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Abstract

We describe an intervention being developed by our research
team, Pushing Symbols (PS). This intervention is designed to
encourage learners to treat symbol systems as physical objects
that move and change over time according to dynamic
principles. We provide students with the opportunities to
explore algebraic structure by physically manipulating and
interacting with concrete and virtual symbolic systems that
enforce rules through constraints on physical transformations.
Here we present an instantiation of this approach aimed at
helping students learn the structure of algebraic notation in
general, and in particular learn to simplify like terms. This
instantiation combines colored symbol tiles with a new
touchscreen software technology adapted from the
commercial Algebra Touch software. We present preliminary
findings from a study with 70 middle-school students who
participated in the PS intervention over a three-hour period.
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Introduction

The core conceptual content of algebra is extraordinarily
simple: it is largely exhausted by the properties of addition
and multiplication over the real numbers, such as
commutativity, associativity, and distributivity, together
with basic properties of functions and equivalence relations
over the same structure. This formal simplicity belies the
great difficulty students have in mastering basic algebra
content (NAEP, 2011) — and especially the notation
universally used to express algebraic claims (McNeil, 2008;
Koedinger & Alibali, 2008).

One way to explain the difficulty of algebra is that unlike
number cognition, algebraic reasoning does not seem to fit
neatly into a core conceptual domain (Dehaene, 1997;
Carey, 2009). Children may then face the challenge of
assembling new cognitive tools appropriate to algebraic
interactions. This task is made more challenging because
typical instruction in basic algebraic notation is often brief
and involves an emphasis on memorization of abstract rules.

Algebraic literacy—the fluent construction, interpretation,
and manipulation of algebraic notations—involves not just
memorizing rules, but also learning appropriate perceptual
processes (Goldstone, Landy, & Son, 2010; Kirshner, 1989;
Landy & Goldstone, 2007, 2008, 2010; Kellman, Massey, &
Son, 2010). Like other formal diagrammatic systems (such
as, for example, Venn diagrams) algebraic notation aligns
the structure of the content domain with automatic
perceptual properties and necessary physical laws (Cheng,
1999; Landy, Allen, and Anderson, 2011; Landy, 2010). In
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this way reasoning that is properly cognitive can be
accomplished by perceptual-motor systems such as attention
(Patsenko & Altmann, 2010) or perceptual organization
(Landy & Goldstone, 2007; Novick & Catley, 2008).
Although such transformation of cognitive work into
perceptual processing may the carry distinctive risk of
mistaking perceptual properties of representations for
content principles (Novick & Catley, 2007; Kirshner &
Awtry, 2004), it may also be critical to reducing cognitive
load in complex operations (Sweller, 1994).

Successful students often use perceptual and visual
patterns available in notations to solve mathematical
problems. Like many skills learned from long practices
learning algebra involves perceptual training- learning to see
equations as structured objects (Landy and Goldstone, 2007;
Kellman et al., 2008; Kirshner & Awtry, 2004). For
instance, people seem to group symbols into perceptual
chunks and use these groups, rather than just calculation
rules, to perform mathematics. Although in some cases the
appropriate perceptual patterns are fairly easy to see
(Kirshner & Awtry, 2004), in other cases understanding the
visual forms requires that a learner internalize an
appropriate way of seeing a piece of notation. Real-world
motion, changes, and transformations are naturally
memorable and easy to acquire, making these processes
natural tools for helping students grapple with algebra
(Landy, 2010). Some successful object-centered
transformations, however, may not be as immediately
obvious as others in traditional instruction. Therefore,
training students to see the structure of algebra may be a
promising approach to teaching algebraic ideas.

While this perceptual-motor understanding of algebraic
forms is a potentially rich and powerful source of student
understanding, it also stands as a barrier to learning if visual
patterning is not taught in a controlled manner. While some
students learn easily, others latch on to incorrect perceptions
and, consequently, generalizations (Marquis, 1988;
Kirshner, 1989; Nogueira de Lima & Tall, 2007). Our goal
is to find instructional and pedagogical paths through which
students can make use of the strength of perceptual patterns
in algebraic notation without falling prey to misleading
visual structures or overly procedural, low-level
understandings.

Pushing Symbols: Teaching the Structure of
Algebraic Expressions

The purpose of the PS intervention is to explore an
alternative method of algebra instruction that focuses
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Figure 1. Algebraic Transformation Visualizations

student efforts on the visual structure of formalisms, both by
directly presenting those visual patterns and by challenging
students to maintain and explain them. This method is being
instantiated in a pedagogical intervention (PS) consisting of
a set of in-class discussions, activities, and a dynamic
computer-based visualization method. The intervention
allows students to physically and dynamically interact with
algebraic expression elements, providing a potentially
powerful source of perceptual-motor experiences. Rather
than simply rewriting different static expressions, in PS
learners directly interact with expression objects and
transform them using dynamical laws. Because rigid motion
is a powerful perceptual grouping mechanism (Palmer,
1999) it is anticipated that training in which students see
correct algebraic structures in dynamic transformations may
lead to improved understanding of algebraic concepts.

The PS intervention has several specific aims. First we
aim to increase fluency and accuracy by improving the
alignment between students’ visual-motor processes and
proper formal operations and transformations. (Figure 1).
Second the PS program is designed to be engaging for
students, which is intended to build efficacy in students and
develop the attitude that algebra can be intuitive,
predictable, and even fun.

Algebra Structure Tiles

The Pushing Symbols manipulative system uses colored
magnets and tiles to decompose the structure of algebraic
expressions. There are 4 different colored tiles in a set (see
Figure 2), and each color represents a specific mathematical
object (number, variable, coefficient, symbol). Yellow tiles
represent numbers (from £1-9), blue tiles represent symbols
or mathematical operations. (+), red tiles represent x
variables and coefficients (from +1-9), and green tiles
represent y variables and coefficients (from =+1-9). After
modeling an expression, the tiles can be rearranged and
simplified into equivalent expressions.

x o AR

Figure 2: Algebra Structure Tiles

The Algebra Touch Research (ATR) Software

The PS system uses a computer application developed in
collaboration with Regular Berry software to teach students
basic algebraic principles while richly engaging perceptual-
motor systems (Figure 3). We describe software developed
by Regular Berry software based on the Algebra Touch
system, which instantiates the transformations specified by
the PS intervention (We will call this Algebra Touch:
Research, or ATR) In ATR students perform arithmetic
functions by tapping on a sign and algebraic rearrangements
are carried out by touching appropriate symbols and moving
them into the desired location. ATR provides dynamical
models of basic algebraic properties and transformations
such as distributivity of multiplication over addition,
commutativity, simplification of like terms through
addition, and reduction of fractions to lowest terms.

ATR does not allow students to make mistakes; if they
attempt to do something against the laws of mathematics, a
brief side-to-side motion (a “shake”) provides immediate
feedback that their desired action was illegal. As a result,
students immediately see how the rules result in legal
transformations or manipulations in a way that is impossible
with a traditional blackboard or overhead projector lesson.

Problems in ATR can be presented in either an untimed
list mode or a game mode. In both modes the presentation
and interaction with individual problems is identical.
However, in the game mode problems are collected into
level, and performance on any particular level is scored with
a number of stars. Stars are based on the number of mistakes
made during problem solution, and the speed with which a
particular problem is solved. If too many mistakes are
made or time runs out, the level is “failed” and must be
restarted. At the end of each problem, the program provides
immediate feedback to students about the number of errors
they made and the speed to which they simplified the
expression.

Study Details

The PS approach has been instantiated in a single trial
lesson covering combination of like terms. This lesson lasts
approximately 90 minutes, and involves a large set of
symbol tiles for teacher demonstrations on a whiteboard,
smaller tiles used by students in pairs, and the ATR
software.

-5+-4X+2+-6X+-8y+2y

Figure 3: Algebra Touch Research software
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We anticipated that the intervention would decrease the
amount of structural errors that students made, and improve
their overall understanding of simplifying expressions.
Since the intervention did not explicitly address solving
word problems, we did not anticipate a change in the
number of word problems solved successfully. We also
hypothesized that pre-test scores, self-efficacy, engagement,
and performance on the iPad would positively contribute to
post-test scores, while math anxiety would negatively
contribute to post-test performance. We also predicted that
the intervention would shift participation and engagement.

Participants

Seventy eighth-grade students from an urban public middle
school in the mid-east United States participated in this
study during their regular mathematics instruction time.
These students had never received instruction on like-terms
or simplifying expressions before this intervention. Student
assent and parental consent were obtained prior to
participation in this study, in accordance with the directions
of the University of Richmond Institutional Review Board.

Study Procedures

The study took approximately 3 hours in total and occurred
over three class periods. On the first day (90 minutes),
students completed a pre-test on simplifying algebraic
expressions and a Mathematics Self-Efficacy and Anxiety
questionnaire. Next, students received a whole-group lesson
on simplifying expressions. During this lesson, the teacher
(the first author) led a series of discussions and used colored
tiles to demonstrate algebraic structure. Students were then
put into groups of 3 and used colored tiles to identify and
combine like terms and simplify expressions. Third,
students participated in a 20-minute exploration and training
activity that provided students with an opportunity to learn
how to use the iPad and A7R technology.

On the second day (90 minutes), students were each
given an iPad, and were given 40 minutes to solve
problems. Practice was divided into two phases. In the first
phase, students simplified simple expressions involving no
more than about 4 terms; in the second phase, more complex
expressions involving up to 8 terms. Each 20 minutes phase
was divided between an initial list of 10 untimed problems,
followed by a set of 40 game problems.

Any pedagogical approach, especially those based on
software interventions, must address the assistance dilemma
(Aleven and Koedinger, 2002): how and how much help
should be provided to learners, and when? ATR makes
several fixed commitments: students cannot complete illegal
transformations, for instance. In the current study, we also
varied the amount of arithmetic support given to students.
Participants were randomly assigned into 2 groups. In one
group, students manually calculated the simple problems',

! An example of manual and automatic calculation modes can be
seen at http://davidlandy.net/PushingSymbols/RPS--12-1-11-Like-
Terms-Manual-1.mov and http://davidlandy.net/PushingSymbols/
RPS--12-1-11-Like-Terms-Automatic-1.mov

but arithmetic in structurally more complex problems was
calculated automatically by the software; in the second
condition, assistance pattern was reversed. There were no
differences in structural understanding or success in word
problems between the two groups, and, this manipulation
will not be discussed further.

At the end of the intervention, students completed a
questionnaire about their engagement during the
intervention and a post-test. We also conducted student
focus groups to receive feedback on what aspects of the
intervention were most helpful and enjoyable. 2 weeks after
the intervention, students completed a retention test.

Measures

Simplifying Expressions Assessments. FEach child
completed an 18-item pre, post, and retention test on paper
involving expression simplification. These tests assessed
two major types of expression-related problem-solving
skills: procedural facility with simplification (10-items), and
expression construction and evaluation (word problems) (6
items). The problems on the pre, post, and retention tests
were similar in form and difficulty.

We followed several steps to code the assessments. First,
we coded each item on the assessment as incorrect, correct,
or did not attempt. Next, to understand the source of the
errors, we conducted error analyses on each item. Four error
codes were used: 1) no error, 2) structural error; 3) addition
or negative error; and 4) did not attempt. Structural errors
include combining unlike terms, over-combination
(simplifying the expression correctly and then combining
un-like terms) or partial structural errors (moving around
like terms but not completely simplifying the problem).
Since the PS framework is designed to make structure
concrete, naturally structural errors are particularly
interesting for analysis. Addition and negative errors were
coded when students used correct structure, but made an
arithmetic error when combining terms. When a problem
was left blank, we coded it as “did not attempt”. On
average, students did not attempt to solve 25% of the pre-
test problems, 16% of the problems on the post-test, and
20% on the retention test.
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Figure 4: Proportion of Attempted Problems
Solved Correctly (Free of structural errors)
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Third, for each assessment (pre, post, and retention), we
calculated 2 composite scores. 1) proportion of attempted
procedural problems that were free of structural errors. 2)
proportion of attempted word problems that were solved
correctly. These two scores were used to measure student
understanding of algebraic expressions in the analyses.

ATR Performance. iPad Performance was measured at 2
different levels, using the Algebra Speed game. Level 1
asked students to simplify a series of 36 simple expressions
(ex. 5+7+3; x+2+6). Level 2 asked students to simplify a
series of 40 complex expressions (ex. 7+2x+5x+4y+1+-2y).
Students could receive a maximum of 3 points for each
problem solved. The points system accounted both the
number of errors that they made and the speed to which they
simplified the expression. At the end of each level students
received a level performance score, which represented the
total number of points received on the level. Total points on
Level 1 (simple) and Level 2 (complex) were used as 2
measures of ATR performance.

Mathematics Self-Efficacy and Anxiety Questionnaire.
Students were administered a set of 10-items pertaining to
their self-efficacy and anxiety in mathematics. All 10 items
were on a uniform 4-point scale (I=almost never,
2=sometimes, 3=most of the time, 4=almost all of the time).
To assess students’ math self- efficacy beliefs, 5 items were
adapted from the Academic Efficacy subscale of the
Patterns of Adaptive Learning Scales (Midgley et al., 2000)
(e.g. “I know I can learn the skills taught in math this year”)
(0=.82). To measure students’ feelings of math anxiety, 5
items were adapted from the Student Beliefs about
Mathematics Survey (Kaya, 2008) (e.g. “I feel nervous
when I do math because I think it’s too hard”) (a=.61).
Scores for each construct were then averaged to create a
mean math self-efficacy and mean mathematics anxiety
composite.

Student Engagement in Mathematics Questionnaire.
Student engagement during the lesson was measured using
18 items that were adapted from the Student Engagement in
Mathematics Questionnaire (Kong, Wong, & Lam, 2003):
(e.g. “Today I only paid attention in math when it was
interesting.”). All 18 items were on a 4-point scale (1=no,
not at all true, 2=a little true, 3=often true, 4=yes, very true).

Results

Analysis 1: Does the Pushing Symbols Intervention
improve student understanding of algebraic
structure?

Procedural  Problems. On average the intervention
increased students’ knowledge of algebraic structure (Figure
4). At pretest only 9.4% of problems were solved without
structural errors. At post-test 54% of problems attempted
were solved without structural errors (Improvement of
44.6%, t=10.48, p<0.01). At retention 41.4% of the
problems were solved without structural errors (overall
improvement of 32%, t=6.81, p<0.01). After 2 weeks
students retained 72% of their structural learning.

Word Problems. As expected, the intervention did not
appear to improve student understanding of word problems
at post-test (t=-0.87, p>0.05) or retention (t=-0.07, p>0.05).

Analysis 2: Relations between structural
performance, efficacy, anxiety, engagement, and
performance on ATR.

We conducted regression analyses to examine potential
predictors of structural performance on the post-test. We
included the following variables in the analysis: gender,
math self-efficacy, math anxiety, engagement, pre-test
performance, and iPad performance.

Correlations and descriptive statistics are reported in
Table 1 and the regression results are presented in Table 2.
Three main effects were found. First, results indicate that
math efficacy was related to higher performance on the
post-test (a 1 point increase in efficacy was related to a 1.27
point increase in performance). Second, successfully
completing more problems (both simple and complex) on
ATR was related to higher scores on the post-test. Further,
students who reported being more engaged during the PS
intervention performed higher on the post-test (for every 1
point increase in engagement, students performed 1.80
points higher on the post test). Interestingly, students’
performance on the pre-test or levels of math anxiety did not
predict performance at post-test.

Table 1: Means, Standard Deviations, and Correlations for Measures of Performance, Beliefs, and Engagement

Variable Mean SD 1 2 3 4 5 6 7 8 9 10
1. Performance on Post-test 5.40 3.70 -
2. Gender 0.55 0.51  -0.10 -
3. Math Self-Efficacy 2.95 0.58 0.29* -0.12 -
4. Math Anxiety 2.01 0.61 -0.27* 0.04 -0.37** -
5. Performance on Pre-test 3.09 0.58 0.45** -025 019 -0.16 -
6. AT Level 1- Simple expressions 0.94 1.57 030* -021 0.02 -0.21 0.12 -
7. AT Level 2- Complex expressions  63.36 3785 0.14 -0.19 -0.14 0.12 0.01 0.14 -
8. Math Engagement 51.44 4650 047** 0.15 0.08 -0.32** 022 0.31* -0.30%* -
9. Scaffold Group 0.59 050 -0.10 -0.16 -0.06 0.18 -0.13 -0.15 .65%* -0.68**
10. Performance on Retention test 4.14 4.02 0.69** -0.09 0.01 -0.30* 0.25 0.25* 022 0.33** -0.01 -
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Table 2: Predictors of Algebraic Structure
Performance on Post-Test

Variable B SE t
Intercept -7.04 3.76 -1.87
Gender 0.06 0.79 0.57
Math Self-Efficacy 0.21**  0.68 1.85
Math Anxiety -0.07  0.69 -0.52
Performance on Pre-test | 0.15 0.26 1.30
:xi rL:S:f;nls Simple 0.29%* 001 273
:}; rL:S:fg 1125 Complex 1 g g 001 2.06
Math Engagement 0.30**  0.66 2.75
Scaffold Group 0.09 1.24 0.50

Discussion

We have described an approach to algebra instruction that
emphasizes perceptual and manual interactions with
dynamically realized models of algebraic notation, as a
vehicle for helping students become fluent with algebraic
structure.  Although our current results are quite
preliminary and not experimental, they do demonstrate
that a short intervention based on this framework may
substantially improve student performance at simplifying
expressions. Furthermore, this work adds to a small
literature suggesting that touchscreen-based learning tools
can successfully lead to student learning.

Although our results suggest that, on average, student
performance increased substantially after receiving the
intervention, not all students mastered the material. Many
students still struggled with simplifying expressions or
did not attempt many of the problems. It will be
important to compare motion-based interventions such as
this one with other methods of instruction in algebra
notation in the future, to better understand the relative
value of the AT system

The current system contrasts with many popular algebra
manipulative systems, such as Algebra Tiles and Hands-
on Equations (Foster, 2007), in its emphasis on the
structure of mathematical expressions rather than models
of the concepts referred to by them. We certainly believe
that connecting algebraic structure to relevant and
intuitive examples has an important place in the teaching
of algebra. However, given the clear demonstrations that
students struggle to understand basic algebraic notation
(Koedinger, Alibali, & Nathan, 2008), that closely
connecting structure to content can impede learning
(Kaminski, Sloutsky, and Heckler, 2006), and existing
evidence linking teaching algebraic structure to improved
student understanding of algebraic expressions (Banerjee
& Subramaniam, 2011), we believe that there is good
reason to pursue manipulative systems that expressly
communicate algebraic structure through engaging
perceptual and motor interactions.

The current findings also suggest that a hands-on
approach to teaching the structure of algebra may benefit
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students. Students reported that physically moving objects
(the tiles and ATR) around helped them focus on the steps
necessary to simplify expressions. There is also anecdotal
evidence that students were applying the ideas of
perceptual motion when solving problems on paper. We
often observed students gesturing and moving the terms
around with their fingers, as well as drawing lines or
arrows to represent the legal moves and actions. These
observations are consistent with research suggesting that
gesturing or alternative ways to represent new ideas may
improve student learning (Cook, Mitchell, & Goldin-
Meadow, 2008). They also reported that this approach
seemed to help them better understand previously taught
concepts (such as commutative property, order of
operations).

It is also worth noting that the intervention seemed to
increase student interest, participation, and interactions.
Both observational and student reported engagement
during this intervention was high. Virtually all students
reported that the intervention was engaging, and fun. In
addition, virtually all students reported liking to solve
algebra problems more in ATR than in more traditional
approaches.

This study has several limitations that limit the
conclusions that can be drawn from it. Although beyond
the scope of this current study, future work utilizing a
control group involving more traditional instruction and
practice will better examine the efficacy of this
intervention. It is also unclear how the learning from this
intervention differs from learning that would occur from
typical classroom instruction, and how such differences
may impact learning of future topics (Schwartz and
Black, 1996). The design of the study also does not allow
us to tease apart which components of the intervention
(classroom instruction, manipulatives, and/or practice on
the iPad) are most useful in building student
understanding. Although each of these components
implemented the general framework and underlying
cognitive principles, given the large current interest in
technological interventions, it will be important in future
work to distinguish the particular contributions of each of
these components and their interaction.

The value of this research at its current stage lies in
pointing the direction to a complex of ideas and practices
that connect education, cognitive science, and interface
design. As designed experiences become more ubiquitous
and richly featured, it becomes increasingly possible to
construct novel experiences that evoke abstract content in
powerful, perceptually specific ways. The limit point of
the approach we are pursuing is not just one in which
problem solving is fun, game like, and perceptually
powerful. Instead, this research represents a starting point
toward a conception of formal learning in which the
structures of mathematics are directly explorable—in
which the abstract is rendered consistently concrete.
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