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Abstract

Using a previously proposed computational model of human
performance on the Implicit Associations Test (IAT), we ex-
plore how evaluative conditioning could inform attitude ac-
quisition and formation of automatic associations in memory,
and demonstrate the effects of such learning on implicit task
performance on the test. This is achieved by augmenting the
model with a learning mechanism based on a modified Heb-
bian learning rule that adapts associative strengths between
concepts depending on the temporal proximity of their activa-
tion. By manipulating the frequencies at which different stim-
uli are paired and presented as input to the network, we
demonstrate how virtual subjects could acquire associative
strengths that were subsequently reflected in simulated IATs
as stronger relative preferences in favor of targets that were
more frequently presented with positively-valenced stimuli.
The model predicts that associations that are already strong
have limited prospects for continued reinforcement.

Keywords: Hebbian learning; implicit attitudes; simulation;
localist-connectionist networks.

Introduction

Much discussion over the emergence of automatic associa-
tions between concepts and their evaluations in memory has
taken place within the context of evaluative and classical
conditioning (e.g., De Houwer, 2007; De Houwer, Baeyens
& Field, 2005; Olson & Fazio, 2001; 2002). Evaluative
conditioning is defined as a change in the extent of liking or
disliking towards a stimulus that is caused by the frequent
pairing of that stimulus with other liked or disliked stimuli
(De Houwer, Baeyens & Field, 2005).

The interest in evaluative conditioning research is fueled
by the fact that it has the potential to explain the emergence
of attitudes and account for the ways in which people’s atti-
tudes and beliefs, and consequently their behavior, could be
influenced. Thus, it has wide implications especially with
regards to consumers’ preferences, tastes, and purchasing
habits. For instance, Gibson (2008) recently demonstrated
the effect of evaluative conditioning in influencing implicit
attitudes towards mature brands (e.g., Coke and Pepsi). It
was shown that the consistent pairing of positive stimuli
with a particular brand could help create and strengthen
positive attitudes towards that brand, although the effect was
observed only for subjects who had relatively neutral atti-
tudes towards both brands to begin with. Olson and Fazio
(2001; 2002) reported similar conditioning effects in which
frequent pairings between novel conditioned stimuli (CS)
and valenced unconditioned stimuli (US) could result in the
acquisition of implicit attitudes towards novel target con-

cepts that were created a propos for the experiments, and
consequently influence subjects’ behaviors and responses on
Implicit Association Tests (IAT; Greenwald, McGhee &
Schwartz, 1998) involving those novel targets, even though
subjects reported no explicit memory of the CS-US pairings.

However, the causal mechanisms by which the evaluative
conditioning effect could emerge have yet to be satisfacto-
rily uncovered, owing in part to conflicting empirical data
about the conditions under which such effects might occur
(De Houwer, Baeyens & Field, 2005). Many controversies
revolve around whether associations were learnt as a result
of automatic as opposed to conscious controlled processes,
whether evaluative conditioning effects were due to a reper-
toire of processes (as opposed to a single mechanism) or
contingent on subjects’ awareness of stimuli pairing, and
whether the learning is resistant to extinction (De Houwer,
2007; Walther, Weil & Diising, 2011).

This paper represents our attempts at providing a compu-
tational account of the effect of evaluative conditioning on
the acquisition of automatic associations between concepts
in memory. Through simulations, we examine the impact
that frequent pairing of target stimuli with various positively
or negatively valenced stimuli would have on implicit task
performance, such as on the Implicit Association Test. This
is done with a number of goals in mind. First, to provide ad-
ditional support for the cognitive plausibility of a previously
proposed computational model of implicit task performance
on the IAT (Quek & Ortony, 2011). Our approach is to
augment the localist-connectionist model with a cohesive
explanatory account of how automatic associations between
concepts in memory could be formed or acquired through
experience, a process analogous to how various attitudes are
acquired throughout an individual’s lifetime.

A second goal is to determine if we could make use of the
computational model to address some of the research gaps
identified by De Houwer, Baeyens and Field (2005), espe-
cially in view of what they see as a lack in the availability of
detailed accounts for the processes and mechanisms that un-
derlie evaluative conditioning, and the conditions under
which it could occur. More generally, and as pointed out by
Van Overwalle and Sieber, (2005), there appears to be lim-
ited theoretical advancement in the “understanding of the
storage or strengthening of attitude-object associations in
human memory.” Before more empirical insights are made
available, computational approaches such as modeling and
simulation could provide an interim but effective means for
understanding various candidate processes underlying atti-
tude acquisition or formation (e.g., Eiser, Fazio, Stafford &
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Figure 1. Network model for simulating performance on the IAT (Quek & Ortony, 2011)

Prescott, 2003; Van Overwalle & Sieber, 2005). In our case,
a computational model that is demonstrably capable of rep-
licating IAT effects on the basis of different associative
strengths between concepts could serve as a platform on
which various candidate learning mechanisms could be
evaluated, by examining their impact on performance on the
IAT. Doing so would also provide an example to demon-
strate how learning mechanisms could be incorporated into
localist-connectionist models, to fulfill a gap pointed out by
some theorists that current associative models of attitudes
lack mechanisms that could learn or update internal states
and representations in response to information obtained ex-
ternally from the world, as compared to connectionist mod-
els (Van Overwalle & Sieber, 2005). Finally, providing a
psychologically plausible mechanism for how associative
strengths in the network could be learnt would help allay
potential criticisms and modeling concerns over the seem-
ingly arbitrary manner in which associative weights in the
earlier model were configured or initialized.

Model Overview

In this section, we provide a brief overview of the computa-
tional model used (for more details, see Quek & Ortony,
2011). The model is a localist-connectionist network (e.g.,
Page, 2000) that emulates the multiple processing pathways
from visual perception (i.e., a word or image) to the auto-
matic activation of associated concepts in memory and mo-
tor responses. In general, nodes in the network represent
concepts while connections represent associations between
them. Information is processed in the network through the
flow of activation from one node to another, a process gov-
erned by the following propagation rule:
xi(k+1)=(1=8)x;(k)+a Y x;(k)-w;;(k),
€ji ek

(1

where x; is the activation level of a node v;, w;; is the weight
of the connection ¢;; from a node v; which is a neighbor of v;,
E is the set of all edges, a is the propagation gain (set to 0.2)
and 0 is a decay parameter (set to 0.001) that reduces activa-
tion over time. In each time step £, activation spreads to v;
from each of its neighbors v; at a rate proportional to the

weight w;; of the connection between them. Positive values
of w;; are excitatory while negative values are inhibitory,
while a value of zero implies a neutral or null connection.

Model Components

The network comprises a few components (see Figure 1).
The Associative Network contains nodes representing the
target concepts AFRICAN-AMERICAN (AA) and EUROPEAN-
AMERICAN (EA), attribute concepts for positivity (POS) and
negativity (NEG), input stimuli such as a list of pleasant and
unpleasant words (e.g., happy, wonderful, joy, evil, horri-
ble, hurt), and pictures of European-American and African-
American individuals. Connections between target-attribute
concept node pairs (i.e., EAoPOS, EAoNEG, AA—POS, and
AA©NEG) are taken to represent implicit attitudes. For ex-
ample, a positive attitude towards EA can be represented as
excitatory EA—~POS or inhibitory EA-NEG associations, or
both, such that when EA is activated, POs will be similarly
activated while NEG would be inhibited. Similarly, negative
attitudes towards EA can be represented by excitatory
EA<NEG or inhibitory EA—POS associations, or both, such
that activation of EA would excite NEG but inhibit POS.

The Task Mapper is responsible for transmitting activa-
tion from target and attribute concepts to cue; and cuep
which are nodes indicating that a left or right key-press is
required. If the present task requires a right response for
“European-American or pleasant”, both POS and EA would
be routed to cueg. These connections are reconfigured at the
beginning of each task block, and during which they remain
active (see Quek & Ortony, 2011, Figure 2).

The Response Generator implements Revelle’s (1986)
cue-tendency-action model (CTA), which in turn is based on
Atkinson and Birch’s (1970) dynamics of action theory.
CTA describes the dynamic interactions between conflicting
tendencies and competing actions. Using CTA as a tem-
plate, we construct two response-generating pathways (for
the left and right key-presses). When activated, response cue
nodes will stimulate action-tendency nodes, which will acti-
vate response nodes representing the left and right motor
responses. When either of the response nodes exceeds a cer-
tain activation threshold, it is taken as the winner.
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The interactions between the above representations take
place as excitations and inhibitions along different propaga-
tion pathways. For example, in a task block requiring a left
key for “African-American or unpleasant” and a right key
for “European-American or pleasant”, an African-American
picture would activate AA, and activation will be transmitted
to cue;. However, if the network is configured with a strong
AAPOS connection, activation will also be transmitted to
cueg, competing with cue;. This reduces the rate that activa-
tion will accumulate in the left response node, and thus a
longer time is required for it to reach the response threshold.

Simulating the Implicit Association Test

Each virtual subject’s network is first initialized with a set
of associative strengths that represents its implicit attitudes,
and put through the standard IAT task blocks. The network
is provided with a simulated verbal or pictorial input in each
trial. The number of iterations taken to produce a response is
recorded, and then transformed by a scaling factor into a
simulated response time (in milliseconds) of the same order
of magnitude as those observed in human subjects (e.g.,
Greenwald et al., 1998; Klauer, Voss, Schmitz & Teige-
Mocigemba, 2007). To compute the IAT effect, we take the
raw difference between the simulated mean response times
in the two combined task blocks.

Simulating Evaluative Conditioning

To examine the effect that learning processes might have
on IAT performance, it would be necessary to extend the
localist-connectionist model with mechanisms that could
modify its internal features in response to environmental
input. While the use of learning is a mainstay of connection-
ist and parallel distributed processing models (e.g., Cohen,
Dunbar & McClelland, 1990; McClelland & Rumelhart,
1986; Read et al., 2010), it is relatively uncommon in local-
ist-connectionist models (Page, 2000).

A number of connectionist models for simulating the
automatic acquisition of associations in memory have been
proposed (e.g., Eiser, Fazio, Stafford & Prescott, 2003);
these typically employ some form of error-correction learn-
ing (such as the ubiquitous delta rule) that adjusts weights
to learn particular stimulus-to-response mappings such that
the actual and expected outcomes will eventually converge
over time. It is unclear if this is a realistic portrayal of the
manner in which associations between concepts are learnt or
formed, since the notion of what an expected outcome or
reward ought to be, is ill-defined, or at best, arbitrary. For
instance, frequent exposure to a pair of conditioned and un-
conditioned stimuli need not necessarily involve a motor
response or behavioral outcome, though it can be accompa-
nied by a change in state—which in this case would be an
increase or decrease in the associative strength between
concepts in memory, which can be taken as a change in the
degree of liking or disliking for the said stimuli. Work by
Herz, Sulzer, Kithn and van Hemmen (1989), and more re-
cently Verguts and Notebaert (2008) employed Hebbian
learning rules to learn such state changes.

Hebbian learning (or plasticity, Hebb, 1949) can be con-
strued as a form of reinforcement learning in which connec-
tions between nodes that fire (in the context of neural
networks) or are jointly activated within a temporally
proximate timeframe would be strengthened over time, such
that future joint activation of the associated nodes would co-
occur with greater ease. Mathematically speaking, the Heb-
bian learning rule can be characterized as:

AWi,j =ﬁ,~(xi'xj) (2)
where / is a learning rate parameter, x; and x; are the activa-
tion levels of two nodes v; and v;, while w;; is the weight of
the edge ¢;; originating from node v; and terminating at v;. In
neural networks, x; and x; are known as the pre- and post-
synaptic activation levels of the connection between v; and
v, respectively. The product x; x; can be conceived as a
measure of similarity between the activation levels of both
nodes. The learning rule causes the connection weight be-
tween these two nodes to increase proportionately with re-
spect to the degree in which both nodes are temporally
activated together. However, this rule is known to be unsta-
ble in that connection weights will tend to increase without
bounds over time if repeatedly reinforced, or saturate at
their maximum and minimum boundaries. To enhance sta-
bility, we add a discounting term representing the portion of
activation in v; that is not due to v;:

Awl-’j :/1~(xl~-xj)~(xj—xl-wl~,j). (3)
Doing so ensures that w;; will be adapted in relation to only
that portion of the activation in v; that is not due to v;, which
prevents w;; from over-learning the joint activation between
v; and v;. Thus, associations that are already strong to begin
with will cease to increase without bounds. Our formulation
of the Hebbian learning rule is similar to the simple but
provably stable form proposed by Oja (1982):
AWi,j :l-xj-(xi—xjwi’j). (4)
The difference between the two formulations is that we have
swapped the roles of x; and x; within the parentheses, and
kept x; in the product to preserve the role of the similarity
term x; x;. Furthermore, we inserted a decay term to allow
weights to gradually decay over time, in the absence of acti-
vation, to arrive at the following:

Awi jo==y-wij+A-(xp-x;)-(x;=x;w; ), (5)
where y is the weight decay rate. For implementation pur-
poses, the learning rule is rewritten as an update function:

wi, j(k+1) = (1=y)-w; (k)

2 (k) x () [x () = x; (Kywy, ()]

We further constrained the model to learn only the weights
of associations between positively-activated concept nodes,
while allowing associative weights between non-activated
or negatively-activated (i.e., inhibited) node pairs to decay
and eventually become extinct over time.

Prior to performing the simulation, 4 and y were set to
0.05 and 0.0005 respectively after an initial process of itera-

tive search through parameter space to yield post-learning
weights that had a large but unsaturated range.

(6)
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Simulations

To perform the simulations, we begin with a network con-
figuration in which the weights of the associations EA«<POS,
EA<NEG, AA<POS, and AA—-NEG are all initialized to zero.
In each epoch, 100 pairs of input stimuli, each comprising
an attribute concept exemplar (e.g., the word wonderful) and
a target concept exemplar (e.g., a picture of a White or
Black individual) were selected at random. Input nodes cor-
responding to both exemplars in each stimulus pair were set
with an activation of 1.0. The learning rule in Equation (6)
was then applied in tandem with the propagation rule de-
fined in Equation (1). Propagation of activation through the
network would activate the concept nodes corresponding to
these input stimuli. At the same time, the learning rule is
expected to enhance the connection weights between pairs
of activated concept nodes, for instance, between EA and
POS, or AA and POS, using the above example of the word
wonderful and a picture of a White or Black individual.

By manipulating the frequency at which input exemplars
are selected from each attribute and target concept pair, we
can simulate situations in which the exemplars of specific
target-attribute concept pairs co-occur more frequently than
others. As an example, to produce the condition that EA and
pleasant exemplars co-occur twice as often as EA and un-
pleasant, the frequency for the latter is set to half of the
former’s. We expect the learning rule to adapt association
weights in a manner that will eventually reflect the patterns
of distributions across the frequencies at which each target-
attribute concept pair is presented.

In this first simulation, two learning conditions were de-
fined, as shown in Table 1. In the first condition (a), the fre-
quency distribution across the target-attribute concept pairs
AA+POS, AATNEG, EA+POS, and EA+NEG were set to 40%,
10%, 10%, and 40%, respectively. The second condition (b)
was defined by the distribution 10%, 40%, 40%, and 10%,
for target-attribute pairs in the same order. These represent
the probability in which paired-stimuli are sampled from the
respective concept pair, thus the absolute proportions them-
selves may vary. Virtual subjects in each condition were put
through a pre-learning IAT, followed by the above learning
phase during which 100 pairs of stimuli were presented for
100 epochs each. Finally, a post-learning IAT was adminis-
tered to the virtual subjects. More details concerning the
procedures in which the simulated IATs were conducted are
found in Quek & Ortony (2011).

Figure 2 shows the evolution of target-attribute associa-
tive strengths over the course of learning for 25 virtual sub-
jects in each condition, while the post-learning associative
strengths are shown in Table 2. In condition (a), stronger
AA—POS and EA-NEG associations emerged after learning,
while AA&NEG and EA<POS increased but at a much slower
rate. In (b), stronger associations were found for EA—~POS
and AA-NEG, while the remaining two increased but at a
much slower rate. When put through both the pre-learning
and post-learning IATs, condition (a) had a non-significant
mean [AT effect of -0.03ms prior to learning, #(24) =-0.132,
p = 0.896, but a significant post-learning mean IAT effect of

Table 1: Presentation frequency of paired stimuli in two ex-
perimental conditions during the learning phase

Stimulus Prototypical Presentation Frequency
Pair exemplars Condition (a) Condition (b)
AA+POS E + “happy” 40% 10%
AA+NEG E + “sorrow” 10% 40%
EA+POS [ + “laughter” 10% 40%
EA+NEG [ + “horrible” 40% 10%

Note: EA: European-American; AA: African-American;
POS: Positivity; NEG: Negativity.

Table 2: Post-learning target-attribute associative strengths

Condition (a) Condition (b)

Association
M SD M SD
AA-POS .865 .083 287 .148
AA—NEG .289 .084 .862 .093
EA<POS 256 120 .862 .091
EA-NEG .874 .061 292 117

Note: EA: European-American; AA: African-American;
POS: Positivity; NEG: Negativity.

-124.8ms, #24) = -19.0, p < .001, which is indicative of an
implicit preference for AA over EA. Similarly, condition (b)
exhibited a non-significant pre-learning mean IAT effect of
0.24ms, #(24) = 0.771, p = 0.448, but a significant post-
learning mean IAT effect of 120.6ms, #(24) = 223, p <
.001, indicative of an implicit preference for EA over AA.
Considering that each network began with non-significant
pre-learning IAT test scores but expressed significant post-
learning IAT effects, and since no other modifications were
made to the network, we may conclude that the increase in
IAT effect is due to the associations that were acquired over
the course of learning. As expected, the emerging associa-
tive strengths in each condition (Table 2) showed a similar
pattern to the distributions of presentation frequencies of the
corresponding target-attribute pairs (Table 1).

To investigate the impact of different co-occurrence fre-
quencies on the post-learning IAT effect, we repeated the
above simulation for 250 virtual subjects, only this time
varying the frequency distribution for each subject by inter-
polating randomly between 50%, 0%, 0%, 50%, and 0%,
50%, 50%, 0% for the respective target-attribute concept
pairs AA+POS, AA+NEG, EA+POS, and EA+NEG that were pre-
sented during learning. When the proportions of both
AA+POS and EA+NEG stimuli were reduced from 50% to 0%,
the proportions of AA+NEG and EA+POS stimuli were in-
creased from 0% to 50%, in a complementary manner, while
ensuring that all four proportions add up to 100%.
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Figure 2. Evolution of associative strengths over the course of
learning, for virtual subjects in two conditions. EA: European-
American; AA: African-American; POS: Positivity; NEG: Nega-
tivity. Y-axis: associative strengths. X-axis: learning epochs.
Error bars: standard deviations.

Plotting the post-learning IAT effect against the presenta-
tion frequencies for the four target-attribute concept pairs in
Figure 3, we found that when a larger proportion of EA+POS
and AA+NEG paired stimuli were presented to the model dur-
ing the learning phase, the post-learning IAT subsequently
produced larger IAT effects that were in favor of EA. Con-
versely, when more input stimulus pairs were selected from
AA+POS and EA+NEG and presented to the model during
learning, the post-learning IAT had larger IAT effects in fa-
vor of AA. When all input stimulus pairs were presented
with about the same probability (i.e., keeping the propor-
tions to 25% for each target-attribute concept pair), the post-
learning IAT effect was close to zero.

Discussion

With the computational model, we have demonstrated how
automatic associations between target and attribute concepts
could be acquired by repeated exposure to pairs of input ex-
emplars—as similarly achieved in human subjects via
evaluative or classical conditioning (De Houwer, 2007; Ol-
son & Fazio, 2001). Stronger associations were acquired for
target-attribute concept pairs whose input exemplars were
presented together more frequently, and weaker associations

were learnt for other target-attribute concept pairs whose
input exemplars were presented together less frequently.

These simulations have some important implications es-
pecially with regards to the malleability of implicit attitudes.
First, the ability to influence or generate novel associations
through consistent pairing of target and attribute stimuli
supports the findings of Olson and Fazio (2001) and of Gib-
son (2008), particularly the latter’s discovery that the effects
of evaluative conditioning were observed only for subjects
who initially had relatively neutral attitudes towards the tar-
gets, and not those who already possess a significantly
stronger preference for one target over the other. In our
terms, this could be explained by the longer amount of time
required for stronger associative strengths to decay or
weaken over time when the corresponding paired stimuli
were no longer presented as frequently.

Second, the evolution of associative strengths over learn-
ing epochs in Figure 2 showed a gradual slowdown as they
approached 1.0, suggesting that, as these associations in-
crease in strength over the course of learning, the extent to
which they can be further increased is limited. Thus, there is
limited room for the continued positive reinforcement of
associations whose strengths are already high, such that they
become less susceptible to learning. Consistent with empiri-
cal observations (Gibson 2008; Joy-Gaba & Nosek, 2010),
the model thus predicts that this would limit the impact that
evaluative conditioning might have on attitudes that have
already been firmly ingrained, and thus the continued malle-
ability of attitudes through such means could be reduced.
While it could be argued that this effect is largely a result of
the modified Hebbian learning rule we devised in Equation
(6) that limits the extent to which already-strong associa-
tions could continue to be increased, the weights will none-
theless be subject to the finite upper boundary even when
the standard unconstrained Hebbian rule in Equation (2)
were used instead, and give rise to the same observations.

Third, the simulation results so far are in agreement with
Mitchell, Anderson and Lovibond’s (2007) proposal that the
IAT itself could be used as a means for detecting the occur-

Post-Learning IAT Effects vs. Proportion of
Stimuli Pairs Presented During Learning
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Figure 3. Post-learning IAT effects in virtual subjects (N=250)
across presentation frequencies of input stimuli from each of
the target-attribute concept pairs during the learning phase.
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rence of evaluative conditioning, which, to be consistent
with Gibson (2008), is to be expected only for target con-
cepts that have yet to be strongly associated with any par-
ticular attributes. Finally, considering that the simulated
mechanisms of learning are not specific to valenced attrib-
utes, they could be relevant not just for evaluative condi-
tioning, but for explaining other more generic forms of
conditioning or learning, such as the effectiveness of re-
affirmations to enhance self-concept and self-esteem.

Conclusion

In summary, we have augmented the cognitive plausibility
of our computational model (whose purpose was to account
for the emergence of IAT effects) by providing a cohesive
and cognitively-plausible account of the manner in which
implicit attitudes could be acquired through evaluative con-
ditioning, as well as their subsequent effects on implicit task
performance on a simulated IAT. This is achieved via a
modified Hebbian learning rule that adapts associations be-
tween concept representations in memory relative to the dif-
ferent frequencies at which target stimuli are paired with
other positively or negatively valenced stimuli. An addi-
tional contribution of the model is in demonstrating how lo-
calist connectionist models too are amenable to learning
mechanisms, just like their connectionist counterparts (Van
Overwalle & Sieber, 2005). Extending the simulations be-
yond the permitted scope of this paper to include additional
learning conditions and a more comprehensive analysis of
the viability of the learning algorithms presented (in com-
parison to possibly other candidates) would be a logical con-
tinuation of this work in future.
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