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Abstract

Experts have remarkable capability of locating, identifying and
categorizing objects in their domain-specific images. Eliciting
experts’ visual strategies will benefit image understanding by
transferring human domain knowledge into image-based com-
putational procedures. In this paper, an experiment conducted
to collect both eye movement and verbal description data from
three groups of subjects with different medical training lev-
els (eleven board-certified dermatologists, four dermatologists
in training and thirteen novices) while they were examining
and describing 42 photographic dermatological images. We
present a hierarchical probabilistic framework to discover the
stereotypical and idiosyncratic viewing behaviors exhibited
within each group when they are diagnosing medical images.
Furthermore, experts’ annotations of thought units on the tran-
scribed verbal descriptions are time-aligned with discovered
eye movement patterns to interpret their semantic meanings.
By mapping eye movement patterns to thought units, we un-
cover the manner in which these subjects alternated their be-
haviors over the course of inspection and how these experts
parse the images.

Keywords: Eye movements; eye tracking; verbal description;
multimodal data analysis; graphical model; user study; diag-
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Introduction

Perceptual expertise is considered to be the crucial cogni-
tive factor accounting for the advantage of highly trained ex-
perts (Hoffman & Fiore, 2007). Experts generate distinc-
tively different perceptual representations when they view the
same scene as novices (Palmeri, Wong, & Gauthier, 2004 ;
Smuc, Mayr, & Windhager, 2010). Rather than passively
”photocopying” the visual information directly from sensors
into minds, visual perception actively interprets the infor-
mation by altering perceptual representations of the images
based on experience and goals. By analyzing the whole se-
quences of fixation and saccadic eye movements from groups
with different expertise levels, significant differences in vi-
sual search strategies between groups show human exper-
tise plays a great role in medical image examination. In
(Manning, Ethell, Donovan, & Crawford, 2006), the nature
of expert performance of four observer groups with different
levels of expertise was investigated . They compared multi-
ple eye movement measures and suggested these distinctive

variations among the observations of the better performance
from higher expertise level are due to the consequences of
experience and training. In (Krupinski et al., 2006), an eye
movement study was conducted on diagnostic pathology of
light microscopy to identify distinctive viewing stereotypes
for each level of experience . Their results suggest eye move-
ment monitoring could serve as a basis for the creation of
innovative pathology training routines.

In knowledge-rich domains, perceptual expertise is par-
ticularly valuable. Medical image understanding via manu-
ally marking and annotating become not only labor intensive
for experts but also ineffective because of the variability and
noise of experts’ performance (Gordon, Lotenberg, Jeronimo,
& Greenspan, 2009). For training and designing decision
support systems, the basic perceptual strategies and principles
of diagnostic-reasoning are also desired (Dempere-Marco,
Hu, & Yang, 2011). To address this problem, it requires the
ability of extracting and representing experts’ perceptual ex-
pertise in a form that is ready to be applied. In this work, our
contributions are: first, we discover and represent expertise-
related eye movement patterns exhibited among multiple ex-
perts in an objective and unbiased way; second, to validate
these patterns, we identify their semantic meanings by time-
aligning them with standardized thought units annotated by
additional experts. Third, we also characterize the eye move-
ment patterns of three different expertise levels respectively
which can be used to categorize users’ expertise levels based
on their visual inspection on medical images.

Human viewing behaviors are valuable yet effortless re-
sources worth of exploiting. In specific domains experts per-
ceptual expertise is considered to be more consistent and in-
formative than their manual markings. Human vision is an
active dynamic process in which the viewer seeks out spe-
cific information to support ongoing cognitive and behav-
ioral activity (Henderson & Malcolm, 2009). Since visual
acuity is limited to the foveal region and resolution fades
dramatically in the periphery, we move our eyes to bring a
portion of the visual field into high resolution at the center
of gaze. Studies have shown that visual attention is influ-
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enced by two main sources of input: bottom-up visual at-
tention driven by low-level saliency image features and top-
down process in which cognitive processes, guided by the
viewing task and scene context, influence visual attention
(Torralba, Oliva, Castelhano, & Henderson, 2006 ; Loboda,
Brusilovsky, & Brunstein, 2011). Growing evidence suggests
that top-down information dominates the active image view-
ing process and the influence of low-level salience guidance is
minimal (Castelhano, Mack, & Henderson, 2009). These the-
oretical outcomes provide us with the possibility to capture
experts’ cognitive strategies, perceptual expertise and expec-
tations by investigating their stereotypical and idiosyncratic
viewing behaviors, and decode their semantic meanings.

In our work we focus on medical images where domain
knowledge and perceptual expertise are in demand. We
elicit and model physicians’ perceptual and conceptual exper-
tise from their diagnostic reasoning process while inspecting
medical images. Physicians examine medical images and ver-
bally describe their thinking process as if teaching a trainee,
and both their eye movements and verbal descriptions are
recorded. In order to capture the stereotypical and idiosyn-
cratic eye movement patterns exhibited among these physi-
cians, we develop a hierarchical dynamic model. This model
allows us to build a library of all the patterns exhibited by
physicians’ time-evolving eye movement series (scanpaths)
and each eye movement pattern essentially corresponds to a
particular statistical regularity of the temporal-spatial proper-
ties inferred from multiple eye movement series. Thus each
physician’s eye movement time series can be characterized
by a particular combination of a subset of these patterns from
this library. To investigate the relationships between visual
and verbal conceptual processing by analyzing the verbal de-
scriptions. additional experts annotate the transcribed ver-
bal descriptions using standardized semantic labels (thought
units) that describe the process of creating a differential di-
agnosis from their domain knowledge (Habif, Jr., Chapman,
Dinulos, & Zug, 2005). After time-aligning these thought
units with the eye movements patterns, we discovered sig-
nificant correlations between them. This results indicate that
the patterns we extracted from eye movement data possess
distinct and specific semantic meanings in terms of human
capabilities of image understanding.

Experiment

Subjects recruited for the eye tracking experiment belong
to three groups based on their training level including 11
board-certified dermatologists (attending physicians), 4 der-
matologists in training (residents) and 13 undergraduate lay
people (novices). We also recruited physician assistant stu-
dents who served as “trainees” in order to motivate dermatol-
ogists to verbalize their diagnosis reasoning using the Master-
Apprentice scenario, which is known to be effective in elicit-
ing detailed descriptions.

A SMI (Senso-Motoric Instruments) eye tracking appa-
ratus was applied to display the stimuli at a resolution of

1680x1050 pixels for the collection of eye movement data
and recording of verbal descriptions. The eye tracker was run-
ning at 50 Hz sampling rate and has accuracy of 0.5? visual
angle. The subjects viewed the medical images binocularly at
a distance of about 60 cm. The experiment was conducted in
an eye tracking laboratory with ambient light.

A set of 42 dermatological images, each representing a dif-
ferent diagnosis, was selected for the study. These images
were presented to subjects on the monitor. Medical profes-
sionals were instructed to examine and describe each image
to the students while working towards a diagnosis, as if teach-
ing. The experiment lasted approximately 1 hour. The medi-
cal professionals were instructed not only to view the medical
images and make a diagnosis, but also to describe what they
see as well as their thought processes leading them to the di-
agnosis. The novice observers were instructed to examine
the images and offer a detailed description as if describing
to their doctors over the phone. Both eye movements and
verbal descriptions were recorded for the viewing durations
controlled by each subject. The experiment started with a 13-
point calibration and the calibration was validated after every
10 images. Calibration is accepted if its variance is less then
0.5°. The audio recordings of the verbal descriptions from
the dermatologists were transcribed and annotated.

An annotation study was conducted on the transcripts to
investigate the semantic interpretations of the estimated eye
movement patterns. During annotation two highly trained
dermatologists identified 9 thought units. A thought unit is
a single word or group of words that receives a descriptive la-
bel based on its semantic role in the diagnostic process. The
thought unit labels are patient demographics (DEM), body
location (LOC), configuration (CON), distribution (DIS), pri-
mary morphology (PRI), secondary morphology (SEC), dif-
ferential diagnosis (DIF), final diagnosis (Dx), and recom-
mendations (REC). Words not belonging to a thought unit
were designated as None’. These two physicians annotated
transcribed verbal descriptions with these thought units. The
annotation were then time-aligned with eye movement pat-
terns. Using this method, each unit of eye movement data,
which is composed of a fixation and its successive saccade,
receives two labels: one is its pattern indicator inferred by the
model and the other is its time-aligned thought unit annotated
through the consensus of multiple experts. This result allows
us to interpret the eye movement patterns by measuring the
correspondence between them and the thought units.

Hierarchical Dynamical Model

A hierarchically-structured dynamical model was developed
to capture both the common eye movement patterns shared
among multiple expertise-specific groups of subjects and
unique eye movement patterns exhibited by individuals.
The hierarchical beta processes proposed by Thibaux et
al.(Thibaux & Jordan, 2007) as a prior distribution of our
model provides the flexibility of discovering more patterns
as new eye movement data are observed. Since fixation and
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Figure 1: Hierarchical dynamical model. By denotes a fixed
continuous complete random measure as a global baseline on
the space of ®. B denotes a beta process to measure the eye
movement patterns shared among N groups. G; denotes a
beta process to represent the eye movement patterns shared
among N; subjects of group j. The transition distribution 7;;
of subject i in group j is deterministic. zl(,.i.j ) and xt(l.ij ) denotes
the hidden state variable and the observation variable of the
hidden Markov model. 0; denotes the emission distribution.
The total number of eye movement patterns exhibited in the
group j is denoted by K; which is depend on B.

saccadic data are deployed in a sequential manner we use a
hidden Markov model (HMM) as the likelihoods to character-
ize their temporal dynamic nature. Eye movements are inher-
ently not smooth and highly correlated, the strong Markovian
assumption of HMMs is inappropriate. We therefore employ
autoregressive HMMs to relax the Markovian assumption by
modeling eye movement data as a noisy linear combination of
some finite set of past observations plus additive white noise.
We utilize this hierarchical prior in the following specification
based on our problem scenario.

Let By denote a fixed continuous random base measure on
a space ©® which represents a library of all the potential eye
movements patterns. For multiple groups to share patterns,
let B denote a discrete realization of a beta process given
the prior BP(co,Bo). Let G; be a discrete random measure
on ® drawn from B following the beta process which repre-
sents a random measure on the eye movement patterns shared
among multiple subjects within the group j. Let P;; denote a
Bernoulli measure given the beta process G;. P;; is a binary
vector of Bernoulli random variables representing whether a
particular eye movement pattern exhibited in the eye move-
ment data of subject i within group j. This hierarchical con-
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Figure 2: The model running on the eye movement data of
11 subjects viewing one case. (a) shows the original medi-
cal image. Images used with the permission Logical Images,
Inc. (b) primary and secondary abnormalities were explicitly
marked and numbered by an experienced dermatologist. (c)
shows eleven time series, each observation of which is com-
posed of 4 components: log values of fixation location (xy co-
ordinate), fixation duration and saccade amplitude. (d) shows
the HMM-derived eye movement pattern sequences for the
corresponding 11 time series with 4 chains of 55000 sampling
iterations. The color coding corresponds to the segments of
each specific eye movement pattern. (e) shows the shared eye
movement pattern matrix of which the row number indicates
the subjects and the column number indicates the shared pat-
terns. For example, yellow color at the first row represents
the time series of subject 1 who exhibits pattern 1-7 but lacks
pattern 8 and 9.

struction can be formulated as follow:

B|Bo ~ BP(C(),B()) (D)
Gj|B~BP(c;;B) j=1,..N 2)
Pj|G;~BeP(G;)  i=1,..,N; 3)

where G; =}, g jk59jk- This term shows that G; is associated
with both a set of countable number of eye movement pat-
terns {0} drawn from the eye movement pattern library ©
and their corresponding probability masses {g } given group
j. The combination of these two variables characterizes how
the common eye movement patterns shared among subjects
within expertise-specific group j. Thus P;; as a Bernoulli
process realization from the random measure G; is denoted
as:

P =Y piide it 4
%

where p;j; as a binary random variable denotes whether sub-
ject i within group j exhibits eye movement pattern k given
probability mass g;.. Based on the above formulation, for
k = 1...K; patterns we readily define {(8x,g;x)} as a set of
common eye movement patterns shared among group j and
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{(8jk,pijk)} as subject i’s personal subset of eye movement
patterns given group j, as shown in Figure 1.
The transition distribution m;; = {TCZ(,-,-)} of the hidden
1

Markov model at the bottom level governs the transitions be-
tween the i’ subject’s personal subset of eye movement pat-
terns 6, of group j. It is determined by the element-wise
multiplication between the eye movement subset {p;ji} of
subject i in group j and the gamma-distributed random vari-
ables {e;ji}:

¢ijklYj ~ Gamma(y;, 1) (5)
j o< Eij Q) Pj (6)

where E;; = [ejji, ...e; jKj]' So the effective dimensionality of
T;; is determined by P;;, which is inferred from observations.

We use Markov chain Monte Carlo sampler to do the poste-
rior inference over this model. In one iteration of the sampler,
each latent variable is visited and assigned a value by draw-
ing from the distribution of that variable conditional on the
assignments to all other latent variables as well as the obser-
vation. In particular, based on the sampling algorithm pro-
posed in (Thibaux & Jordan, 2007), we developed a Gibbs
sampling solution to the hierarchical beta processes part of
the model.

Results and Discussion

In Figure 2, we illustrate one set of observed data and estimat-
ing processes from the framework of the 11 dermatologists
diagnosing a case of a skin manifestation of endocarditis. In
the medical image, there are multiple skin lesions spreading
over the thumb nail and tip, the two parts of index finger and
the middle finger as marked in (b) of Figure 2. A primary
abnormality is on the thumb tip. The scanpaths in Figure 3a
(i) indicate that dermatologists fixated on the primary abnor-
mality heavily and switch their visual attention actively be-
tween and within the primary and secondary findings. The
estimated patterns are color-coded as panels shown in (d) of
Figure 2. These panels describe the time-evolving manner
in which each individual alters eye movement patterns at the
individual level.

Pattern occurrence and thought unit alignment resulted in
assignment of each fixation to a specific pattern and to a
thought unit (or None). Initial integration of eye movement
patterns with thought units was accomplished by calculating
correspondence in Figure 4. Analysis shows, for example,
that primary morphology (PRI) is closely related to the com-
bination of two specific patterns: Pattern 2 is characterized by
fixations switching between the primary and the different sec-
ondary abnormalities; and Pattern 7 by long fixations only on
the primary abnormality. These patterns suggest dermatol-
ogists were seeking meaningful ways to integrate these two
findings for some principled reasons, although these infor-
mative findings are separable in the sense that they are opera-
tionally defined and measured independently of one another.
Pattern 7 has strong relationship to location (LOC) which ap-
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(a) Nine inferred eye movement patterns from the 11 attendings. In
(i) 6 attendings’ scanpaths are super-imposed onto the image. (ii)
shows the transition probability matrices of the nine eye movement
patterns within the six scanpaths during diagnosis, which indicate

the patterns are persistent. In (iii) the eye movement patterns are
segmented from these corresponding scanpaths.
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(b) Six inferred eye movement patterns from the 4 residents.In (i)
the scanpaths of the 4 residents. (ii) shows the transition probability
matrices of six eye movement patterns. In (iii) the eye movement
patterns are segmented from these 4 scanpaths.

Pattern 2 Panem 3 Pallem 4 Pattern 5 Pattern 6

WP
/5

Y Az A el AR

| | Gl R ) (G A | (| |

WIErErrzizliz  ErErErEnEE
MWrehe Nz WEhE le  hehehens
BEEEE WEEE e EEek

(c) Sixteen inferred eye movement patterns from the the 13
novices.In (i) the transition probability matrices of the sixteen eye
movement patterns, which suggest novices’ visual behaviors are not
persistent. In (ii) the patterns are segmented from these 7 scanpaths.

Figure 3: The inferred eye movement patterns of the three
expertise-specific groups. Each observation unit of the eye
movement sequences is composed of 4 components: fixation
location (xy coordinate), fixation duration and saccade ampli-
tude. We then apply our model on these sequential data to re-
veal the subtlety of the behavioral patterns varying over time.
The inferred patterns were derived with 4 chains of 55000
sampling iterations. The color coding specifies the segments
of each specific pattern.
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Figure 4: Correspondence between the 8 eye movement pat-
terns of the 11 attendings (the rows) and their 8 thought units
(the columns). (a) the representative patterns. (b) histograms
show the corresponding relationship between discovered eye
movement patterns and annotated thought units. For each pat-
tern we plotted the counts of fixations which are labeled as the
9 thought units.

pears to correspond to the primary morphology location. Pat-
tern 4 consists of scanpath segments which are characterized
by shorter fixation durations and longer saccades. This scan-
ning behavior strongly corresponds to thought units, includ-
ing distribution (DIS), secondary morphology (SEC), diag-
nosis (DX) and differential diagnosis (DIF). Scanning pattern
coupled with thought unit DX is possibly related to confirma-
tion of secondary findings to support or rule out diagnostic
hypotheses.

Some similar patterns also emerged in the resident group
but is lacking in the novice group as shown in Figure 3b.
This suggests that experts, equipped with domain knowledge
organized in finer gradations of functional categories, can dis-
criminate the significance of their findings in a particular con-
text. In contrast, in Figure 3c the novices failed to do so, al-
though they perceive the same abnormalities too. Compare
Figure 3a (ii), Figure 3b (ii) and Figure 3c (i), the differ-
ence between the transition probability matrices of the three
expertise-specific groups suggests professionals’ eye move-
ment patterns are more persistent than the novices’.

These results suggest that there exist structural regularities
of experts’ diagnostic-reasoning processes, and such percep-
tual and conceptual processing regularities can be captured
and manifested through experts’ eye movements. This is
consistent with previous empirical studies (Patel, Arocha, &
Kaufman, 2001). These discovered stereotypical eye move-
ment patterns indicate that experts are able to rapidly invoke
the appropriate specific knowledge and expertise, and initially
detect a general pattern of disease. These capabilities lead
them to a gross anatomic localization and narrow down the
possible interpretations. On the other hand, novices have hard
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Figure 5: Quantitative performance evaluations. (a) The
likelihood-value plots of a Gaussian mixture model, a hid-
den Markov model and our model after 55000 sampling it-
erations on our data-set. (b) The histogram of the fixation
duration distributions of the 15 professionals (attendings and
residents) and our model’s simulations over 42 images. (c)
The histograms of the saccade amplitude distributions of the
15 professionals and our model’s simulations over 42 images.

time to focus on the important structures and are more likely
to maintain inappropriate interpretations.

To measure performance, we compared the log-likelihood
values among our model, a hidden Markov model (HMM)
and a Gaussian mixture model (GMM) as shown in Fig. 5
(a). To implement the HMM and GMM, we have to assume
each eye movement sequence exhibits the same set of pat-
terns. The log-likelihood values of our model and the GMM
are 4000 vs. 300, which indicates our model fits the obser-
vation better. One possible cause is that the GMM makes a
strong assumption that the eye movement data are indepen-
dent which is hardly true. On the contrary, our model only
assumes that the eye movement patterns are exchangeable in
order. Additionally, our model and the HMM take sequen-
tial information of eye movements into account. We visu-
alized the eye movement patterns from HMM and GMM in
Fig. 6 (b)-(c) and make a comparison with our model’s re-
sults in Fig. 6 (a). In Fig. 5 (b)-(c), our model generated 7356
fixation-saccade units to simulate the 15 professionals. It is
worth noting that this result also validates the discovered eye
movement patterns. Such simulation requires us to generate a
set of realizations of eye movement patterns first from the hi-
erarchical prior, simulate multiple possible sequences of these
patterns, and then draw fixation-saccade samples from them.

Conclusions

Our approach identified and semantically interpreted both
stereotypical and idiosyncratic expertise-specific eye move-
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(c) The same 3 attendings’ eye movement patterns from the GMM.

Figure 6: Illustrations of the attendings eye movement pat-
terns from the three models.

ment patterns that only exist over time. In our future work,
the discovered eye movement patterns will be related to im-
age features by projecting the patterns from their temporal-
spatial space into the image feature space. We will not only
identify the most valuable image feature sets leading to a cor-
rect diagnosis but also uncover how a particular feature’s im-
portance changes over the course of the diagnostic reasoning
process. These discoveries will provide training information
to novices on how to look for relevant image features. Evalu-
ation of a subject’s expertise level is another future study. We
can identify the expertise level given a subject’s visual inter-
action with test images through calculating the model’s pos-
terior probability. Compared to simply calculating diagnosis
error rates to evaluate expertise level, our approach can unveil
which diagnostic reasoning steps lead to wrong diagnosis and
the possible cognitive factors such as misconception, miscat-
egorization and misperception, and form the basis of support
systems.
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