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Abstract

An ACT-R model of sensemaking in a geospatial intelligence
task was developed based on Instance-Based Learning Theory
(IBLT). The model (a) maintains hypotheses about the
probability of attacks by insurgent groups, (b) seeks new
information based on those hypotheses, and (c) updates
hypotheses based on new evidence. The model provides a
functional account of how these sensemaking processes are
carried out in a cognitive architecture, and model performance
can be compared to normative (Bayesian) standards.
Simulations exhibit two well-known cognitive biases that are
frequently identified as problems in intelligence analysis: (1)
anchoring in the weighting of new evidence and (2)
confirmation bias in seeking new information.
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Introduction

Sensemaking (Klein, Moon, & Hoffman, 2006a, 2006b;
Pirolli & Card, 2005; Russell, Stefik, Pirolli, & Card, 1993)
is a concept that has been used frequently in studies of
intelligence analysis. The term suggests an active seeking
and processing of information to achieve understanding.
Sensemaking involves a set of processes aimed at seeking
and filtering information, plus a set of processes that
develop representational schemas (frames) that best fit the
available evidence and provide a basis for understanding the
data. In this paper we present the cognitive model of basic
sensemaking processes for an intelligence analysis task. A
major concern in the intelligence community is the impact
of cognitive biases on the accuracy of analyses (Heuer,
1999). We present simulation results that exhibit anchoring
bias in the evaluation of new evidence and confirmation
bias in seeking evidence.

The Geospatial Task

The geospatial task (Figure 1) is one of a set of challenge
tasks developed as part of the IARPA ICArUS program to
drive the development of integrated neurocognitive models
of sensemaking. This specific task required reasoning based
on a set of rules concerning the relation of observed
evidence to the likelihood of attack by four different groups.
A layered geospatial map is presented on a computer screen,
with different layers presenting different forms of
intelligence (INTs). The INTs include HUMINT (human
intelligence), IMINT (image intelligence), MOVINT
(movement intelligence), SIGINT (signal intelligence),

SOCINT (socio-cultural intelligence), and SIGACT (attack
intelligence).
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Figure 1: The screen shot of the geospatial task. The
letters (A, B, C, D) indicate the center of the group location,
and ‘1’ surrounded by a box indicates the attack location.

The task begins with a given attack location (SIGACT)
along with group centers (HUMINT), A, B, C, and D
representing the center of activity for four possible insurgent
groups. The first step is to report probabilities of attack by
each group [A%, B%, C%, D%] based on the SIGACT and
HUMINT (see Table 1)'. After that, the task is to iteratively
choose among the four remaining INT layers (Table 1), up
to a total of three INTs (layers), one at a time, in any order.
Each INT layer provides unique evidence. Specifically,
IMINT can reveal whether an attack happened on a
government or military building, MOVINT provides
evidence whether an attack occurred in dense or sparse
traffic, SIGINT indicates electronic “chatter” or “silence”
by different groups, and SOCINT indicates the group whose
region the attack happened. At each stage, the selection of a
particular INT provides evidence that can be used to update
the probability distribution over the hypotheses about the
responsibility of the four groups in producing the given
attack. The rules specifying how evidence ought to update
these probabilities is given in the PROBS rules in Table 1.
After the last stage of INT selection, the task is to allocate
resources (troops) to prevent further attacks.

! The new version of the task will provide the initial
probabilities based on HUMINT
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Table 1: Probabilistic rules provided to user for inferring
beliefs about group attack likelihoods.

INTS PROBS

If a group attacks, then the relative likelihood of
attack decreases as the distance from the group
center increases.

If A or B attack then the attack is four times as
likely to occur on a Government versus Military
building. If C or D attack then vice versa.

If A or C attack then the attack is four times as
likely to occur in dense versus sparse traffic. If B
or D attack then vice versa.

HUMINT

IMINT

MOVINT

If SIGINT on a group reports chatter, then attack
by that group is seven times as likely as attack by
each other group

If SIGINT on a group reports silence, then attack
by that group is one-third as likely as attack by
each other group.

If a group attacks then that group is twice as
likely to attack in its own versus other region.

SIGINT

SOCINT

Anchoring and Confirmation Biases

Anchoring and confirmation biases have a long history of
study in cognitive psychology and the intelligence
communities (Heuer Jr, 1999; Klayman, 1995; Klayman &
Ha, 1987; Nickerson, 1998; Tversky & Kahneman, 1974;
Wason, 1960). Process models of these biases, especially in
complex tasks, remain largely unexplored. In this paper we
develop cognitively plausible process model of the
geospatial task in the ACT-R architecture. We then compare
this ACT-R model against a rational Bayesian model of the
task to examine evidence of anchoring and confirmation
biases.

Anchoring Bias and Anchoring and Adjustment
Heuristic

Anchoring is a cognitive bias that occurs when individuals
establish some belief based on some initial evidence, and
then overly rely on this initial decision in their weighting of
new evidence (Tversky & Kahneman, 1974). Human beings
tend to anchor on some estimate or hypothesis and
subsequent estimates tend to be adjustments that are
influenced by the initial anchor point—they tend to behave
as if they have an anchoring+adjustment heuristic.
Adjustments tend to be insufficient in the sense that they
overweight the initial estimates and underweight new
evidence.

Confirmation Bias

Confirmation bias is typically defined as (for a survey, see
Nickerson, 1998):
*  The interpretation of evidence in ways that are partial
to existing beliefs, expectations, or a hypothesis in
hand (Nickerson, 1998)
*  The tendency for people to seek information and cues
that confirm the tentatively held hypothesis or belief,

and not seek (or discount) those that support an
opposite conclusion or belief (Wickens & Hollands,
2000). The seeking of information considered
supportive of favored beliefs (Nickerson, 1998).
Studies (Cheikes, Brown, Lehner, & Adelman, 2004;
Convertino, Billman, Pirolli, Massar, & Shrager, 2008;
Tolcott, Marvin, & Lehner, 1989) have found evidence of
confirmation bias in tasks involving intelligence analysis,
and there is a common assumption that many intelligence
failures are the result of confirmation bias in particular
(Chorev, 1996; Grabo & Goldman, 2004; Heuer Jr, 1999).

Biases in the Geospatial Task

The geospatial task might elicit anchoring and confirmation
biases at multiple points in the process. Anchoring bias in
weighing evidence might be found when participants revise
their belief probabilities after selecting and interpreting a
particular INT. The estimates of belief probabilities that
were set prior to the new INT evidence could act as an
anchor, and the revised (posterior) belief probabilities could
be insufficiently adjusted to reflect the new INT (i.e., when
compared to some normative standard).

Confirmation bias in weighing evidence can also be found
in the hypothesis adjustment process. When applying a
particular INT, such as IMINT (which supports multiple
hypotheses), participants may only apply the adjustment to
the preferred hypothesis while neglecting other groups also
supported by evidence, or weight the evidence too strongly
in favor of the preferred hypothesis.

Finding confirmation bias in seeking evidence in the task
is somewhat more difficult since most INTS apply equally
to all hypotheses. We used the SIGINT layer to identify this
kind of bias because a single hypothesis has to be selected
for that layer. SIGINT provides considerable gains to the
selected hypothesis when chatter is detected (7 times more
likely), so participants could get significant certainty.
However, it loses considerable weight (3 times less likely)
when silence is detected. Thus, a decision to choose the
SIGINT layer too early (before a specific group has
dominates the other in terms of relative likelihood) might be
interpreted as confirmation bias in evidence seeking.

The ACT-R architecture

ACT-R (Anderson et al., 2004; Anderson & Lebiere,
1998) is a cognitive architecture that includes a declarative
memory module that stores and retrieves information and a
procedural module that coordinates the flow of information.
Declarative knowledge in ACT-R is represented formally as
chunks of information (Miller, 1956; Simon, 1974). Chunks
are recalled from long-term declarative memory by an
activation based retrieval process. Activation spreads from
the current focus of attention, including goals, through
associations among chunks in declarative memory. The
spread of activation from one cognitive structure to another
is determined by attentional weights on the associations
among chunks. These weights determine the rate of
activation flow among chunks. Partial matching is a
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mechanism that allows for chunks in declarative memory
that do not perfectly match a retrieval request to be
retrieved. Blending is a memory retrieval mechanism that
allows all chunks in declarative memory that match or
partially match a retrieval request to blend together to create
a new chunk representing an aggregate response (Lebiere,
1999).

Production rules are used to represent procedural
knowledge in ACT-R. That is, they specify how to apply
cognitive skill (know-how) in the current context, and how
to retrieve and modify information in other modules. In
ACT-R, each production rule has conditions that specify
structures that are matched in limited-capacity buffers
corresponding to information from the external world or
other internal modules. Each production rule has actions
that specify changes to be made to the buffers or requested
functions in the associated modules.

The Rational Model versus ACT-R Model

We developed an ACT-R model to perform the geospatial
task, as well as a rational (Bayesian) model as a normative
benchmark. The ACT-R model implemented a version of
instance-based learning theory (Gonzalez, Lerch, & Lebiere,
2003), and the rational model employs a standard Bayesian
approach for updating belief and selecting new evidence
(INTs) based on an expected information gain metric.

The Rational Model

From the PROBS rules discussed in table 1, we can extract
specifications of the likelihoods of evidence, P(e|%), where e
is evidence (e.g., “chatter”) and / is a hypothesis (“group A
attacks”). Bayes rule can be applied to compute the
posterior likelihood of % given specific evidence e and prior
probabilities P(%)

p(hje = LEPO)

2 P(el)P (i)
where i iterates over all hypotheses.

For instance, in Figure 2, we assume some HUMINT data
has been processed, a probability has been assigned to each
of the hypotheses, and the goal is to evaluate the choice of
an IMINT layer. The outcomes represent the estimates of
government and military building attacks given the current
hypotheses strengths. The posteriors are the updated
probability distributions according to the outcomes.

The choice of INT layers can be evaluated by their effects
on expected information gain (Austerweil & Griffiths,
2011). Information gain is defined as the reduction in
entropy measured over the hypothesis probabilities that
occur by acquiring additional evidence. Information gain is
specified as

IG(D,e) = H(D) — H(D|e)
where H(D) is the entropy of the distribution of probabilities
over hypotheses, and H(D|e) is the entropy of the
distribution of posterior probabilities after some evidence e
has been discovered.

H(Dle) == ) P(Dle)log, P(Dle)

In Figure 2, the information gain for seeing an attack on a
government building is .4 and an attack on a military
building is .09. The expected information gain is calculated
by weighting each of the possible outcomes of information
gain by the probability of obtaining that outcome. Thus, the
expected information gain for selecting the IMINT layer is
(.56)(4) + (44)(.09) = .26

Our rational model computed the expected information
gain for all layers at each stage. The rational choices were
compared to the selections made by ACT-R to identify
biases.

Prior after HUMINT Outcomes Posterior after IMINT
| \

Government
[.57.29.07 .07]
ABCD 90
HUMINT —/™ [.4.2.2.2] Military
44> [18.09.36.36)

Figure 2: An example of the rational Bayesian hypothesis
estimates for an IMINT layer selection.

The ACT-R Model

We assume that an average person is not able to compute

the expected information gain of all possible layers, because

it involves substantial amounts of computation. We
considered two cognitively plausible alternatives to develop
an ACT-R model.

* Difference reduction heuristics. One cognitively plausible
way to reduce complexity is to assume that people use a
heuristic such as hill climbing to evaluate moves. Rather
than focus on maximizing expected information gain, hill-
climbing analysis could focus on achieving states that are
closer to an ideal goal state (i.e., in this case, a state in
which the attacks are unambiguously caused by Group A,
or Group B, etc.). This would require some heuristic for
evaluating differences (distances) from the goal state.

* Memory-based move evaluation. 1t is well known in the
field of naturalistic decision making that experts
invariably rely on vast amounts of declarative memory
experience and well-practiced cognitive skill (Klein,
1998). We assume that participants store move outcomes
in declarative memory, and that blended retrievals based
on current states and possible moves can produce a
blended retrieval of outcomes to those moves. This would
be a weighted smoothing of gains that had been made by
similar moves in the past. Although not precisely
equivalent to the computation of rational expected
information gains (a weighting over the gains achieved by
possible layer selection outcomes), blending over memory
of past INT outcomes and gains should produce similar
effects.

Our ACT-R model of the geospatial task explored some
plausible difference reduction heuristics in a memory-based
move evaluation framework. The following weighted
distance function assumes that the goal is to achieve
certainty on one of the hypotheses (i.e., p; =1).

2170



pi(1—py)
i€hypotheses

We assume that the model relies on the use of declarative
chunks that represent hypothetical past experiences of
selecting INT layers. This is intended to capture a
hypothesized learning process whereby participants have
attended to a current probability distribution, chosen a layer,
revised their estimates of the hypotheses, and assessed the
utility of the layer selection they just made. For instance, if
a participant had experienced two situations in which they
had assessed a probability distribution [.4 .2 .2 .2] and
selected an IMINT layer, and had experienced a
“government building” attack one time and a “military
building” attack a second time (See figure 2). The model
assumes the two chunks in its declarative memory.

(expl (exp2
isa layer-choice isa layer-choice
prior-a 0.4 prior-a 0.4
prior-b 0.2 prior-b 0.2
prior-c 0.2 prior-c 0.2
prior-d 0.2 prior-d 0.2
layer IMINT layer IMINT

outcomes government
utility 0.58)

outcomes military
utility 0.69)

where the utilities are computed by the weighted distance
metric.

At a future layer selection point, a production rule will
request a blended/partial matching retrieval from declarative
memory like below:

+blending>
isa layer-choice
prior-a 0.45
prior-b 0.15
prior-c 0.15
prior-d 0.25
layer IMINT
utility =utility

This retrieval will partially match against the experience
chunks above, and will blend across the stored utilities for
all experienced IMINT outcomes (i.e., both government and
military building experiences in the past) to produce a kind
of “expected” utility to match the =utility request.

Hypothesis Probability Updating

Lebiere (1999) proposed a model of cognitive arithmetic
that used retrieval of arithmetic facts to generate estimates
of answers without explicit computations. The cognitive
arithmetic model uses partial matching to retrieve facts
related to the problem, and uses the blending mechanism to
merge them together to issue an aggregate estimated answer.
The model reproduced a number of characteristics of the
distribution of errors in elementary school children,
including both table and non-table errors, error gradients
around the correct answer, higher correct percentage for tie

problems, and, most relevant here, a skew toward
underestimating answers, as is common in anchoring and
adjustment processes.

This approach was leveraged in the current model to
account for how the PROBS rules (from table 1) are
interpreted and applied to estimate the effects of the rules on
the relative probabilities that the groups are responsible for
the attack under examination. The ACT-R model’s memory
was populated with a range of facts consisting of triplets: an
initial probability, an adjustment factor, and the resulting
probability. These chunks are derived from the PROBS
rules shown in Table 1. For example, if the attack is found
to occur on of road with dense traffic, the MOVINT rule
specifies that groups A and C are 4 times as likely to have
been responsible. When a layer of information is made
available to the model, it adjusts the current set of
probabilities by retrieving the relevant chunks and replacing
the prior probabilities with the posteriors representing in the
retrieved chunks. The results of this chunk based rule
interpretation were then averaged over a thousand runs,
given the variations in answers resulting from activation
noise in the retrieval process. When provided with ratio
similarities between probabilities (and factors), the primary
effect is an underestimation of the adjusted probability for
much of the probability range.

Assessment

Biases can be defined as deviations from some norm
(Jonathan D. Nelson, 2005; J.D. Nelson, McKenzie,
Cottrell, & Sejnowski, 2010). In conjunction with producing
the geospatial challenge tasks, the IARPA ICArUS program
has developed metrics for assessing cognitive biases.
Anchoring bias or confirmation bias in weighing evidence is
assessed by a negative entropy metric, N and confirmation
bias in seeking information is assessed using a task-specific
confirmation metric, C.

Anchoring bias metric

Negative entropy is defined as
N = (Hmax - H)/Hmax

where H is the entropy of the distribution of probabilities
over hypotheses and H,,,, is the maximum possible entropy.
N increases with the certainty in a hypothesis (i.e., the
“peakiness” of the distribution). At a given stage of
updating belief probabilities [A%, B%, C%, D%] given
some new INT evidence, we may assess the negative
entropy, Nacr.r, of the belief probabilities in ACT-R, and
the negative entropy of the rational model, Nationar- If Nactr
> MNpationa then the ACT-R model is exhibiting a
confirmation bias in weighing evidence — i.e., over-
weighting evidence that confirms the most likely
hypothesis. Conversely, if Nact.r < NRrational then the ACT-R
model is exhibiting the anchoring bias.

Confirmation bias metric

Confirmation bias in seeking evidence, is assessed by the
fraction, C, of SIGINT choices requested about the
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insurgent group that has been assigned highest probability
of being the attackers.
- No.of SIGINT choices on the highest Prob. group
h Total no.of SIGINT choices
SIGINT provides considerable weight when “chatter” is
detected, so selection of SIGINT for the highest probability
group is interpreted as being confirmatory. It is assumed
that if C > .5 then the model exhibits confirmation bias in
seeking evidence (random choice strategy be C = .25).

Results and Discussion

Each model was used to simulate 30,000 layer selections in
10,000 tasks. By using metrics that we explained in the
previous section, we could identify that the ACT-R model
exhibits anchoring and confirmation biases while
conducting the task.

Anchoring bias in weighing evidence

In the geospatial task, the ACT-R model revises its
probability distribution over hypotheses after each layer
selection, and this can be compared against the probability
distribution of the rational model. As can be seen in figure
3, the ACT-R model is most often showing lower negative
entropy than the rational model (Nactr < MNRational)- In other
words, rather than showing a confirmation bias it is
exhibiting a form of anchoring bias.

All Layer Selections

7000
|

6000
I

5000

Frequency
3000 4000

2000
I

1000
I

0
L

r T 1
-0.5 0.0 0.5

Model NegEntropy - Rational NegEntropy

Figure 3: Difference negative entropy between the ACT-
R model and rational model after each layer selections.

Confirmation bias in seeking evidence

We analyzed the fraction of SIGINT choices for which the
model requests SIGINT on the group with the highest
probability. The result of the fraction for the ACT-R model
is presented in table 2. The fraction of the model is greater
than .5, so the ACT-R model is exhibiting confirmation bias
in seeking evidence according to the C metric.

We also analyzed how the INT layers selected by the
ACT-R model compared to the rational choice based on the
expected information gain. The result is presented in figure

4. Note that the number of alternative choices varies within
a task: The task begins with seven alternatives (IMINT,
MOVINT, SOCINT, and four SIGINTSs) available, and
depending on the selection of the layer, the alternatives
decrease within each trial.

Table 2: The results of the confirmation bias in seeking
evidence for both models.

Total No. of
SIGINT

SIGINT on the

highest prob. group Fraction

ACT-R Model 6,191 9,044 .68

Rational Rank

Frequency
3000 4000 5000 6000
L L L ]

2000
I

1000
I

0
L

Tﬂmﬁﬁ

6 7

Rank

Figure 4: Frequency of the ACT-R model selecting the
rational choice of Rank n (Rank 1 is the optimal choice).

Table 3 shows a confusion matrix that indicates the
proportion of times the ACT-R model makes the same
choice as the rational model. Although the ACT-R model
agrees with the rational model at a level well above chance,
it often differs from the rational. The rational model
scarcely selects SOCINT layer (3 times among 30000),
because the expected information gain for SOCINT is
relatively low.

Table 3: Confusion matrix of the ACT-R model and
rational model for layer selection.

Rational Choice

IMINT MOVINT SIGINT SOCINT

IMINT 75% 15% 4% 0%
ACT-R MOVINT  18% 79% 4% 66%
Choice  SIGINT 4% 3% 91% 0%
SOCINT 3% 3% 1% 33%

Note that there is some interaction between the anchoring
bias in evidence weighing and any biases that might emerge
in choosing layers. If the ACT-R models (or participants)
under-weight evidence and believe in a “less peaky”
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probability distribution over hypotheses, then that can affect
how far they believe that the current state or next state is
from the goal, or how much more uncertainty can be
reduced by a given layer choice. Biases in beliefs about the
current situation will impact evidence-gathering choices.
The ACT-R model exhibits confirmation bias when
evaluated against the ICArUS task-specific norm, C, which
measures the propensity to use SIGINT to confirm the
strongest current hypothesis. However, the selection of INT
layers is generally highly consistent with the rational norm
of seeking evidence that will produce the highest expected
information gain. This illustrates how the notion of “bias” is
dependent on the choice of norm, and how such norms do
not always agree, especially in the case of “confirmation
bias” (Jonathan D. Nelson, 2005). It has been shown
(Austerweil & Griffiths, 2011) that confirmatory strategies
are rational for a large class of tasks and people appear to
approximate choices based on expected information gain.
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