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Abstract

Drawing from a large corpus (17,000+ articles) of financial
news, we perform a Bayesian sparse model analysis of the
argument-distributions of the UP and DOWN-verbs, used to
describe movements in indices, stocks and shares. Previous
work, by Gerow and Keane (2011a, 2011b, 2011c), has
shown, using measures of overlap and k-means clustering,
that metaphor hierarchies and antonymic relations can be
found in this data; for instance, UP verbs have rise as a
superordinate organizing a distinct set of subordinate verbs
(soar, jump, climb, surge, rebound, advance). This work
empirically realizes theories about the structuring of our
conceptual systems with metaphors (Lakoff, 1992; Lakoff &
Johnson, 1980) but does so using a distributional approach to
meaning; namely, that words that occur in similar contexts
have similar meanings (see Wittgenstein, 1953). However,
Gerow and Keane’s analysis does not show the overall
structure of how these metaphors semantically relate to one
another. In the present paper, we re-analyzed their data using
a Bayesian sparse model (Lake & Tenenbaum, 2010) in order
to infer this metaphor space as a uniform representation,
based on the argument distributions. Therefore, we treated
arguments as features of metaphors. Our model learned three
dimensional graphs in an unsupervised manner as sparse
representations of the metaphoric structure over all argument
distributions, in parallel. Doing so, it also successfully
indicates the metaphoric hierarchies and antonymy relations,
that were found by the previous models. In conclusion, we
discuss the benefits of this approach.
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Introduction

In recent years, significant progress has been made in
deriving meaning from statistical analyses of distributions
of words (e.g., Gerow & Keane, 2011a; Landauer &
Dumais, 1997; Turney, 2006; Turney & Pantel, 2010;
Michel et al.,, 2010). This distributional approach to
meaning takes the view that words that occur in similar
contexts tend to have similar meanings (see Wittgenstein,
1953) and that by analyzing word usage we can recover
meaning. For instance, Michel et al., (2010) argue that
significant insights into human culture and behavior can be
derived from analyzing very large corpora, such as the
GoogleBooks repository.

Gerow and Keane (2011a-c; henceforth abbreviated as
G&K) took such a distributional approach to understanding
metaphorically-structured knowledge (in hierarchies and
antonymic relationships) between “UP" and "DOWN” verbs
from a corpus of financial news reports. Lakoff and Johnson
(1980) have argued that metaphors are used to structure
many domains of human experience and also many abstract
conceptual domains (e.g., emotions). They specifically
identified the use of the UP-DOWN metaphor opposition in
accounts of wealth (e.g., WEALTH-IS-UP as in high class)
and in the rise and fall of numbers (e.g., MORE-IS-UP;
LESS-IS-DOWN).

G&K (2011a) build a corpus of 17,000+ financial articles
covering a 4-year period, about the major world stock
indices (Dow Jones, NIKKEI, FTSE-100) from the
Financial Times, NY Times and BBC websites; the corpus
contained over 10M words. After parsing the corpus, G&K
selected all the sentential instances of the most commonly
occurring UP and DOWN verbs (see G&K, 2011a, 2011b
for details). Table 1 shows some of the most commonly
used arguments found in the corpus, indicating the
metaphoric usage of the selected verbs. G&K then analyzed
the clustering in these distributions (using k-means
clustering) and the overlaps between the distributions of
different verbs (using the % overlap in each pair-wise
comparison of verb arguments). This analysis threw up
some striking regularities.

Table 1: The percentage of rise’s argument
distribution covered each of the 10 most frequent
arguments.

Rank Argument Word % of Corpus

1 Index 7.3
2 Share 5.6
3 Point 4.8
4 Percent 2.9
5 Price 2.4
6 Stock 2.0
7 Yield 19
8 Cent 1.3
9 Profit 0.9
10 Rate 0.9
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Metaphor Hierarchies

G&K (2011b) argued that if one verb-metaphor (e.g., that
referred to by rise) was organizing another metaphoric verb
(e.g., soar) then the argument distribution of the former
should largely cover the latter, but the opposite would not
be the case. They also argued that verb-metaphors at the
same level of generality (e.g., a basic level), sibling
metaphors, would have symmetrically overlapping
argument distributions. Their coverage- and cluster analysis
confirmed these types of structure. On coverage, they found
that rise organized a group of metaphoric siblings (soar,
jump, climb, surge, rebound, advance), set off from a set of
other more outlying verb-metaphors (increase, rally,
recover, gain, alleviate, elevate; see Figure 1, A). In the
clustering, they found that rise was quite separate from all
the other verbs that clustered together and that gain and
climb were quite distinct (see Table 2). A similar pattern
was found for fall and its subordinate-related verb-
metaphors (dip, retreat, sink, plunge, tumble, slide slip,
slide, ease, drop, ease, plummet), with decline, lose,
decrease and worsen being outliers (see Figure 1, B, and
G&K, 2011b, for detailed results).
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Figure 1: Argument coverage of (A) main UP-verbs
and (B) main DOWN-verbs from G&K (2011b).
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Metaphoric Antonyms

G&K (2011c) also analyzed verb distributions for
antonymic relations; arguing that preferred antonyms rise-
fall should have more similar distributions than less
preferred antonyms rise-decrease or rise-lower. G&K
performed a psychological experiment to find the preferred
antonyms between the UP and DOWN verbs and then
formulated several different similarity measures (Euclidean

distance, cosine similarity, K-L  divergence) on the
argument distributions to determine which one best
predicted the human choices. Given a set of 13 UP verbs
and 15 DOWN verbs (as possible antonyms) people
identified 114 unique antonym pairs. Of these, in 60% of
cases, the cosine similarity of the argument distributions of
pairs correctly identified the most preferred antonym-pair
from the human ratings. This figure rose to 87% if we
consider identifying the 1% or 2" most preferred pairs (see
G&K, 2011c for details). Table 3 lists some results of the
human antonymy ratings.

Table 2: Top 5 clusters in k-means analysis of UP-
verbs (* rest = the remaining verbs).

Rank Cluster Groups % of Tot.
(Freq.)

1 rise, rest*® 62% (1451)

2 rise, gain, rest* 18% (702)

3 rise, [climb, gain], rest* 4% (36)

4 rise, [jump, climb, gain], rest* 3% (27)

5 all-verbs-as-one-group 2% (18)

Table 3: Some examples of people’s verb antonymy
ratings, conducted by G&K (2011c). Percentage
measures indicate mean antonymy ratings over
participants and sub-tasks (free generation and match
the opposite).

Verb pair Antonymy
rise-fall 57%
jump-fall 31%
drop-climb 13%
decline-rise 27%

slide-climb 23%
soar-plummet  17%

Using Sparse Models Instead

G&K found a number of interesting regularities for
hierarchical and antonymic relationships between the
argument distributions of UP and DOWN verbs. However,
their results were based on different approaches, rather than
a unifying model, and do not indicate the semantic structure
of the metaphoric corpus as a whole. Arguably, it is
essential to understand the cognitive semantics of the
corpus, as the meaning of individual concepts must depend
on how they relate to one another (Kemp & Tenenbaum,
2008). Bayesian sparse models, also known as sparse graph
codes (MacKay, 2003), appear to be good candidates for
this task.

Bayesian sparse models basically infer an emergent
structure in a probabilistic framework (Rogers &
McClelland, 2004). Applied to semantics, they have been
shown to perform particularly well at finding regularities for
the clustering of features for very large numbers of words
from different conceptual domains (Lake & Tenenbaum,
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2010). These models assume that people learn a set of
parameters that fit their observed data well.

Sparse models may be better at handling metaphoric
structure than other structured probabilistic models for
semantic cognition (e.g., Kemp & Tenenbaum, 2008). The
latter generate structures as instances of forms and discover
the structural instance of the form that best explains the
underlying dataset; including, structural instances based on
the graph grammar of trees, linear orders, multidimensional
spaces, rings, dominance hierarchies, cliques, and other
forms that are supposed to be the organizing principles for
data of different cognitive domains. In this way, these
models account for domain-specific inferences. The learned
structures can then be used to model human inductive
reasoning about novel properties of objects within those
domains (Kemp & Tenenbaum, 2009).

However, considering a dataset of metaphors, we need to
take into account that contemporary cognitive linguistics
understands conceptual metaphor not as domain-specific
inference but rather as mappings from one conceptual
domain to another (Lakoff, 1987; Gibbs, 1994, 1996;
Fauconnier & Turner, 1998, 2003). For example, mapping
the directionality of movement to changes in quantity (e.g.,
“prices are rising”). A cognitive model of metaphoric
structure would, therefore, not necessarily need to select be-
tween structural instances of domain specific forms. Since a
metaphoric corpus is likely to consists of many mappings of
many different conceptual domains, it would rather need to
infer an emergent structure on the basis of a psychologically
justified prior probability over the hypothesis space of
possible structures. We think that sparseness would be a
useful prior for such a model, as it accounts for the
cognitive parsimony that is needed to mentally structure
metaphors over the vast array of semantic domains (Lakoff,
1992); as well as for the trade off between cognitive effect
and computational effort (Wilson & Carston, 2006).

Sparse Model Analysis of Verb-Metaphors

Lake and Tenenbaum’s (2010) Bayesian sparse model was
used on G&K’s verb-metaphor corpus, involving UP and
DOWN verbs, extracted from the larger finance corpus (see
Data Set). This metaphor corpus contained 9,700+ distinct
sentence instances for these two sets of verbs. The sparse
model should be able to learn and graph the structure of
these verb-metaphors by determining how they covary with
regard to the frequency of their argument features.
Graphically, the verb-metaphors are represented as nodes in
a weighted graph, where the strength of the link between
two object-nodes is related to the weighted covariation of
their features. The weights of the graph, denoted as the
symmetric matrix W, are learned from data by optimizing an
objective function that trades off the fit to the data with the
sparsity of the graph. In the present study, the sparse model
technique was used to build three different graphs: a graph
for the UP verb-metaphors and their arguments (using a 13
x 386 matrix), a graph for the DOWN verb-metaphors and
their arguments (using a 15 x 456 matrix), and a graph of

the combined set of UP and DOWN verb-metaphors (using
a 28 x 605 matrix).!

Method

Data Set A total of 28 verbs were used, 13 UP-verbs with
386 distinct, unique arguments, 15-DOWN verbs
with 456 distinct, unique arguments (based on
those used by G&K, 2011b-c). There were 9,721
distinct sentence instances in the corpus (5803
sentences with UP verbs, 3918 sentences with
DOWN verbs).

Model Setup The code for the model we used was written
in MATLAB (provided by Brenden Lake,
Department of Brain and Cognitive Sciences, MIT;
see Lake and Tenenbaum, 2010, for a detailed
description of the model). Formally, the undirected
graph W defines a multivariate Gaussian

distribution p(f(k)|W) in the generative model,
known as a Gaussian Markov Random Field
(GMRF), where the n objects are the n-dimensions
of the Gaussian. With a prior distribution on
sparsity, the model then estimates the maximum a
posteriori (MAP) parameters W as optimal
structure based on data. Each data set D was cast in
a n X m matrix with n metaphors and m arguments.
Therefore, the columns of D, denoted as arguments
{f(l), vy f(m)}, were assumed to be independent and
identically distributed drawn from p(f®|w). With
the n-dimensional Gaussian distribution, it is
assumed that arguments vary smoothly over the
graph. So, if two metaphors i and j happen to be
connected by a large weight (wij), they share
similar application frequencies over arguments. As
a result of sparsity, most metaphors are not directly
connected in the learned graph (i.e., wij=0). The
resulting weights allowed us to further apply a
Markov Cluster Algorithm (MCA) to classify verb
metaphors based on the covariation of their
argument distributions. Inflation and pre-inflation
settings for the MCA were hold on standard (see
Freeman et al., 2007; Theocharidis, Van Dongen,
Enright, & Freeman, 2009).

Results & Discussion

Figure 2 shows the resulting weight matrices illustrated as
sparse graphs learned for the three different datasets: (A)
UP verbs, (B) DOWN verbs and (C) UP-DOWN verbs
combined (all graphs were drawn with BioLayout Express
3D; videos of rotating versions of respective graphs should
be retrievable by clicking on them). In each graph, the
labeled nodes represent verb-metaphors (e.g., rise, fall). The
links show the connection weights and consequential
distances between the nodes, denoting similarity over all

! Resulting weight matrices are available from the authors.
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verbs graphed. The color and thickness of the links
represent the weight magnitude; red links indicate high
weights (with thickness indicating higher weights), whereas
blue links indicate low weights (between 0 and 1). Colors of
nodes denote classes of verb-metaphors found by the MCA.

Metaphoric Structure of UP Verbs Figure 2 (A) shows
the sparse graph for the UP verb-metaphors.
Overall, it literally provides a much better picture
of the semantic space of the metaphors with the
relative distances between each clearly shown,
compared to G&K’s (2011b, 2011c) analyses.
First, note that the rise node stands out as being
distinct and non-similar to most of the other nodes.
Counter-intuitively, this occurs because though
rise has arguments that cover many of the argu-
ments of most other verbs combined (also see
Figure 1, A), it has fewer arguments in common
individually with any given verb (and, therefore,
low similarity with each). Second, rise, climb and
gain cluster separate to the remaining verb-
metaphors (purple vs. green nodes). While we
know that rise has asymmetric coverage regarding
most other verbs, climb and gain have not (also see
Figure 1, A). Therefore, the latter are two highly
interconnected outliers.

Metaphoric Structure of DOWN Verbs Figure 2 (B)
shows the sparse graph for the DOWN verb-
metaphors. Here, again, the results are very similar
to what we saw for the UP verbs. Again, the sparse
model analysis provides a much better picture of
the semantic space of the metaphors with the
relative distances between each clearly shown.
First, note that now the fall node stands out as
being distinct and non-similar to most of the other
nodes; for the same reasons we advanced for rise.
However, regarding the coverage, it can just be
considered as a superordinate to some of the other
verbs (see Figure 1, B). Second, there is a marked
cluster of verbs that are all (almost) equally similar
to one another (green nodes). Third, there is
another set of verbs that are similar but distinct
(lose, drop and slip). While slip is an outlier, lose
and drop are highly similar. So, again, while these
graphs give a better picture of the space, they may
need to be supplemented by coverage measures in
defining whether nodes might be actual
superordinates or simply unrelated.
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Metaphoric Verb Antonyms Figure 2 (C) shows the sparse
graphs for the combined UP and DOWN verb
corpora. These graphs are slightly different because
they deal with both categories of verbs. G&K's
(2011c) analysis for antonymy worked on the basis
that the key antonyms would be highly similar,

Figure 2: Resulting sparse graphs for (A) UP-
metaphors, (B) DOWN-metaphors, and (C) UP-
DOWN metaphors.
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http://youtu.be/5UQEyMHgFmA
http://youtu.be/XwAtFcTTsVk
http://youtu.be/emdaH3Q7x_I

relative to other pairings across the two sets of
verbs. Again, the sparse model shows this very
clearly as notable key antonym pairs appear as
close nodes: for instance, rise-fall, gain-drop,
climb-slip, gain-lose. Further, how the verb-
metaphors cluster (shown by node coloration)
indicates semantic similarity in how they got
applied. However, the antonymy ratings from the
human subject experiment of G&K (2011c)
correlate just weakly with the ones from the model
(Pearson's r=0.4; see Figure 3). This might have
experimental- and model related reasons: first, the
verb-metaphors from the corpus were applied by
human speakers to describe financial changes. The
experimental data, however, are abstract antonymy
ratings of verbs, having neither applicational
relation to the domains relevant to conceptualize
finance, nor to any other cognitive domain. (Future
experiments for metaphoric antonymy would need
to take this into account.) Second, the model's
antonymy ratings for the superordinates rise and
fall had to be excluded, since they were 0 to all
other metaphors, except to one another. Finally, in
the graph are also some high-similar pairings
within the same verb set, like rally-rebound and
slip-ease, that are clearly “just similar” and not
antonyms. The latter indicates that some prior
categorization of what-are-known-to-be broadly
opposite sets is required before such a merged
model might be useful. Again, an additional
coverage analysis is needed to isolate rise and fall
as superordinates (see also Figure 1, A and B).
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Figure 3: Model- versus human antonymy rating of
verb-pairs in per cent. Human ratings reflect
perceived antonymy of verbs (see G&K, 2011c);
whereas model ratings reflect the computed
antonymy of verb-metaphors used to describe
financial changes. The latter are weighted entries of
the model's weight matrix.

Conclusion

The suggestion that significant parts of our conceptual
systems are structured by metaphors has mainly received
support from linguistic and anthropological analyses (see
Lakoff & Johnson, 1980). However, cashing out these ideas

empirically in a systematic way has proven difficult. The
promise of the present work is that these ideas can be em-
pirically supported by a distributional analysis of verb
arguments, with such metaphoric import. We have shown
that sparse models can provide a rich and informative basis
for relating these verb-metaphors together in a uniform
metaphor space. We believe that this approach may be
useful in modeling other cognitive tasks that rely on these
metaphoric  spaces (e.g., language comprehension,
analogical thinking). For instance, in analogical thinking it
has long been argued that conceptual slippage (Hofstadter,
1995) and re-description (Keane, 1996; Kurtz, 2006) are
needed to account for human abilities: Bayesian sparse
models provide a basis for allowing such slippage, assuming
structural support for the slippage being considered.

However, our work has also indicated that the sparse
models will still need a coverage analysis to isolate
superordinate metaphors. And, because these are important
for conceptually structuring the metaphor space, they should
be implemented in the way sparse models generate and learn
structure. This might be achievable by using hierarchical
Bayesian sparse models (Chandrasekaran, Parrilo, &
Willsky, 2010) that potentially discover organizing
metaphoric concepts as hidden or latent variables, and
further increase sparsity.
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