
Human Cluster Evaluation and Formal Quality Measures: A Comparative Study
Joshua M. Lewis

josh@cogsci.ucsd.edu
Dept. of Cognitive Science

University of California, San Diego

Margareta Ackerman
mackerma@uwaterloo.ca

Cheriton School of Computer Science
University of Waterloo

Virginia R. de Sa
desa@cogsci.ucsd.edu

Dept. of Cognitive Science
University of California, San Diego

Abstract

Clustering quality evaluation is an essential component of clus-
ter analysis. Given the plethora of clustering techniques and
their possible parameter settings, data analysts require sound
means of comparing alternate partitions of the same data.
When proposing a novel technique, researchers commonly ap-
ply two means of clustering quality evaluation. First, they ap-
ply formal Clustering Quality Measures (CQMs) to compare
the results of the novel technique with those of previous algo-
rithms. Second, they visually present the resultant partitions
of the novel method and invite readers to see for themselves
that it uncovers the correct partition. These two approaches
are viewed as disjoint and complementary.
Our study compares formal CQMs with human evaluations us-
ing a diverse set of measures based on a novel theoretical tax-
onomy. We find that some highly natural CQMs are in sharp
contrast with human evaluations while others correlate well.
Through a comparison of clustering experts and novices, as
well as a consistency analysis, we support the hypothesis that
clustering evaluation skill is present in the general population.
Keywords: clustering; validity indices; psychophysics; visual
perception; machine learning

Introduction
Clustering is a fundamental data analysis tool that aims to
group similar objects. It has been applied to a wide range
of disciplines such as astronomy, bioinformatics, psychology,
and marketing. Successful clustering often requires using a
number of different clustering techniques and then compar-
ing their output. The evaluation of clusterings is an integral
part of the clustering process, needed not only to compare
partitions to each other, but also to determine whether any of
them are sufficiently good.1

As there is no universal clustering objective, there is no
consensus on a formal definition of clustering. As a re-
sult, there are a wide variety of Clustering Quality Measures
(CQMs), also known as internal validity indices, that aim to
evaluate the quality of clusterings. To compare clusterings,
researchers often select a CQM, which assigns a numerical
value to a partition representing its quality.

Researchers rarely rely on CQMs alone. There is a deep
implicit assumption running through the clustering literature
that human judgment of clustering quality is quite good. Au-
thors visually present the resultant partitions and invite read-
ers to see for themselves that the new method performs well.
To take one example, in their influential paper on spectral
clustering Ng, Jordan and Weiss write, “The results are sur-
prisingly good... the algorithm reliably finds clusterings con-
sistent with what a human would have chosen.” (Ng, Jor-

1If no good clusterings have been found the underlying dataset
may have no good clustering (the data is not “clusterable”,
see (Ackerman & Ben-David, 2009) for more on clusterability).

dan, & Weiss, 2002) Up until now, clustering quality mea-
sures and human judgment were considered complementary
approaches to clustering evaluation. Most papers that present
novel clustering algorithms include these two types of evalu-
ations separately.

Our study compares formal CQMs with human evalua-
tions to determine how often they agree, and whether cer-
tain CQMs correlate better with human judgments than oth-
ers. We also evaluate the consistency of human responses–if
humans are very inconsistent, then it is unlikely that they are
good judges of cluster quality (an ideal measure is stable on
the same partition). Further, we separate our human subjects
into expert and non-expert groups to determine whether clus-
tering evaluation requires experience, and identify divergent
strategies between the groups.

To sharpen our focus on a small set of CQMs, we con-
struct a property-based taxonomy of CQMs that distinguishes
them on grounds beyond their particular mathematical formu-
lations. The CQMs selected for the study are diverse in that
they each satisfy a distinct set of these properties.

Previous studies have investigated how humans choose the
number of groups (Lewis, 2009) and partition data (Santos
& Sá, 2005) in a clustering setting, but these approaches only
show what humans think are the optimal partitions rather than
how they judge partition quality in general. Our study uses
a set of non-optimal partitions that humans partially order by
quality, giving us more detailed quality judgments than in past
work. Intuitively, in (Lewis, 2009) and (Santos & Sá, 2005)
subjects took on the role of a k-choosing algorithm and a clus-
tering algorithm (respectively), whereas in this study subjects
are in the role of clustering evaluators.

Our main findings are as follows. Many CQMs with nat-
ural mathematical formalizations disagree with human eval-
uations. On the other hand, we identify CQMs whose evalu-
ations are well correlated with those of humans. In particu-
lar, we find that Silhouette (Rousseeuw, 1987) and Calinski-
Harabasz (Caliński & Harabasz, 1974) are highly correlated
with human evaluations. Our findings also indicate that there
is sufficient similarity between the evaluations of novices and
experts to suggest that clustering evaluation is a task that does
not require specific training (though it may benefit from train-
ing). This opens the door for using human computation re-
sources such as Amazon’s Mechanical Turk to quickly solicit
a large number of clustering quality judgments from novices
as part of the data analysis process. Nevertheless, experts
show much less sensitivity to the number of clusters and re-
late more closely to a greater range of clustering quality mea-
sures than novices, indicating a nuanced approach to the eval-
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uation problem. Regarding consistency, we find that even
novices are more consistent in their evaluations than our set
of CQMs.

Clustering quality measures
In this section we introduce the formal machinery describing
the CQMs selected for our study.

Let X be a finite domain set. A distance function is a sym-
metric function d : X ×X → R+, such that d(x,x) = 0 for all
x ∈ X . A k-clustering C = {C1,C2, . . . ,Ck} of dataset X is a
partition of X into k disjoint subsets (so, ∪iCi = X). A clus-
tering of X is a k-clustering of X for some 1 ≤ k ≤ |X |. Let
|C| denote the number of clusters in clustering C. For x,y∈ X
and clustering C of X , we write x∼C y if x and y belong to the
same cluster in C and x 6∼C y, otherwise. Finally, a CQM is a
function that maps clusterings to real numbers.

Gamma: This measure was proposed as a CQM by (Baker
& Hubert, 1975) and it is the best performing measure in
(Milligan, 1981). Let d+ denote the number of times that a
pair of points that was clustered together has distance smaller
than two points that belong to different cluster, whereas d−

denotes the opposite result.
Formally, let d+(C) = |{{x,y,x′,y′} | x ∼C y,x′ 6∼C

y′,d(x,y) ≤ d(x′,y′)}|, and d−(C) = |{{x,y,x′,y′} | x ∼C
y,x′ 6∼C y′,d(x,y) ≥ d(x′,y′)}|. The Gamma measure of C is
d+(C)−d−(C)
d+(C)+d−(C)

.

Silhouette: The Silhouette measure was defined
by (Rousseeuw, 1987). Silhouette is the default clus-
tering quality measure in MATLAB.

Let dist(x,Ci) = avgy∈Cid(x,y). The silhouette of
a point x with respect to clustering C is S(x,C) =

min j 6=i dist(x,C j)−dist(x,Ci)

max(min j 6=i dist(x,C j),dist(x,Ci))
where x ∈ Ci. The silhouette of a

clustering C is sumx∈X S(x,C).
Dunn’s Index: Dunn’s Index (Dunn, 1974) compares the

maximum within-cluster distance to the minimum between-
cluster distances. Dunn’s Index of C is

minx 6∼Cy d(x,y)
maxx∼Cy d(x,y) .

Average Between and Average Within: The Average Be-
tween and Average Within measures evaluate the between-
cluster separation and within-cluster homogeneity, respec-
tively. The average between of C is avgx 6∼Cyd(x,y). The av-
erage within of C is avgx∼Cyd(x,y).

Calinski-Harabasz: The Calinski-Harabasz measure
(Caliński & Harabasz, 1974) makes use of cluster centers.
Let ci =

1
|Ci| ∑x∈Ci x denote the center-of-mass of cluster Ci,

and x̄ the center-of-mass of X . Let B(C) = ∑Ci |Ci||ci− x̄|2
and W (C) = ∑Ci ∑x∈Ci |x− ci|2. The Calinski-Harabasz of C

is n−k
k−1 ·

B(C)
W (C) .

Weighted inter-intra: The weighted inter-intra measure
is proposed by (Strehl, 2002). It compares the homogeneity
of the data to its separation. Let intra(Ci) = avgx,y∈Cid(x,y)
and inter(Ci,C j) = avgx∈Ci,y∈C j d(x,y). The Weighted inter-

intra of a clustering C is (1− 2k
n ) ·(1−

∑i
1

n−|Ci |
∑ j 6=i inter(Ci,C j)

∑i
2

|Ci |−1 intra(Ci)
),

where n is the number of points in the dataset.

Methods
We ran two groups of human subjects and a group of clus-
tering quality measures on a partition evaluation task. Our
human subjects were divided into a novice group with little
or no knowledge of clustering methods and an expert group
with detailed knowledge of clustering methods.

Figure 1: All stimuli. Datasets are in rows; partitions are in
columns.

Human subjects and stimuli
Twelve human subjects were recruited for this project as the
novice group, 9 female and 3 male, with an average age of
20.3 years. The novice subjects have no previous exposure to
clustering. The expert group consists of 5 people and includes
the authors of this paper. All experts have studied clustering
in an academic setting, and 4 have done research on the sub-
ject.
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We used 19 different two dimensional datasets to generate
our clustering stimuli, drawn from (Lewis, 2009), and chosen
to represent a range of dataset types including mixtures of
Gaussians and datasets with hierarchical structure. In order
to maintain responsiveness of the stimulus presentation inter-
face, we subsampled 500 points randomly from each dataset.
We use synthetic datasets in order to better generate a wide
range of stimuli, and our datasets are 2D to facilitate visual-
ization.

Each dataset is randomly clustered nine times in the fol-
lowing manner. For each of the nine clusterings, we first draw
the number of partitions, k, from a uniform distribution over
the integers 2 to 6. Second we choose cluster centroids us-
ing two strategies: for four of the clusterings we randomly
select k centroids from the original dataset, and for five of the
clusterings we select k centroids from a Laplacian Eigenmap
embedding of the data. Finally we color points based on the
identity of their nearest centroid in the appropriate space. The
goal of this approach is to create stimuli with varied cluster-
ing quality.

Each trial consisted of all nine different partitions of the
same dataset randomly arranged per trial in a 3 by 3 grid
(see Figure 1 for a visualization of all the stimuli). The
datasets were shown as scatter plots with colored points on
a black background to reduce brightness-related eye strain.
For novice subjects, trials were organized into three blocks
of 19, where each dataset appeared once per block and the
order of the datasets within each block was randomized. Ex-
pert subjects were tested on one block of non-randomized
datasets. We instructed subjects to choose the two best par-
titioned displays and the one worst partitioned display from
the nine available on every trial (leaving six displays implic-
itly chosen as neutral).

Analysis
We analyzed our novice subjects for internal consistency of
their positive and negative classifications across blocks and
found that even our least consistent subject performed well
above chance. We did not exclude any subjects due to in-
consistency and we did not analyze internal consistency for
experts as they were only tested on one block.

To analyze consistency across subjects we use Fleiss’
κ (Fleiss, 1971) and include neutral responses. Fleiss’ κ

measures the deviation between observed agreement and the
agreement attributable to chance given the relative frequency
of classifications and normalized for the number of raters.
Neutral classifications are twice as frequent as non-neutral,
and positive classifications are twice as frequent as negative
classifications, so the compensation for relative frequency in
Fleiss’ κ makes it well-suited to our data. In addition, we
perform a consistency analysis on the clustering quality mea-
sures by discretizing their classifications in a manner similar
to the human data.

We analyze the relationship between novice classifications,
expert classifications and clustering quality measures by cal-
culating the Pearson’s correlation coefficient, ρ, between

classifications. To make the responses as comparable as pos-
sible we normalize response vectors to a length of one within
each dataset. Human subjects have to classify two positive
and one negative partition per dataset, even if every partition
is quite bad, so by normalizing within dataset we make the
CQM responses similar in structure—partitions are judged
only relative to other partitions within a dataset.

Because cluster centroids are chosen randomly, increasing
k is likely to increase the chance of getting an undesirable
partition (e.g. a partition with very few data points). Ad-
ditionally, partitions with higher k require more effort to in-
terpret, and therefore we might expect novice subjects to be
biased towards a lower k. For these reasons our correlations
control for k by partialing out a vector of k values for each
partition. Geometrically this is equivalent to projecting each
response vector onto the hyperplane orthogonal to the vector
of k values.

Results
Correlation
Table 1 shows correlation coefficients between all measures
for both expert and novice responses, with k factored out. The
correlation between expert and novice human positive clas-
sifications is higher than the correlation between any CQM
and either human positive classification. The negative human
classifications have a similarly high correlation. The absolute
values of the correlation coefficients between CQMs and ex-
pert classifications are strictly greater than or equal to those
between CQMs and novice classifications, indicating a closer
relationship between expert strategies and the dataset char-
acteristics summarized by the CQMs when k is factored out.
k itself correlates very strongly with the novices and less so
with the experts. Silhouette provides the best overall correla-
tion with expert classifications, and Avg Within provides the
best overall correlation with novice classifications (save k).

Consistency
The most undesirable form of inconsistency across subjects
or CQMs is both positive and negative responses to the same
stimulus. For experts, stimuli with a number of positive clas-
sifications 3 or higher never receive a negative classification,
and only once does this occur for stimuli with 2 positive re-
sponses. In contrast the CQMs exhibit much more disagree-
ment and novices seem to fall somewhere in between. The
quantitative measure κ bears this out: CQMs score 0.128,
novices score 0.183 and experts score 0.213. κ ranges from
−1 to 1, with −1 representing complete disagreement, 1 rep-
resenting complete agreement and 0 representing the amount
of agreement expected by chance. While there is no standard
significance test for differences in κ, the rating scale sug-
gested by Landis and Koch (Landis & Koch, 1977) would
characterize the CQM and novice rater groups each as in
slight agreement, and the expert raters as in fair agreement.
To test whether any one measure was significantly harming
CQM consistency we left each out in turn from the analysis
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Table 1: Correlation coefficients between human responses and CQMs with k factored out (except for the k column). Text in
bold (excluding k column) if p < .0025 after Bonferroni correction for n = 20 comparisons per subject group and α = .05.
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Expert Pos 1 -.35 .56 -.19 -.15 .46 .40 -.39 .34 .44 .19 -.43
Expert Neg 1 -.13 .44 .09 -.27 -.12 .44 -.18 -.36 -.30 .32
Novice Pos 1 -.04 -.13 .39 .40 -.20 .23 .30 .04 -.73
Novice Neg 1 .08 -.27 .01 .30 -.07 -.25 -.27 .71

Table 2: A summary of the number of partitions for which a
high degree of agreement was achieved by the raters. If a par-
tition is classified as negative or positive by 80% - 100% of
raters, it would be added to the top row, and similarly for the
60% - 79% bucket. The total possible number of agreed upon
partitions is 57 (19 datasets * 3 possible negative/positive re-
sponses to partitions per dataset).

% Majority Experts Novices CQMs
80% - 100% 19 3 1

60% - 79% 20 11 7
Sum >= 60% 39 14 8

and found values ranging from 0.098 to 0.172, which is in
line with the CQM consistency with no measure left out, and
in every case less consistent than the novice subjects. Finally,
we left out both Avg Within and Between, since they measure
quality on intentionally simple and distinct dimensions, and
found a κ of 0.110.

In Table 2 we summarize the consistency of experts,
novices and cluster quality measures. It shows how often cer-
tain percentages of raters are able to agree on negative or pos-
itive classifications for particular stimuli. Experts agree over
60% of the time on more samples (39), than do novices (14)
or CQMs (8).

Discussion
Comparing human evaluations with CQMs
Some natural quality measures have low correlation with hu-
man evaluations. Most notably, Gamma has low correlation
with both positive and negative human classifications for both
novices and experts. W-Inter/Intra has low correlation with
the positive classifications of both subject groups. This shows
that a natural mathematical formalization does not suffice to
guarantee that the evaluations of clusterings produced using
the CQM will seem natural to humans.

There are also CQMs that correlate well with human eval-
uations. Of these the most notable are CH and Silhouette.
These two popular measures correlate well with both expert

and novice evaluations, on both the positive and negative clas-
sifications.

Comparing experts with novices
Evaluations of experts and novices have a correlation score
of 0.56, higher than the correlation of any CQM with any of
the two subject groups. This suggests that a cluster evaluation
skill is present in the general population.

On the other hand, we observe some interesting differences
between the two groups of subjects. One of the most no-
table differences between experts and novices is that, while
both groups prefer clusterings with fewer clusters, novices
rely much more heavily on this heuristic.

Experts seem to use more, and more complex strategies
than novices. Positive expert classifications correlate well
with two more measures than positive novice classifications.
No measure considered correlates better with novice classifi-
cations than with expert classifications, and in the great ma-
jority of cases the correlation is higher with expert classifica-
tions.

With a cover of at most six domain elements on any input
dataset (see Definition 5 below), Dunn’s measure is (accord-
ing to this measure of complexity) the simplest measure that
we explore. While positive expert evaluations correlate well
with five distinct measures, Dunn’s measure is one of three
measures that correlate well with novice evaluations. This
further illustrates that novices rely on fewer simpler strate-
gies, which indicates that expert evaluations may be more so-
phisticated and reliable.

Consistency
Given the difficulty of knowing whether humans or CQMs do
a reasonable job of evaluating clustering quality, one might
hope that at least they are consistent across individuals (or
measures). Consistency indicates that some repeatable pro-
cess is at work and that its repeatability is minimally affected
by changes in input. Of course CQMs are perfectly consistent
on a within measure basis—given the same partition they will
always report the same quality–and one is tempted to suggest
that between measure consistency is an unfair point of com-
parison; aren’t all the measures using quite different evalu-
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ative procedures, and didn’t we select them to be distinct?
We did, but CQMs purport to evaluate clustering quality in
general. Insofar as they evaluate this more nebulous property
they should be consistent, even if their methods differ. As it
turns out, they are somewhat consistent with each other, just
not as consistent as humans. Further, the consistency story
did not vary when we tested all the leave-one-out subsets of
CQMs, indicating that CQM consistency is not being skewed
by just one divergent measure.

Human experts are the most consistent group in this study.
This lends empirical support to the common practice of seek-
ing human visual evaluations of partition quality. Novices are
less consistent, and as discussed above there is evidence that
the evaluations they provide are less sophisticated. Despite
the unfavorable comparison to experts, it is notable that sub-
jects with no formal knowledge of cluster analysis are able
to respond more consistently than a set of CQMs. This lends
credence to the notion that our ability to evaluate partitions is
acquired in the natural course of visual development.

A Property-Based Taxonomy of CQMs
In the absence of formal guidelines for CQM selection2, in
particular for selecting a versatile set of CQMs, we develop
a property-based framework for distinguishing CQMs based
on such a framework for clustering algorithms discussed in
(Ackerman, Ben-David, & Loker, 2010b) (also see (Bosagh-
Zadeh & Ben-David, 2009) and (Ackerman, Ben-David, &
Loker, 2010a)). The framework consists of identifying natu-
ral properties of CQMs and classifying measures based on the
properties that they satisfy. For the purposes of our study we
use this framework to select meaningfully versatile CQMs.
This taxonomy may have independent interest for choosing
CQMs in other settings. Note that these properties are de-
scriptive only, and not necessarily desirable.

Our taxonomy of CQMs follows a line of work on theo-
retical foundations of clustering beginning with the famous
impossibility result by (Kleinberg, 2003), which showed that
no clustering function can simultaneously satisfy three spe-
cific properties. (Ackerman & Ben-David, 2008) reformu-
late these properties in the setting of CQMs, and show that
these properties are consistent and satisfied by many CQMs.
We follow up on (Ackerman & Ben-David, 2008) by study-
ing natural properties that can be used to distinguish between
CQMs.

In Table 3, we present a taxonomy of our seven cluster-
ing quality measures. Each property, defined below, aims to
capture some fundamental feature that is satisfied by some
measures.

Normed clustering quality measures
A clustering quality measure m takes a domain set X , a dis-
tance function d over X , and a clustering C of X , and outputs a
non-negative real number. Some quality measures are defined

2Although there are no formal guidelines for CQM selection,
some interesting heuristics haven been proposed, see, for example,
(Vendramin, Campello, & Hruschka, 2009).

Table 3: A taxonomy of the seven quality measures used in
the study.

G
am

m
a

Si
lh

ou
et

te

D
un

n

A
vg

W
ith

in

A
vg

B
tw

C
H

W
-I

nt
er

/I
nt

ra

Order-consist. X X X X X X X
Sep-invariant X X X X X X X

Hom-invariant X X X X X X X
Bounded X X X X X X X

Constant Cover X X X X X X X
Norm-based X X X X X X X

over normed vector spaces. Normed CQMs take a quadruple
of the form (V,X ,C,‖ · ‖), where V is a vector space, X a fi-
nite subset of V , and ‖ · ‖ is a norm over V . Normed CQMs
can rely on centers-of-mass of clusters that are not necessar-
ily in X , but are part of the vector-space V . Observe that the
centers-of-mass are not defined for un-normed CQMs. We
define the properties for CQMs in general, but one can apply
any property to a normed CQM by using the norm to define
the distance function. That is, set d(x,y) = ‖x− y‖ for all
x,y ∈ X .

Invariance and consistency properties
Invariance properties describe changes to the underlying data
that do not affect the quality of a clustering. Consistency
properties describe similarity conditions under which clus-
terings have similar quality. We propose two new invariance
properties.
Definition 1 (Separation Invariance). A CQM m is
separation-invariant if for all X and distance functions d and
d′ over X where d(x,y) = d′(x,y) for all x∼C y, m(C,X ,d) =
m(C,X ,d′).

A separation invariant CQM is not affected by changes to
between-cluster distances. Conversely, homogeneity invari-
ant CQMs depend only on between-cluster distances, and are
invariant to changes to within-cluster distances.
Definition 2 (Homogeneity Invariance). A CQM m is
homogeneity-invariant if for all X and distance functions
d and d′ over X where d(x,y) = d′(x,y) for all x 6∼C y,
m(C,X ,d) = m(C,X ,d′).

Observe that separation-invariance and homogeneity-
invariance can also be viewed as consistency properties. An
additional consistency property, order consistency, is an adap-
tation of an analogous property of clustering functions pre-
sented in (Jardine & Sibson, 1971). Order consistency de-
scribes CQMs that depend only on the order of pairwise dis-
tances.
Definition 3. A CQM m is order consistent if for all d and d′

over X such that for all p,q,r,s ∈ X, d(p,q) < d(r,s) if and
only if d′(p,q)< d′(r,s), m(C,X ,d) = m(C,X ,d′).
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Domain and range properties
A bounded range can aid in interpreting the results of a CQM,
in particular if the bounds are attainable by some clusterings.
Definition 4 (Bounded). A CQM m is bounded if there ex-
ist datasets X1 over d1 and X2 over d2, and clusterings C1
of X1 and C2 of X2, so that m(C1,X1,d1) ≤ m(C,X ,d) ≤
m(C2,X2,d2) for all C,X, and d.

Our next property describes the quantity of domain ele-
ments that effect the CQM. First, we introduce the notion of
an m-cover of a clustering, a subset of the domain which has
the same quality as the entire set. For clustering C of X , and
X ′ ⊆ X , let C|X ′ denote the clustering C′ of X ′ where for all
x,y ∈ X ′, x∼C′ y if and only if x∼C y.

An m-cover of clustering C of X is any set R ⊆ X , so that
m(X ,k) = m(R,C|R). We define clustering quality measures
that have a constant size cover for all clusterings.
Definition 5 (Bounded Cover). A CQM m has bounded cover
if there exists a constant r so that for every data set X and
clustering C of X, there exists an m-cover of C of cardinality
at most r.

CQMs that have a bounded cover search the domain space
for some local features, ignoring most of the information in
the dataset.

Conclusions
We perform an empirical study comparing human evalua-
tions of clustering with formal clustering quality measures.
To select a versatile set of CQMs, we develop a theoretical
property-based taxonomy of CQMs. Our study shows that
some CQMs with seemingly natural mathematical formula-
tions yield evaluations that disagree with human perception.
On the other hand, we identify CQMs (CH and Silhouette)
that have significant correlation with human evaluations.

Our consistency analysis reveals that even novices are at
least as consistent as a broad set of CQMs, and perhaps more
consistent. We also find significant correlations between the
evaluations of expert and novice subjects. This lends support
to the common practice of seeking human visual evaluations
of partition quality. If one needs to evaluate a very large num-
ber of partitions it may be reasonable to use human compu-
tation via a service such as Mechanical Turk to rank parti-
tions efficiently (or at least throw out the really bad ones). Fi-
nally, experts appear to use more sophisticated strategies than
novices, indicating that training can improve human cluster-
ing evaluation performance.

Acknowledgments
This work is funded by NSF Grant #SES-0963071, Divvy:
Robust and Interactive Cluster Analysis (PI Virginia de Sa).
Thanks to Cindy Zhang for valuable code contributions.

References
Ackerman, M., & Ben-David, S. (2008). Measures of clus-

tering quality: A working set of axioms for clustering. In
Advances in neural information processing systems.

Ackerman, M., & Ben-David, S. (2009). Clusterability:
A theoretical study. Proceedings of AISTATS-09, JMLR:
W&CP, 5, 1–8.

Ackerman, M., Ben-David, S., & Loker, D. (2010a). Charac-
terization of Linkage-based Clustering. In Proceedings of
colt.

Ackerman, M., Ben-David, S., & Loker, D. (2010b). Differ-
entiating clustering paradigms: a property-based approach.
In Advances in neural information processing systems.

Baker, F., & Hubert, L. (1975). Measuring the power of
hierarchical cluster analysis. Journal of the American Sta-
tistical Association, 70(349), 31–38.

Bosagh-Zadeh, B., & Ben-David, S. (2009). A uniqueness
theorem for clustering. In Proceedings of the 25th confer-
ence on uncertainty in artificial intelligence, auai press.
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