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Abstract

In a recent article, Bowers (2009) argues that local represen-
tations are more consistent with neuro-biological data than
distributed representations, as typically generated in Parallel
Distributed Processing (PDP) models. We present three rea-
sons why localised neural representations are good candidates
for supporting mental representations, as they provide a so-
lution to the trade-off between combinatorial arguments that
favour fully-distributed representations and metabolic argu-
ments which favour localist representations.
Keywords: distributed representations, local representations,
self-organising maps, synaptic pruning, brain metabolism

Introduction
Over the last thirty years, hypotheses concerning the nature of
mental representations have essentially been polarised to two
interpretations: some researchers argue that brain representa-
tions are distributed (among them, proponents of the Paral-
lel Distributed Processing (PDP) approach: e.g., Rumelhart,
McClelland, & the PDP Research Group, 1986; Seidenberg &
McClelland, 1989; McClelland & Rogers, 2003; Plaut & Mc-
Clelland, 2010), while others suggest that local representa-
tions fit neuro-physiological data more accurately (e.g., Page,
2001; Bowers, 2009). Most of the arguments in favour of
distributed representations fall into one of the following two
categories: high combinatorial power and robustness with re-
spect to lesions. In contrast, Bowers (2009) reviews neuro-
biological evidence for relatively sharply tuned neurons rem-
iniscent of localist representations and argues that distributed
approaches fail to provide unambiguous representations un-
der superposition.

We attempt to clarify the role of combinatorial power, in
light of the superposition problem. We then introduce two
metabolic arguments to the debate. We suggest that a poten-
tial solution to the debate relies on localised representations,
capitalising on robust representations that span only a limited
number of neurons, thereby minimising the energy expendi-
ture associated with mental representations. Finally, we dis-
cuss the implications of this proposal and highlight examples
already using localised representations.

The combinatorial argument
The idea that distributed representations can code many more
patterns than localist coding scheme is well established. Tra-
ditional binary coding, in which a neuron is either active or

silent, emphasises this difference. We will therefore reiter-
ate this combinatorial argument using binary activation levels
and comment on its validity in the context of decoding super-
posed patterns. The extension to continuous encoding will
then be discussed.

The case of binary encoding

The coding advantage Elementary calculus shows that 2n

patterns can be encoded over n neurons, corresponding to the
case of fully-distributed representations (see Fig. 1). With
localised representations, the combinatorial power decreases
rapidly. Suppose, for example, that each pattern can use at
most n neurons out of a total system of N neurons. The num-
ber of patterns that can be stored in n neurons is then 2n in
each of the subset of n neurons picked from the total pool of
neurons. If n = N/2, for example, there are two subsets of
n neurons, each coding 2n patterns. The total number of pat-
terns p with a degree of localisation of n stored in N = 2n
neurons would then be p = 2 · 2n. Fig. 1 depicts the number
of patterns p that can be stored among N neurons (maximum
20 neurons in the simulation), for different levels of locali-
sation n. A purely localist encoding (n=1) can only store as
many patterns as there are neurons. At the other end of the
spectrum, fully-distributed representations can store 2n pat-
terns. In between, the number of patterns one can store is di-
rectly related to the number of neurons that are involved in the
coding of an individual pattern. As a consequence, localist
representations have a limited capacity to store only as many
separate representations as the number of neurons. Orders of
magnitude can be gained by coding each patterns over a few
neurons. With only 30 neurons, a fully-distributed approach
would be able to store more than a billion different repre-
sentations, a number that exceeds by orders of magnitude the
likely capacity for human mental representations: “even if the
distinguishable visual items are larger than the number of the
different types of objects (< 100000) that humans are able to
discriminate, cortical visual neurons are certainly so numer-
ous that there would be enough sets of them to represent each
single object (or property)”(Pareti & De Palma, 2004, p.45).
On the other hand, localised encoding (n > 1) can rapidly
reach the combinatorial power required to represent a very
large number of different representations.
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Figure 1: Number of patterns that can be stored as a func-
tion of the total number of neurons, using binary encoding.
The different curves correspond respectively to a purely lo-
calist encoding, different levels of localisation and a fully-
distributed encoding.

The decoding problem Encoding many representations is
a necessary requirement for human cognitive performance.
In many situations, multiple representations need to be en-
coded simultaneously. This leads to the potential ambiguity
introduced by a superposition of representations. For exam-
ple, visual scenes will contain a configuration of independent
objects. A difficult task for the brain is therefore to be able
to decode superposed representations unambiguously. Pat-
terns of activation in the brain can be construed as multi-
dimensional vectors. Elementary linear algebra constrains
the number of linearly independent vectors to the number of
dimensions represented in the system. Any additional vec-
tor can be expressed as a linear combination of other vec-
tors.Consequently, there can be at most N independent pat-
terns unambiguously coded across N neurons, on the assump-
tion that each neuron encodes a separate dimension. Beyond
that limit, additional representations can be misconstrued as
a superposition of one or more other representations even for
fully-distributed representations. If the network’s task is to
encode multiple patterns that can be superposed in the same
neural substrate, the combinatorial advantage of distributed
representations is compromised.

The case of continuous encoding

Activation levels in neurons do not need to be restricted to a
binary coding scheme. For example, simple rate coding mod-
els make use of a range of activation levels to encode different
stimuli. More complex, and more realistic models of neurons
make use of the rich dynamics of neuronal firing. A strict
and complex mathematical analysis of the coding and decod-

ing capacities in both local and distributed representations for
continuous coding schemes is beyond the scope of the present
article. Nevertheless, it is worth commenting some implica-
tions of this approach.

A first observation is that coding is further enriched by
the increased range of values any neuron can take. In fact,
a single neuron could encode as many different patterns as
needed, as long as the decoder has a resolution that is fine
enough. The combinatorial advantage of distributed coding
is still present for a decoder with a fixed resolution (e.g., the
ability to detect subtle differences between relevant, and dif-
ferent, neural activation levels). However, as single neurons
can encode many more patterns with continuous encoding
schemes than with binary coding, fewer neurons are required
to encode the same number of patterns. For example, 10 bi-
nary coding neurons are needed to represent 1000 patterns
(210 = 1024), but if continuous activation levels can be de-
tected with greater accuracy so that each neuron could take 10
distinct values each, only 3 neurons would then be required
(103 = 1000).

A second observation is that decoding subtle differences
between different activation levels of neurons is a non-trivial
problem. Presence of noise would limit the decoder’s reso-
lution and the more neurons needed to encode a representa-
tion, the more difficult it will be to decode that information
and the more neurons required to act as decoders (e.g., see
Földiák (2003) for a discussion of the advantage of represen-
tations that span fewer neurons (sparse representations) than
fully-distributed representations for decoding).

The limited resolution of the decoder effectively reduces
the case of continuous encoding to a simple extension of bi-
nary coding, where each neuron can have two distinct acti-
vation levels, to a case of N-coding, in which each neuron
can take N distinct values. Small values for N magnify the
problem of superposition of representations for distributed
representations while reducing the problem of combinato-
rial limitations for localised representations. Large values
for N would furthermore undermine the claim that localised
(or even localist) representations cannot encode a sufficiently
large number of different representations, while increasing
the complexity and vulnerability of a decoder network that
requires an increasingly large number of neurons.

The metabolic argument
Let us turn now onto a consideration that can be made in-
dependently from the nature of the neural coding itself. It
is often claimed that the resource needed to encode N pat-
terns is less using fully-distributed representations than local-
ist codes, thereby minimising metabolic expenses, because
fewer neurons are required for distributed representations.

However, consider a brain structure with a given number
of neurons required to represent a number of different pat-
terns. The metabolic expense of the brain structure is, to a
first approximation, proportional to the number of neurons
that participate in the representation of the pattern(s) present
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in a scene (or maintained/sustained in that brain structure).
As a rule of thumb, if less neurons are required to participate
in the representation of a pattern, the less the energy required
for that task.

Fig. 2 depicts the energy consumption (as indexed by the
number of neurons that participate in the representation) as a
function of the number of patterns (or objects) that need be-
ing represented in a network of 20 neurons. Different curves
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Figure 2: Energy as indexed by the number of neurons
required to represent a number of objects simultaneously.
The different curves correspond respectively to a purely lo-
calist encoding, different levels of localisation and a fully-
distributed encoding. Localised representations use less en-
ergy than fully-distributed representations for a given ar-
chitecture (in the present simulation, total number of neu-
rons=20).

correspond to different localisation levels: in a purely local-
ist coding, each pattern is represented by a single neuron.
In this case, the energy consumption is proportional to the
number of objects represented simultaneously. As the num-
ber of neurons involved in the representation of a given pat-
tern increases, the energy expenditure increase for any num-
ber of patterns (or objects) being represented at a given time.
Ultimately, fully-distributed representations require all neu-
rons to participate in the representation of even a single pat-
tern. Unless the system is working at full capacity at all
times, energy consumption is minimised for localist represen-
tations but maximised for fully-distributed representations.
Localised representations consume intermediate levels of en-
ergy.

The synaptic pruning argument
Neural resources involve not only the cell bodies of neurons
but also the connections between them. Associations between
representations require appropriate connections or synapses.

Synaptic maintenance is also a contributor of energy con-
sumption. For example, neural mappings between an object
representation and its corresponding label require appropriate
cross-modal synapses between visual and auditory areas. The
number of cross-modal synapses required to form the map-
ping between the different brain structures depends on the
degree of localisation of each representation in both struc-
tures. Figure 3 depicts the number of cross-modal synapses
needed to maintain an appropriate mapping between repre-
sentations in different neural structures, as a function of the
degree of localisation of the representations in each structure
(which have been chosen to be identical for the sake of sim-
plicity). The number of synapses needed increases with the
number of objects that are encoded in each modality. Note
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Figure 3: Percentage of cross-modal synapses required to
maintain the mappings between uni-modal representations
without degradation, as a function of the degree of localisa-
tion. The different curves correspond to different network
loads in terms of the number of objects that need to be rep-
resented in each modality. Note that pruning can only be
achieved with reduced levels of localisation.

that fully-distributed representations (where the degree of lo-
calisation equals the number of neurons, 20) require the full
set of cross-modal synapses (202 = 400) even when each
structure is only required to encode a single object. A lower
number of synapses can only be achieved for reduced levels
of localisation for the neural representations.

It is important to note that the number of synapses is not
constant during brain development. After an early prolifera-
tion of synapses, their number remains approximately con-
stant, before environmentally induced synaptic pruning re-
duces the total number of synapses (see Huttenlocher, 2002).
The observed synaptic pruning mechanism is usually associ-
ated with either an improvement in cognitive skills (Miller,
Keller, & Stryker, 1989; Chechik, 1998) and/or an optimi-
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sation in metabolic resources (Roland, 1993; Feinberg, Th-
ode Jr, Chugani, & March, 1990), potentionally leading to a
internally-driven reorganisation of neural representations. So
that synaptic pruning can operate without being detrimental
to the task, representations benefit from a reduced degree of
localisation.

Discussion: Solutions to the trade-offs
Mental representations can have different levels of localisa-
tion, as defined by the number of neurons that are required to
take part in the representation of an individual pattern. Many
constraints may impact this degree of localisation, such as the
number of different patterns a neural structure can code, the
capacity to decode a superposition of patterns, robustness ar-
guments and metabolic constraints at the level of neurons and
synapses. The exact solution to the trade-off between these
constraints remains elusive. While there are many advantages
in having more than one neuron involved in the representa-
tion of a given pattern (robustness, combinatorics), there are
at least as many in restraining the number of neurons tak-
ing part in a representation; metabolic minimisation, synap-
tic pruning, simpler decoding. We suggest that computa-
tional approaches to neuroscience and psychology may need
to adopt the perspective that patterns are represented in a lo-
calised fashion; not localist (only one neuron per pattern) nor
fully-distributed. The degree of localisation can, of course,
be modulated according to the structure under consideration
or, if the function is highly abstract, according to the task.

Self-Organising Maps (SOMs) offer an approach in which
degree of localisation is discovered from exposure to the in-
put structure (Kohonen, 1984). SOMs form topographically
organised maps of neurons, such that neighbouring neurons
respond to similar input. The resources on the map dedicated
to a particular pattern or category is determined by many fac-
tors such as the number of different patterns that a SOM has
been exposed to, the number of neurons on the SOM, the fre-
quency with which a given category of patterns is presented,
and the magnitude of the pattern variations in each category.
After exposure to a structured environment, SOMs display
a partitioned map from a representational perspective: each
pattern creates a unique pattern of localised neural activity
and each category of patterns would tend to solicit the same
group of neighbouring neurons in order to represent different
patterns that belong to the same category.

The organisation of a SOM after learning mimics cor-
tical maps observed throughout many different cortical ar-
eas. SOMs have been very successful at modelling the archi-
tecture of the primary visual cortex (Miikkulainen, Bednar,
Choe, & Sirosh, 2005) where neighbouring neurons are re-
sponsive to similar orientations of the visual scene (Hubel &
Wiesel, 1962). Topologically-organised maps have also been
found in the human auditory cortex (Romani, Williamson, &
Kaufman, 1975; Pantev et al., 1995), in the human frontal
and prefrontal cortex (Hagler & Sereno, 2006) and in parietal
cortex (Sereno & Huang, 2006).

Beyond mimicking the neuro-anatomical organisation of
cortical maps, SOMs sustain representations that possess in-
teresting properties from a psychological perspective. For ex-
ample, categories are formed in an unsupervised way, simi-
larly to infant’s capacities to form categories in the absence
of supervision (Younger, 1985) and discrepancies between
a pattern and its representation provide an accurate index
of looking behaviour of young infants during categorisation
tasks (Gliozzi, Mayor, Hu, & Plunkett, 2009). When input
pattern possess a family resemblance structure (e.g., basic
level categories of objects, Rosch & Mervis, 1975), repre-
sentations on the SOM are warped in a manner that mimic
categorical perception (Mayor & Plunkett, 2010). Since a
single pattern activates a localised pattern of neural activity
on the map, only a limited number of neurons contribute to
the pattern representation. However, when the number of
patterns represented exceeds the number of neurons on the
map, a single neuron must participate in the representation
of multiple patterns from the same category. Consequently,
some neurons are maximally active when an average of a few
patterns is presented to the map. This provides a representa-
tion advantage for central tendencies, thereby implementing
at a representational level the advantage of prototypes over
atypical members of a category (Rosch, 1973; Mervis, 1984).
Interestingly, the fact that multiple neurons contribute to the
representation of different members of the same category of
patterns maintains a sensitivity to within category variations,
as observed in speech perception (McMurray, Tanenhaus, &
Aslin, 2002).

Mayor and Plunkett (2010) have also evaluated the im-
pact of synaptic pruning in a model of early word learning,
consisting of two SOMs connected by cross-modal Hebbian
synapses. Synaptic pruning was shown to enhance the quality
of word-object mappings, once stable representations of ob-
jects and labels were achieved on the maps. The localised rep-
resentations of individual objects and labels permitted high
levels of pruning so as to associate objects categories and
their corresponding labels in a one-to-one mapping. Synaptic
pruning of any one-to-one mapping between cortical repre-
sentations (or thalamo-cortical projections) would also bene-
fit from such localised representations. In contrast, high lev-
els of pruning would be detrimental to highly distributed rep-
resentations. The presence of high levels of synaptic pruning
from mid-childhood would seem to favour the formation of
these relatively localised mental representations.

It is noteworthy that any representations requiring a rela-
tively small number of neurons also satisfy the conditions for
metabolic constraints and synaptic pruning. However, these
constraints do not require that neurons supporting the repre-
sentation of a given pattern need to be neighbours. Examples
of sparse coding (Quiroga, Kreiman, Koch, & Fried, 2008;
Quiroga & Kreiman, 2010), in which only a small subset of
neurons is active for a pattern have been shown offer decoding
advantages (Földiák, 2003) as well as minimising metabolic
demand. SOMs offer sparse coding in which the few neurons
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taking part in the representation of a pattern are proximate,
thereby providing additional advantages in terms of mim-
icking cortical maps that are found across the human brain
(Hubel & Wiesel, 1962; Romani et al., 1975; Pantev et al.,
1995; Hagler & Sereno, 2006; Sereno & Huang, 2006) and
constraining the need for long distance connections (Durbin
& Mitchinson, 1990). SOMs may also provide a potential
advantage in terms of decoding the information, as represen-
tations of different patterns that belong to the same category
tend to be similar. As a consequence, SOMs, localised repre-
sentations in general, should lead to enhanced robustness in
the presence of noise.

Conclusion
The resources needed for mental representation are con-
strained by many different, and often opposing, pressures. A
solution to the trade-off between robustness and combinato-
rial power, which favour representations with many neurons,
and metabolic and synaptic pruning constraints, which favour
fewer neurons, is to limit the number of neurons needed to
represent a pattern. Sparse, localised representations provide
an elegant alternative to purely localist representations and
fully-distributed ones. Self-Organising Maps provide a natu-
ral, and unsupervised, approach for forming localised repre-
sentations which mimic cortical maps found throughout the
human cortex. The topographical structure of these SOMs
also permit efficient pruning mechanisms to operate, max-
imising metabolic efficiency and providing accurate models
of human cognitive performance and development.
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