were no hidden causes. In the 

condition in which covariation cues contradicted temporal 

order cues, participants heavily favored covariation 

information over temporal order information. Furthermore, 

these judgments were made after several observations. 

A possible interpretation of these conflicting findings 

involves differences in task complexity, especially as this is 

reflected by number of variables. It is possible that task 

complexity modulates an individual’s judgment strategy. A 

critical difference between the preceding experiments is the 

number of variables that constitute the causal structure. 

Whereas Lagnado and Sloman (2006) required participants 

to learn causal directions among four variables, and White 

(2006) adopted five variables in constituting a causal 

structure, the design of Saito and Shimazaki (2012) 

presented a causal structure involving only two variables—

the minimum unit for causal structures. Since increasing the 

number of variables complicates covariation information, it 

therefore would be difficult to induce a complex causal 

structure based solely on covariation cues. 

Several studies have revealed the role of task complexity 

in causal learning and inference (e.g., Marsh & Ahn, 2006; 

Reips & Waldmann, 2008). Marsh and Ahn (2006) 

demonstrated that the task complexity served as a 

determinant of a primacy effect and a recency effect. When 

a few variables were observed, information presented earlier 

weighted more than information presented later (i.e., 

primacy effect); in contrast, information presented later was 

emphasized more than information presented earlier when 

many kinds of variables existed (i.e., recency effect). In a 

similar vein, Reips and Waldmann (2008) showed that 

accurate diagnostic inferences depended on the number of 

variables in the experimental task. These studies suggest the 

importance of task complexity in causal judgment. 

 The purpose of the present study is to investigate the 

relationship between task complexity and the judgment 

strategy in causal structure learning. In order to manipulate 

task complexity, the number of variables composing the 

causal structures was manipulated in Experiment 1. 

Experiment 2 employed different forms of causal structures. 

The hypothesis predicts that people use covariation cues 

rather than temporal order cues in learning simple causal 

structures whereas they rely more upon temporal order cues 

than covariation cues in inferring complex causal structures. 

Experiment 1 

Experiment 1 was designed to investigate how strategies 

change as a function of the number of variables in learning a 

causal structure. The experimental task was to observe states 

of the variables and to infer causal relations among these 

variables. The number of variables in the causal structure 

was varied for the manipulation of task complexity. The 

authors predicted that when the number of variables was 

small covariation would be more emphasized rather than 

temporal order and that when the number of variables was 

large temporal order would be more reflected than 

covariation. 

Method 

Participants and design A total of 24 undergraduates from 

Kwansei Gakuin University received course credit for 

taking part in this experiment. The number of variables 

(three, four, and five) was manipulated within participants. 

Each participant performed three causal learning tasks with 

different causal structures. 

Instructions Participants received verbal and written 

instructions in Japanese. An English translation of outlines 

of the instructions was as follows: 

 

Imagine that you are a scientist who is attempting to 

reveal causal relations among several newly 

discovered bacteria. Whether one bacterium 

propagates another bacterium, or whether they are 

irrelevant to each other are unknown to you. In order 

to investigate the relations among the bacteria, you 

put one type of bacterium into the 40 containers of 

liquid nutrient medium. Then you observe the states 

of other bacteria under the microscope. Before 

performing each task, you will be informed about 

which bacterium is put into the nutrient medium. (The 

bacterium serves as a first cause.) 
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 Additionally, the following three facts should help 

you consider causal relations among bacteria. First, it 

is not always true that one bacterium is certain to 

propagate other bacterium even if there is a causal 

relation between them. That is, a causal relation 

among bacteria is probabilistic. Second, there are no 

hidden causes as this is a controlled situation. 

Therefore, when a bacterium exists, except for the one 

originally put into the liquid nutrient medium by 

yourself (i.e., first cause), there is another bacterium 

that acts to propagate it. Third, the states of bacteria 

develop in order. This is either because it takes time 

for a bacterium to propagate another bacterium or 

because it takes time to identify the presence and 

absence of bacteria due to their invisibility without 

the use of microscope. Therefore, it could be that a 

bacterium has propagated another bacterium before it 

turned out to be present. 

Your task is to observe the occurrences and non-

occurrences of these bacteria and to infer causal 

relations among them. Note that the experimental task 

does not require any knowledge of biology. (The 

remaining instructions describe how to progress 

through the learning phase and test phase.) 

 

After receiving the instructions, participants were asked 

whether they understood the instructions. In this cover story, 

the number of variables (three vs. four vs. five) 

corresponded to the number of bacteria participants 

observed in each task. 

Learning phase At the beginning of the learning phase, 

participants were taught how many kinds of bacteria would 

appear (e.g., three, four, or five) and which bacterium would 

be put into the 40 containers of nutrient medium (i.e., first 

cause) in each condition. The learning phase consisted of 40 

trials that presented information about the presence and 

absence of the bacteria. Participants were asked to observe 

the states of the bacteria and to consider their causal 

relations. First, a button labeled ―NEXT‖ was displayed on 

a screen. After clicking the button, the shapes of the several 

number of bacteria labeled with question marks were shown 

(i.e., they remained unknown). The number of bacteria 

varied across conditions. There were three bacteria in the 

three variables condition, four bacteria in the four variables 

condition, and five bacteria in the five variables condition. 

Then, information about the state of the bacterium was 

given in order. The presence of bacteria was indicated by 

the appearance of bacteria; in contrast, the absence of 

bacteria was represented by the appearance of bacteria 

labeled with a cross mark. The inter-stimulus interval was 

1s, and the screen was returned to its primary state (i.e., 

―NEXT‖) 2s after the all bacteria appeared. 

Figure 1 illustrates the causal order in which causes 

produced effects and the temporal order in which 

participants observed the states of variables. Covariation 

information was arranged based on these causal structures 

and the causal strength of the relation. As the instructions 
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D

3 variables condition 4 variables condition 5 variables condition  
Figure 1: Causal structures in Experiment 1. 

Continuous lines represent causal relations, whereas 

dotted lines indicate temporal orders. 

 

stated causal relations among bacteria were probabilistic, 

the probability that causes produced effects was 80 percent. 

In the three variables condition in which participants 

observed 40 cases, for example, 26 cases included the 

presence of bacteria A, B, and C. In 6 cases, bacteria A and 

B were present; bacteria A and C were present in additional 

6 cases. The remaining 2 cases included the presence of 

bacterium A and the absence of bacteria B and C. While the 

first cause was always present, other variables did not occur 

unless their specific cause was present. As the number of 

variables increased, covariation information became more 

complex. As is evident in Figure 1, temporal order was 

inconsistent with causal order. Arranging the temporal order 

to be different from the causal order enabled assessment of 

the degree to which covariation cues and temporal order 

cues were used to infer causal structure. 

Test phase After observing 40 cases, participants were told 

to infer causal structure in the test phase. Participants 

received a sheet in which bacteria were displayed in the 

same way as they were shown in the learning phase, with 

light gray lines between the bacteria. The instructions 

required participants to judge whether a casual relation 

existed and to draw an arrow from a cause to an effect on 

the line when a causal relation was assumed. Participants 

had to consider three lines in the three variables condition, 

six lines in the four variables condition, and ten lines in the 

five variables condition. 

Results and Discussion 

To investigate judgment strategy in causal structure learning, 

the authors defined usage rates as measures of the degree to 

which participants used covariation cues and temporal order 

cues. The usage rate of covariation was calculated by 

dividing the number of links drawn by participants to be 

consistent with covariation cues by the number of all links 

suggested by covariation information. In the three variables 

condition, for example, the link from A to B and the link 

from A to C were supported by covariation cues (see Figure 

1). If participants gave these two links as their answer, their 

covariation usage rates were 100 percent; in contrast, when 

they failed to answer both links, the usage rates were 0 

percent. The usage rate of temporal order was calculated in 
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a similar manner. In the above example, temporal order cues 

sustained the link from B to C and the link from C to A 

respectively (see Figure 1). If participants responded either 

of the links, their temporal order usage rates were 50%. 

These indices represent the amount of use of each cue by 

participants. 

Figure 2 shows the usage rates of two types of cues in 

each condition. When the number of variables was three or 

four, participants used covariation rather than temporal 

order; however, there seemed to be no difference in the five 

variables condition. A two-way repeated measures ANOVA 

with the type of cue (covariation vs. temporal order) and the 

number of variables (three vs. four vs. five) as within-

participants factors revealed a significant main effects of the 

type of cue, F(1, 23) = 14.01, p < .01, and the number of 

variables, F(2, 46) = 4.43, p < .05. The interaction between 

the type of cue and the number of variables was also 

significant, F(2, 46) = 6.76, p < .01. Subsequent tests of the 

simple main effect of the type of cue were significant in the 

three and four variables condition, F(1, 69) = 21.03, p 

< .001, F(1, 69) = 10.11, p < .01 respectively, but not in the 

five variables condition, F < 1, indicating the task 

complexity served as the modulator of the judgment strategy. 

Although the judgment strategy varied across the number 

of variables, the result of the four variables condition was 

inconsistent with previous findings in which the temporal 

order information had a greater impact than covariation in 

learning the causal structure composed of four variables 

(Lagnado & Sloman, 2006). In their experiment, the 58% 

usage rate of temporal order cues was higher than the 39% 

usage rate of covariation cues when the causal order 

(A→B→C & D) differed from the temporal order 

(A→D→C→B). The opposite results might stem from 

differences in cover stories. Whereas the present study dealt 

with the causal relations of several types of bacteria, the 

previous study used computer networks in which 

participants sent a message to one computer and observed 

whether other computers received. Prior knowledge and 

experience about computer message would give more 
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Figure 2: Usage rates for covariation cues and 

temporal order cues in Experiment 1. Error bars 

reflect standard errors. 

weight to temporal order cues. In fact, Saito and Shimazaki 

(2012) have reported that the use of temporal order cues 

depends on its reliability. 

In summary, Experiment 1 showed that covariation cues 

were used more often than temporal order cues when 

participants learned causal relations among three or four 

variables. However, when the causal structure consisted of 

five variables, the preference for covariation disappeared. 

This pattern of results supports the claim that judgment 

strategy changes as a function of increasing the number of 

variables. 

Experiment 2 

The results of Experiment 1 demonstrated that task 

complexity modulates participant’s judgments about causal 

structures. However, these findings did not reveal a 

tendency to rely upon temporal order rather than covariation. 

The goal of Experiment 2 was to provide further evidence 

about the relationship between task complexity and the 

judgment strategy. In order to ascertain whether temporal 

order cues were more influential than covariation cues in 

learning complex causal structures, different forms of causal 

structures were used. Specifically, causal structures with 

multiple causal links were adopted. This is because 

increasing the number of causal links leads to more 

complicated covariation information. Again, the authors 

predicted that participants’ judgments will be based more on 

covariation than on temporal order when the causal structure 

was relatively simple, whereas temporal order cues should 

be more influential than covariation cues when participants 

inferred the complex causal structure. 

Method 

Participants and design A total of 24 undergraduates from 

Kwansei Gakuin University participated for course credit. 

None of them took part in Experiment 1. As in Experiment 

1, the number of variables (three, four, and five) was varied 

within participants. Participants were asked to perform three 

causal learning tasks with different causal structures. 

Procedure Each participant completed the tasks of 

observing states of the bacteria and inferring their causal 

relations. The procedure was identical to Experiment 1 with 

the exception that different forms of causal structures were 

used. Although the number of variables was constant across 

two experiments, the number of causal links in Experiment 

2 was larger than that in Experiment 1 (see Figure 1 and 3). 

Increasing causal links resulted in more complex patterns of 

covariation information. For example, the four variables 

condition in Experiment 2 provided seven types of co-

occurrence information, whereas there were five kinds of 

co-occurrence information in the four variables condition in 

Experiment 1. 

Instructions explained the cover story and indicated to 

the participants that they were required to judge causal 

relations among bacteria. As in Experiment 1, participants 

were informed that causal relations were probabilistic, that 

there were no hidden causes, and that temporal order was 
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Figure 3: Causal structures in Experiment 2. 

Continuous lines represent causal relations, whereas 

dotted lines indicate temporal orders. 

 

not always an accurate cue. In the learning phase, 

participants received information on 40 cases of bacteria 

states through observation. Each condition differed in the 

number of bacteria participants observed. As can be seen in 

Figure 3, there were three variables with two causal links in 

the three variables condition, four variables with four causal 

links in the four variables condition, and five variables with 

six causal links in the five variables condition. Moreover, 

the causal order differed from the temporal order in each 

condition, allowing assessment of the degree to which each 

cue was used. In the test phase, participants were told to 

infer the causal structure in the same way as in Experiment 

1. 

Results and Discussion 

Participants’ responses were analyzed in a manner similar to 

Experiment 1. Figure 4 shows the usage rates of covariation 

cues and temporal order cues in each condition. The results 

of the three variables condition indicated that covariation 

cues were emphasized over temporal order cues, replicating 

this effect in Experiment 1. In contrast, participants in the 

four and five variables conditions based their judgment 

more upon temporal order than upon covariation. A 2 (the 

type of cue: covariation vs. temporal order) × 3 (the number 

of variables: three vs. four vs. five) repeated measures 

ANOVA yielded a significant main effect of the number of 

variables, F(2, 46) = 9.31, p < .001, and a significant 

interaction between the type of cue and the number of 

variables, F(2, 46) = 9.66, p < .001. To explore the 

interaction, an analysis of the simple main effect of the type 

of cue was conducted for each condition. The tendency to 

emphasize covariation rather than temporal order was 

marginally significant in the three variables condition, F(1, 

69) = 3.36, p < .10. There was no significant difference in 

the four variables condition, F(1, 69) = 1.75, ns. In the five 

variables condition, however, the usage rate of temporal 

order cues was reliably higher than that of covariation cues, 

F(1, 69) = 7.94, p < .01. These results suggest that task 

complexity determines whether participants rely on 

covariation cues or temporal order cues. 

In order to investigate effects of forms of causal relations 

on judgment strategy, a 2 (causal structure: Exp.1 vs. Exp.2) 

× 2 (the type of cue: covariation vs. temporal order) × 3 (the 
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Figure 4: Usage rates for covariation cues and 

temporal order cues in Experiment 2. Error bars 

reflect standard errors. 

 

number of variables: three vs. four vs. five) mixed ANOVA 

was performed, with causal structure as a between-

participants factor and the type of cue and the number of 

variables as within-participants factors. As a result, a main 

effect of the number of variables, F(2, 92) = 12.03, p < .001, 

an interaction between causal structure and the type of cue, 

F(1, 46) = 11.21, p < .01, and an interaction between the 

type of cue and the number of variables, F(2, 92) = 15.11, p 

< .001 were significant. To explore the interaction between 

causal structure and the type of cue in greater detail, the 

simple main effects of causal structure were tested. The 

usage rate of covariation cues in Experiment 1 was higher 

than that in Experiment 2, F(1, 92) = 5.92, p < .05. On the 

contrary, the usage rate of temporal order cues in 

Experiment 1 was lower than that in Experiment 2, F(1, 92) 

= 8.14, p < .01. These results indicate that forms of causal 

structures also modulate judgment strategy. 

Taken together with the results of Experiment 1, 

Experiment 2 provides further evidence on the relationship 

between task complexity and the judgment strategy. 

Participants in the three variables condition emphasized 

covariation over temporal order; on the other hand, temporal 

order cues were given more weight than covariation cues in 

the five variables condition. These results bridge the gap 

between the findings about the preferential use of 

covariation (Saito & Shimazaki, 2012) and about the 

preferential use of temporal order (Lagnado & Sloman, 

2006; White, 2006). In addition, the comparison between 

experiments demonstrates that judgment strategy is affected 

not only by the number of variables but also by the form of 

the causal structure. 

General Discussion 

The present study clarifies conflicting evidence concerning 

the use of covariation cues and temporal order cues in 

causal structure learning. Lagnado and Sloman (2006) 

showed temporal order to be more influential on judgments 

than covariation; however, Saito and Shimazaki (2012) 
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reported that covariation was favored over temporal order. 

In the present study, the authors interpreted these results 

from the viewpoint of the task complexity and manipulated 

the number of variables which consisted of a causal 

structure. Experiment 1 demonstrated that covariation cues 

were carried more weight than temporal order cues in 

learning simple causal structure and that this preference 

disappeared as the number of variables increased. In 

addition, Experiment 2 investigated the relationship 

between the judgment strategy and the number of variables 

with different forms of causal structures. The results of 

Experiment 2 are consistent with both findings concerning 

the preferential use of covariation cues in a simple task 

(Saito & Shimazaki, 2012) and the preferential use of 

temporal order cues in a complex task (Lagnado & Sloman, 

2006; White, 2006). These results show the task complexity, 

composed of the number of variables and the form of the 

causal structure, serves as a modulator of the judgment 

strategy in causal structure learning. 

The results of the present study can be interpreted in 

terms of salience and validity in multiple-cue probability 

learning (Kruschke & Johansen, 1999). According to 

Kruschke and Johansen (1999), irrelevant cues have a 

deleterious effect on the use of valid cues and this effect 

becomes more apparent as the salience of irrelevant cues 

increase. In the present experiment, covariation served as 

valid cue whereas temporal order was high salient but less 

reliable cue. Increasing the number of variables in the causal 

structure brought lower salience of covariation and higher 

salience of temporal order, which resulted in a deleterious 

effect on the use of covariation cues. These similar findings 

imply the tight coupling between causal learning and 

category learning. 

The present study has several implications for models in 

causal structure learning. The use of covariation cues is 

easily explained by constraint-based methods (Gopnik, 

Glymour, Sobel, Schulz, Kushnir, & Danks, 2004) and 

Bayesian methods (Steyvers, Tenenbaum, Wagenmakers, & 

Blum, 2003) in causal Bayes nets and broken link heuristics 

(Mayrhofer & Waldmann, 2011). Whereas Constraint-based 

methods compute independence and dependence in bottom-

up process, Bayesian methods make probabilistic inferences 

for each causal model using Bayes' theorem in top-down 

process. Broken link heuristics offers a simple explanation 

with a determinism bias and a sufficiency bias. In contrast, 

the use of temporal order cues is well accounted for by local 

computations (Fernbach & Sloman, 2009). According to 

this heuristic model, people focused not on covariation cues 

but instead on temporal order cues because of their quick 

accessibility and lower computational demands. The 

tendency to use temporal order cues is also explained by 

temporal strategy (Rottman & Keil, 2012), which induces 

causal directionality from temporal change over time. 

Although these models focus on either covariation cues or 

temporal order cues, the present results suggest the 

importance of both cues in causal learning. An intriguing 

question for future research concerns how people integrate 

covariation with temporal order for inferring causal 

structure. 
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