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Abstract

Despite their importance in public discourse, numbers in the range
of one million to one trillion are notoriously difficult to
understand. We examine magnitude estimation by adult Americans
when placing large numbers on a number line and when
qualitatively evaluating descriptions of imaginary geopolitical
scenarios. Common conceptions of the number line suggest a
logarithmic compression of the numbers (Dehaene, 2003).
Theories of abstract concept learning suggest that in situations
where direct experience is unavailable, people will use the
structure of notation systems as a proxy for the actual system.
(Carey, 2009; Landy & Goldstone, 2007).

Evaluations across two subject populations largely matched the
predictions of the latter account. Approximately 40% of
participants estimated one million approximately halfway between
one thousand and one billion, but placed numbers linearly across
each half, as though they believed that the number words
“thousand, million, billion, trillion” constitute a uniformly spaced
count list. Very brief training procedures proved partially
successful both in correcting number line placement and in shifting
participants’ judgments of geopolitical situations. These results
reinforce notions of abstract concepts as grounded in external
notation systems, as well as having direct implications for
lawmakers and scientists hoping to communicate effectively with
the public.
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Introduction

Large numbers' are interesting for both practical and
theoretical reasons. Many arenas of public discourse rely on
an understanding of large numbers, including debates about
evolutionary biology, nanotechnology, and the reliability of
DNA testing. The United States is currently involved in a
heated conversation about the national budget and economy.
The budget, the deficit and the debt are in the low trillions,
while most proposed budget changes are in the millions and
billions. Americans generally exhibit poor knowledge about
spending on specific programs by the federal government
(Gilens 2001), and it is likely that poor understanding of
large numbers contributes to this ignorance.

Number systems covering this range are also an excellent
example of an abstract system: magnitudes such as one
billion are beyond our immediate experience and yet are
clearly understood in part through abstracting the concrete
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process of counting (Carey, 2009; Leslie, Gelman, &
Gallistel, 2008). We experience large numbers primarily
syntactically, and through associations with situations (e.g.,
claims that the U.S. deficit is $1.4 trillion; Facebook has
700 million users; or the human body has 100 trillion cells).
One way we understand abstractions is by studying the
properties of their concrete representations (Clark, 2006;
Landy & Goldstone, 2007; Kirsh, 2010). For instance,
Carey (2009) proposes that when learning to count, the
memorized count list orients attention to appropriate
features of the environment, so that the verbal label
“eighteen” cues a learner that there is something that
“eighteen” situations have in common. In addition to the
simple presence or absence of labels, however, count lists
have other structural properties: for instance, counting
numbers are typically stated in sequence, with accompanied
rhythmic hand motions, and are constructed on a semi-
regular pattern. Here, we wonder how structural components
of symbolic systems impact inferences made by reasoners.

Structure in the numerals
A student learning the English counting system must master
several different lists. In addition to the numbers from 1-9,
one must learn the teen words, the tens words, and —most
importantly for our purposes—is the short scale, used in the
United States and Britain. In this system, one thousand
million is “one billion”. This list “thousand, million, billion,
trillion, quadrillion, ...” constitutes an effective count list,
which after the initial “thousand”, bears an apparent
sequential structure, and clearly derives from Latin number
words. North American students typically learn the short
scale up to “trillion” by around 7" grade (Skwarchuk and
Anglin, 2002).

There are several common notations for understanding
large numbers. In this paper, we focus on perhaps the most
common on, which we will call the hybrid notation, because
it combines number words and numerals. Examples of
numbers in this from include “324 million”, “426”, or “5
thousand.”

We model large number understanding by combining two
conceptually separate steps: the first involves the
interpretation of a number word into an abstract numerical
quantity (“abstract” because we are agnostic with respect to
how people would actually estimate perceived quantities in
the range of millions and billions—here we mean merely the
interpretation can be treated as a metric), and the mapping
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of a quantity into a response. For brevity, we blur these
distinctions here.

Of the many plausible ways that people might extract
quantities from number representations, the simplest is that
people might roughly correctly estimate the relative values
of large numbers. We will refer to this as the linear or
normative model of large number understanding.

Second, if learners use the structure of the number
notations—especially the short scale—as a guide to
numerical size, then a different pattern is expected. Since
the number words—millions, billions, trillions, are similar
and uniformly spaced in their count list, people might
evenly distribute the referred quantities. Since adults
generally linearly estimate numbers from 1-1000 (Seigler &
Opfer, 2003), this suggests a piecewise-linear pattern, in
which (roughly) values like 1 thousand, 1 million, and 1
billion are separate units, which are spaced evenly on the
line, and other values (such as 500 million) are linearly
interpolated between these points. We will call this the
uniform spacing or piecewise linear model.

Another plausible approach is based on developmental
studies of line estimation with small number ranges (Siegler
& Opfer, 2003). These studies have repeatedly demonstrated
that number estimation errors tend to be highly compressed
at the large end of the line. Traditionally, this compression
has been modeled using a logarithmic function, and a fitted
linear mapping from quantities to line positions (Booth &
Siegler, 2008; Siegler & Opfer, 2003). We will call this
combination the log-linear model.

Finally, it is naturally plausible that some people would
either have no interpretation of the large numbers, or highly
variable or non-monotonic interpretations.

Empirical Methodology

tasks to explore the number word
Number line estimation, and situation

We used two
interpretation:
evaluation.

In typical number line estimation tasks, a participant is
presented a line with labeled endpoints, and a stimulus
numeral. The participant makes a mark indicating their
estimate of the proportion of the line that corresponds to the
proportion relating the stimulus number to the specified
range. In the experiments reported here, the left end was
always I thousand, and the right end was I billion. Prior to
performing estimations, participants were shown a marked
number line ranging from 1 tol0, and were instructed to
likewise place their numbers in a linear manner.

In situation evaluations, participants made qualitative
judgments about attempted government actions involving
short-scale quantities. In each story, one number was
selected as a goal, and a number to be evaluated was
selected from the preceding element of the short scale. For
instance, in one question a fictional country’s government
had a goal to eliminate their 1.1 trillion “taler” deficit, and
proposed the solution cut 100 billion talers. Participants
rated the quality of the attempted solutions on a 9-point
scale from “very unsatisfactory” to “very satisfactory”.

Experiment 1

Method

Participants & Procedure Partial course credit or
monetary compensation was given to 67 participants
recruited from the University of Richmond community.
Three participants gave responses that were generally non-
increasing across the number range, and were extremely
variable; these participants’ data were removed and replaced
to yield our goal of 64 participants.

Participants made 108 number line estimates, on a line
ranging from 1 thousand to 1 billion. Each stimulus number
was the product of an integer strictly between one and one
thousand, and either 10° or 10°.

Two between-groups differences were used to rule out
possible confounds in our approach. First, in Experiment 1
half of all participants viewed numbers in the hybrid
notation; for half all stimuli and endpoints were presented in
the pure numeral format. Second, the range of the stimulus
numbers was manipulated between participants, so that we
could evaluate whether people shifted their placement to fit
the distribution of observed numbers. Half of the
participants saw numbers only in the millions; half
estimated numbers which were evenly divided between
those above and below 1 million. Neither manipulation
affected results qualitatively or altered significance of
contrasts; similar patterns were observed across all four
groups; the slight differences will not be discussed here.

After completing the experiment, regardless of condition,
participants filled out a paper form prompting them to
generate the numerical form for each of one billion, one
million, and one thousand. All but two participants did so
correctly; one participant left the “one billion” mark blank,
while the other made significant errors.

Analysis

Our primary analysis compared linear and uniform spacing
model fits with the log-linear, using a hierarchical Bayesian
model fitting approach.

Since both models are linear above and below one
million, the primary variable distinguishing the linear and
uniform spacing models is the estimated position of one
million on the line (M). M was fitted at the individual
subject level; since M ranges from 0 (extreme left) to 1
(right), the population was fitted as a uninformative beta
distribution. Within this framework, the linear model is the
special case when M = 0.001, pure uniform spacing is
produced when M=0.5. The prior on M was uniform
between 0 and 1, and 0 elsewhere.

This segmented linear model was compared to a log-
linear model, ¥ = aIn(z); this model also has one parameter,
fixing the shape of the linear component. The left intercept
of both models was fixed at 0. To capture variability in
responses, both models assume truncated (at 0 and 1)
normal distributed deviations from the model prediction.

A hierarchical mixture model mixing both components at
the group level was fit to the data using JAGS through the
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rJAGS package. In this model, each subject has some
probability n of producing split linear responses and some
probability 1 — & of producing a log-linear responses. The
model thus categorizes individuals as part of the fitting
procedure. The model was simulated using MCMC, with 4
chains with 100 samples per chain, a burn-in of 30,000
iterations, and a thinning of 250 iterations per sample.

Results

Figure 1 shows the fitted values of M. Qualitatively, nearly
all participants were captured very well by the segmented
linear model. The logarithmic model was selected as better
fitting by the model for only one participant. Three other
participants produced non-monotonic fits with wide
variability, and were poorly fit by both models. The
remaining 61 participants matched well the predictions of
the segmented linear models. Figure 2 illustrates two typical
patterns of response: one group of participants (n = 36) were
fit very well by the linear model, and thus had low M
values; the other group had high values of n with typical M
values centered around 0.4 (n=19). The few participants
with intermediate M values (n=6) between 0.1 and 0.3
seemed to switch strategies, producing responses which
were sometimes close to linear, and at other times very close
to the uniform spacing model.

Discussion

Experiment 1 demonstrates that there is not a general
misunderstanding of large numbers, nor a logarithmic
scaling of these numbers. Instead, a single, specific
misconception of large numbers predominates errors: at
least 85% of substantial deviations from linear responding
involved a piecewise linear behavior, in which each of the
ranges of “millions” and “billions” are linearly constructed,
but are each of approximately identical size. Despite the
prevalence of smooth, log-like functions in theories of
economic and psychological utility functions and
psychological magnitudes, evaluations of large numbers
appear to no more than rarely approach logarithmic scaling.
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Figure 1: Histogram of individual fitted values of the
position of 1 million (M). The normative value is 0.001.
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Figure 2: Number line estimates for a linear (top, M=.0004)
and piecewise linear (bottom, M=.44) sample subject, along
with predictions of the segmented linear model. The log-
linear model predicts straight line responses on a log-scaled
X-axis.

It is possible that participants in our study misconstrued
the nature of the task, believing, for instance, that a
segmented linear graph was requested. We believe this is
unlikely for two reasons. First, although both linear and
logarithmic number lines are fairly commonplace (for
instance, as graph axes), segmented linear number lines—
lines in which one linear number range lies adjacent to a
linear range with a different unit—are vanishingly rare.
Second, while piloting these materials we interviewed many
individuals completing this task. While many made the
error, none gave evidence having misunderstood the task.
On the contrary, these individuals seemed very surprised
when they realized or were told the normative location of
one million.

Experiment 2

The number line is an idiosyncratic task, involving visual
and spatial components as well as number processing per se.
It might be that the results of Experiment 1 result from
idiosyncratic reasoning, and would not generalize well to
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other kinds of number judgments. One purpose of
Experiment 2, then, was to explore whether piecewise linear
number line estimation would generalize to other tasks.

In studies involving smaller number ranges, learning of
linear behavior can be strikingly sudden—with participants
often becoming linear across an entire range from the
presentation of just a single point (Opfer & Siegler, 2007).
A second purpose of Experiment 2 was to explore whether
similar approaches could lead to sudden reductions in
misconceptions about large numbers, and such shifts in line
estimation would generalize to evaluative judgments.

Participants and Procedure

300 participants were recruited from Amazon’s Mechanical
Turk in exchange for small monetary remuneration.
Mechanical Turk is a scalable workforce solution frequently
used by psychologists to recruit subjects for online
experiments (Mason & Suri, 2012). All tasks were
completed remotely through a web interface.

Each participant first performed eight number line
estimations (the pretest), followed by an intervention. Half
of all participants saw an encouragement intervention,
which simply thanked them for their hard work, and asked
them to do their best on the rest of the experiment. The
other half of participants saw a training screen, which
reminded them that 1 billion was equal to 1,000 millions,
and showed them the normative placement of 10 million on
the number line from 1 thousand to 1 billion. Participants
then completed eight more number line estimates (the
posttest), followed by three situation evaluation questions.

In the situation evaluation task, participants read, in fixed
order, three short narratives about how the governments of
two fictional countries were dealing with various social
challenges. The participants rated the quality of the
attempted solutions on a 9-point scale from “very
unsatisfactory” to “very satisfactory”. In each story, one
number was selected as a goal, and a number to be
evaluated was selected from the preceding element of the
short scale. For instance, in question 3 (designed to match
the U.S. budget for 2011) the goal was to eliminate the 1.1
trillion “taler” deficit, and the solution cut 100 billion
“talers”. After both tasks were completed, participants
reported their age, sex, and political affiliation, and briefly
describing their problem-solving strategy. The strategy
explanations provided an extra check that participants were
in fact attempting the problems.

Analysis and Results

Number Line Estimation. Estimates were modeled using a
version of the model described in Experiment 1. Because
the unimodal beta model at the family level did not capture
the pattern of observed behaviors, in Experiment 2 data was
fit only at the level of the individual. Further, the
logarithmic model was not tested. Thus, the single model
parameter was the estimated location of one million, M.
Separate models were fit to the data before and after the
intervention.

Figure 3 illustrates the shift in number line behavior before
and after the intervention. An ANOVA evaluating M values
as a dependent measure over time of estimation (pre vs. post
intervention) and condition, indicated a significant
interaction between the two (F(1, 298)=15.8, p<.01). There
was also a main effect of condition (F(1, 298)=4.4, p<.05);
considering only the pretest data, the difference was not
significant (F(1,298)=.21, p>0.5).

As in Experiment 1, the empirical values of the M
parameter were contrary to the predictions of the uniform
spacing model. While the model predicts a mean value
around 0.5 among the piecewise linear group, the actual
mean fitted value was around 0.40.

Situation Evaluations. Evaluations were averaged across
the three situations for analysis. These average responses
were moderately normally distributed. An ANOVA of mean
evaluation against pretest M and condition revealed
significant effects of both (F(1, 298)=11.3, p<0.01, and F(1,
298)=4.3, p<0.05, respectively). Once behavior at posttest
was included, however, it was the only significant predictor
of situation evaluations (F(1, 298)=15.8, p<0.001; see
Figure 4); condition was no longer significant (F(1,
298)=2.4, p~.12), suggesting that some of the effect of
training on situation evaluation resulted from shifts in
processes involved in number line estimation.
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Figure 3: Best-estimated location of 1 million (M) at pretest
and posttest. The normative location is 0.001. The large
preponderance of blue circles in the bottom right represents
the efficacy of the training.
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Figure 4: Situation evaluation against post-intervention
placement of 1 million (M), binned into quantiles based on
pre-intervention number line estimates. Errors reflect
standard errors in the estimate of post-intervention values.

Discussion

Experiment 2 demonstrated that the same strategies found in
Experiment 1 are employed in a substantively different
population: 45% of judgments were compatible with the
piecewise linear account. However, participants were
readily educable: just a single example of a normatively
placed term sufficed to correct number line estimations in
nearly half of error-prone estimators. Training seemed to be
largely all-or-none: participants who shifted strategies
halfway through the task gave responses nearly
indistinguishable from those who had been following the
final strategy from the beginning, judging both by number
line estimations and situation evaluations.

Furthermore, Experiment 2 demonstrated that number line
strategies are closely related to political judgments
involving numbers in this range. People who estimate the
number lines normatively are less optimistic about political
situations involving numbers in this range. Furthermore,
participants trained on the number line shifted their
evaluations of political situations. Hence, the uniform
spacing misconception does not result from reasoning
specific to the number line task.

General Discussion

Numbers picked out by the short scale—despite appearing
frequently in educational contexts and public discourse—do
not seem to be robustly understood by much of the
population. While roughly half of our participants treated
large numbers linearly, two experiments indicate that a large
portion of the population—around 40 percent in the studies
reported here—seems to evaluate large numbers based on
the assumption that the number labels are roughly equally
spaced as the numbers increase. Furthermore, people who

rely on an equal spacing heuristic when placing numbers on
a line are more satisfied with poor resolutions to political
problems involving comparable scales.

Currently, the people of the United States, along with
many other countries, are deciding how best to handle
economic debt and deficit crises. These conversations
crucially involve the accurate assessment of numbers across
the range of 10°-10". The current results suggest that a
substantial fraction of Americans are ill equipped to engage
in these conversations. This conversation is of direct
relevance to the practice of scientific research, which is
often funded by grants in the low millions of dollars.
Detractors of the government spending on science research
and other programs often present funding information by
contextualizing these amounts within the overall budget
using short-scale labels.

Logarithmic number line behavior was rare or non-
existent on this task, despite substantial prior research that
has supported the hypothesis that unfamiliar number ranges
are initially represented logarithmically (Siegler & Opfer,
2003; Dehaene, 2003). One possibility is that large numbers
fall beyond the upper range of the approximate magnitude
system (Izard & Dehaene, 2008). Another possibility is that
the reasoning processes we find adults employing when
estimating large numbers account for apparently logarithmic
behavior in young children (Nuerk et al, 2001).

Although the hypothesis that people infer spacing on the
number line from the structure of the short scale labels
predicted the basic pattern or responses, it does not predict
the observed structure perfectly. In particular, most people
who erred in their estimate of the relative values of 1
thousand, 1 million, and 1 billion did not put 1 million
halfway between the other two, but substantially close to 1
thousand. Anecdotally, people we have observed often
placed 1 million more or less exactly in the middle, then
‘correct’ to approximately the 40% mark. One possibility is
that this positioning reflects a compromise between uniform
spacing and normative number knowledge, but the nature of
such a compromise remains speculative.

These results are striking in that the actual numerical
system of short scale words and place value notation is
formally extremely simple, and the referent system—the
natural numbers—is acquired fairly early in mathematical
development. A simple induction suffices to suggest the
referents of the large number words studied here, rather than
a conceptual restructuring, as has been implicated in
rational-number learning. These results emphasize that even
when dealing with basic abstract material, accessible
concrete structures play a key role in guiding the
development of concepts and strategies (Carey, 2009;
Goldstone & Landy, 2010). When dealing with large
numbers, people rely heavily on number naming structures
to fix the meaningful properties of particular number words.
Instead of using the number labels as placeholders to an
independently existing world, accessed via number
principles, many people attend to the surface properties of
number nomenclature to determine numerical properties. As
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the four-year old daughter of the first author (who was at the
time learning to read two digit numbers) put it “100 is just
one more than 10. It’s three: one, two, three!” Magnitudes in
this range are constructed by borrowing structure from the
symbol systems used to represent them.
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