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Abstract

Although the problems on Raven’s Progressive Matrices
intelligence tests resemble geometric analogies, studies of
human behavior suggest the existence of two qualitatively
distinct types of strategies: verbal strategies that use
propositional representations and visual strategies that use
iconic representations. However, all prior computational
models implemented to solve these tests have modeled only
verbal strategies: they translate problems into purely
propositional representations. We examine here the other half
of what may be a dual-process mechanism of reasoning in
humans: visual strategies that use iconic representations. In
particular, we present two different algorithms that use iconic
visual representations to address problems found on the
Advanced Progressive Matrices test, the best of which yields
performances at levels equivalent to the 75th percentile for
human test takers aged from 20 to 62 years-old. We discuss
implications of our work for understanding the computational
nature of Raven’s and visual analogy in problem solving.

Keywords: Analogy; intelligence tests; knowledge
representations; mental imagery; Raven’s Progressive
Matrices; visual reasoning.

Introduction

The Raven’s Progressive Matrices (RPM) test is a
standardized intelligence test. The test consists of geometric
analogy problems in which a matrix of geometric figures is
presented with one entry missing, and the correct missing
entry must be selected from a set of answer choices. Figure
1 shows an example of a matrix problem of this kind.

There are currently three published versions of the RPM:
the original Standard Progressive Matrices (SPM), the
Advanced Progressive Matrices (APM), developed as a
more difficult test than the SPM for individuals in high 1Q
ranges, and the Colored Progressive Matrices (CPM),
intended as a simpler test than the SPM to be used with
children, the elderly, or other individuals falling into lower
IQ ranges (Raven et al, 2003). The RPM tests are
considered to be the single best psychometric measures of
general intelligence, outside of multi-domain IQ tests like
the Wechsler scales (Snow et al.,, 1984), and all three
versions of the RPM are widely used in clinical,
educational, occupational, and scientific settings.

Neuroimaging and behavioral studies suggest that humans
recruit qualitatively different strategies on the RPM
regarding what types of mental representations are used,
specifically in terms of visual versus verbal strategies.
Visual strategies use iconic mental representations rooted in
the visual perceptual modality, such as mental imagery.

Verbal strategies use amodal propositional mental
representations, such as linguistic description.

From factor analyses of both the SPM (Lynn et al., 2004;
van der Ven & Ellis, 2000) and the APM (Dillon et al.,
1981; Mackintosh & Bennett, 2005; Vigneau & Bors, 2005)
as well as from fMRI data (Prabhakaran et al., 1997) comes
evidence for various categories of RPM problems
differentially eliciting from people either visual or verbal
strategies. Studies of patients with focal brain lesions have
also found linkages between brain regions associated with
visual or verbal processing and successful performance on
certain RPM problems (Berker & Smith, 1988; Villardita,
1985). Individuals with autism, who may exhibit a general
bias towards using visual strategies over verbal ones (Kunda
& Goel, 2007, 2011), tend to do particularly well on the
RPM (Bolte et al., 2009; Dawson et al., 2007) and have
been observed with fMRI to prefer predominantly visual
strategies on the RPM (Souliéres et al., 2009).

Despite this breadth of evidence for the existence of both
visual and verbal RPM strategies, most computational RPM
accounts have presumed to translate visual inputs into
propositional representations, over which various kinds of
reasoning then take place. One reason for this may be the
general preponderance of propositional representations in
computational accounts of cognition; in many models of
visual reasoning across various task domains, visual
knowledge too is represented using propositions (Carpenter
et al. 1990, Lovett et al. 2010, Davies et al. 2008).
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Figure 1: Example RPM Problem.
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Another reason may stem from the practice of using
verbal reporting protocols to study RPM problem solving.
By their very nature, verbal reports are better suited to
describing verbal strategies than visual strategies, which
may introduce bias into the results of such protocols. Of
even greater significance are findings across multiple task
domains that the act of verbal reporting actually biases
individuals towards using verbal strategies and/or impairs
their use of visual strategies, a phenomenon known as
“verbal overshadowing” (Schooler & Engstler-Schooler,
1990; Schooler et al., 1993). DeShon, Chan, and Weissbein
(1995) found that a verbal reporting protocol on the APM
significantly impaired accuracy on about half of the
problems, and specifically on those typically solved using
visual strategies.

The goal of our work is to develop computational models
of a dual cognitive strategy that uses both verbal and visual
representations. This first requires the development of
computational models of the visual strategy itself. Once
such computational models have been developed, they then
may potentially be coupled with existing models of the
verbal strategy. We have developed two such computational
models of reasoning on the RPM using iconic visual
representations. In earlier work, we tested these models
against the SPM (Kunda, McGreggor, & Goel, 2010). In this
paper, we apply these computational models to the APM.

In so far as we know, this work represents several firsts: it
is the first report of any computational model addressing the
entirety of the APM test, the first in which the problems are
attempted using purely iconic visual representations, and the
first to tackle the test using scanned images of each test
page, without any re-rendering or representational change of
inputs from those presented to a human test-taker.

Computational Accounts of the RPM

Hunt (1974) proposed the existence of two different RPM
strategies that varied primarily in how problem inputs were
represented. The “Analytic” algorithm used propositions to
represent problems as lists of features and logical operations
to evaluate rules such as constancy and addition/subtraction.
The “Gestalt” algorithm, akin to mental imagery, used
iconic representations and perceptual operations like
continuation and superposition. However, neither algorithm
was actually implemented. All of the computational RPM
models that have since been developed resemble Hunt’s
Analytic algorithm in that they rely on a conversion of
problem inputs into amodal propositional representations.
Model 1 Carpenter, Just, and Shell (1990) used a
production system that took hand-coded symbolic
descriptions of certain problems from the Advanced
Progressive Matrices (APM) test and then selected from a
set of predefined rules to solve each problem. The rules
were generated by the authors from a priori inspection of the
APM. The rules were experimentally validated using a
verbal reporting protocol, but the potential confound of a
verbal overshadowing effect was not addressed. Differences
between low- and high-scoring participants were modeled
by developing two different versions (FairRaven and
BetterRaven) of the production system; the more advanced
system (BetterRaven) contained an increased vocabulary of

rules and a goal monitor. Both systems were tested against
34 of the 48 problems from the APM and solved 23 and 32
problems, respectively.

Model 2 Bringsjord and Schimanski (2003) used a
theorem-prover to solve selected RPM problems stated in
first-order logic, though no specific results were reported.

Model 3 Lovett, Forbus, and Usher (2010) combined
automated sketch understanding with the structure-mapping
analogy technique to solve SPM problems. Their system
took as input problem entries sketched in Powerpoint as
segmented shape objects and then automatically translated
these shapes into propositional descriptions, using a sketch
understanding system based on work by Biederman (1987).
A two-stage structure-mapping process, following the theory
of Gentner (1983), was then used to select the answer that
most closely fulfilled inferred analogical relations from the
matrix. This system was tested against 48 of the 60
problems on the SPM and solved 44 of these 48 problems.

Model 4 The system of Cirillo and Strém (2010), like
that of Lovett et al. (2010), took as input hand-drawn vector
graphics representations of test problems and automatically
generated propositional representations. Then, like the work
of Carpenter et al. (1990), the system drew from a set of
predefined patterns, derived by the authors from an a priori
inspection of the SPM, to find the best-fit pattern for a given
problem. This system was tested against 36 of the 60
problems on the SPM and solved 28 of these 36 problems.

Model 5 Rasmussen and Eliasmith (2011) used a spiking
neuron model to induce rules for solving RPM problems.
This system took as input hand-coded vectors of
propositional attribute-value pairs. While the system was
said to correctly solve RPM problems, no specific results
were reported.

Our Approach

As mentioned above, despite considerable differences in
architecture and problem-solving focus, all five of these
computational models of the RPM have reasoned over
amodal propositional representations of test inputs. We
believe that Raven’s problems may be solved via
computational models that use purely iconic visual
representations of test inputs, and we present these models
as a complementary view of reasoning on the RPM.

The two models that we have developed are the affine
model and the fractal model, both of which use image
transformations to solve RPM problems without converting
the input images into any sort of propositional form.
Previously, we described each of the models along with an
analysis of their performance on all 60 problems from the
SPM (Kunda, et al., 2010).

Iconic Visual Reasoning

The affine and fractal methods differ in important ways, but
share two intuitions: comparing images under a variety of
transformations, and judging the similarity based upon
features which arise from the images.

Similitude Transformations

Each of our algorithms compares images (or fragments of
images) under a variety of transformations. = We use
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similitude transformations, similarity-preserving
transformations which are a subset of affine
transformations. Similitude transforms are a linear
composition of a dilation, an orthonormal transformation,
and a translation. Our implementation presently examines
images under eight orthonormal transformations,
specifically dihedral group D4, the symmetry group of a
square. The translation is determined as a consequence of
the searching each algorithm performs. The affine method
restricts dilation to a value of one, i.e. no scaling, whereas
the fractal method uses a short sequence of progressively
smaller dilation values. Thus, the fractal method’s
similitude transformations are contractive.

There is evidence that human visual processing can apply
some of these types of transformations to mental images, or
at least operations that are computationally isomorphic in
some sense. In the theory of mental imagery proposed by
Kosslyn, Thompson, and Ganis (2006), transformations of
mental images include scanning (i.e. translation), zooming
(i.e. scaling), and rotation, among others.

A Model of Similarity

Our models must judge the similarity between images. The
nature of this similarity may be determined by any number
of means, many of which might associate visual or
geometric features to points in a coordinate space, and
compute similarity as a distance metric (Tversky 1977).
Tversky developed an alternate approach by considering
objects as collections of features, and similarity as a feature-
matching process. We adopt Tversky’s interpretation, and
seek to derive a set of features for use in our matching
process.

We desire a metric of similarity which is normalized, one
where the value 0.0 means entirely dissimilar and the value
1.0 means entirely similar. We use the ratio model of
similarity as described in (Tversky 1977), wherein the
measure of similarity S between two representations A and
B is calculated by the formula:

S(A,B) = f(A N B) / [f(A N B) + af(A-B) + Bf(B-A)]

where f(X) is the number of features in the set X. Tversky
notes that the ratio model for matching features generalizes
several set-theoretical models of similarity proposed in the
psychology literature, depending upon which values one
chooses for the weights a and .

Although the same equation is used for similarity
calculations, each of our models has its own interpretation
of what constitutes a feature. In the affine method, a feature
is defined to be a single pixel, and intersection, union, and
subtraction operations are defined as the minimum,
maximum, and difference of pixel values. This formulation
assumes that pixels are independent features within the pixel
sets represented by images A and B. While this notion of
pixel independence is a strong simplification, it matches
assumptions made by basic template theories of visual
similarity that define similarity based purely on evaluations
of the extent of overlapping figural units (Palmer, 1978),
e.g. individual pixels. The fractal method uses features
derived from different combinations of elements from the

fractal representation of the image comparison (McGreggor,
Kunda, & Goel, 2010).

For each base transform ti:

. Apply ti to image A to create image ti(A).
Search all possible translation offsets between images ti(A)
and B to find single offset (x,y) yielding highest similarity
between them.
Calculate similarity s between images ti(A)x,y) and B
For set-theoretic addition and subtraction, determine image
composition operation @ and operand X as follows:
If 3(A-B) = 0, then ® and X are null.
If 3(A-B) = 3(B-A), then @ refers to image addition
and X = B - ti(A)x,y)-
If 3(A-B) > 3(B-A), then @ refers to image
subtraction and X = ti(A)(xy) - B.

The composition transformation Ti is thus defined as precisely
the transformation that changes image A into image B:
Ti(A) = ti(A)xy) X =B

Algorithm 1. Inducing a composite transform

The Affine Model

Given a matrix problem, the affine model makes two basic
assumptions: (a) that collinear elements are related by a
composition of a similitude and/or set-theoretic transform,
and (b) that parallel sets of elements share identical or
analogous transforms. The model proceeds in three steps:

1) Induce a best-fit composite transform for a
set of collinear elements in the matrix.

2) Apply this transform to the parallel set of
elements containing the empty element; the
result is a predicted answer image.

3) Compare this predicted image to the given
answer choices for maximum similarity.

Algorithm 1 shows how, for a pair of images A and B, the
“best-fit” composite transform is induced. The base unary
transforms are the eight orthonormal symmetry transforms
mentioned above (image rotations and mirrors), along with
image addition (union of sets) and image subtraction
(complement of sets). The base binary transforms are the
five set operations of union, intersection, subtraction (both
directions), and exclusive-or.

There are two places at which the affine model computes
visual similarity, first in the induction of a best-fit composite
transform, and second in the selection of the answer choice
that most closely matches the predicted image. In addition
to using Tversky’s ratio model of similarity, as defined
above, we also implemented a sum-squared-difference
measure, which we converted to a measure of similarity
(with minimum value of 0.0 and maximum value of 1.0) as:

SSDsimilarity =1/ (1 + SSD)]

These two similarity measures exhibit different behaviors.
The Tversky measure privileges matches that share more
pixel content. In contrast, the SSD similarity measure
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effectively ignores any pixel content that is shared;
similarity is calculated only as a function of pixels that are
different.

Once the transformation is found that maximizes
similarity, the transformation is applied to the first entry or
entries in the last row or column, as shown in Figure 2. The
resulting image represents the algorithm’s best guess as to
the missing entry. This image is compared to the answer
choices, and the best match is chosen as the final answer.

—> induce
transform

= apply
transform
to predict
answer

unary
transforms

L binary
transforms

matrix

row column

Figure 2. Sets of elements examined by the affine method

The Fractal Method

Like the affine method, the fractal method seeks to find a re-
representation of the images within a Raven’s problem as a
set of similitude transformations. Unlike the affine method,
the fractal method seeks these representations at a
significantly finer partitioning of the images, and uses
features derived from these representations to determine
similarity for each possible answer, simultaneously, across
the bulk of relationships present in the problem.

For visual analogy problems of the form A : B :: C : 2,
each of these analogy elements are a single image. Some
unknown transformation T can be said to transform image A
into image B, and likewise, some unknown transformation
T’ transforms image C into the unknown answer
image. The central analogy in the problem may then be
imagined as requiring that T is analogous to T'. Using
fractal representations, we shall define the most analogous
transform T’ as that which shares the largest number of
fractal features with the original transform T.

To find analogous transformations for A : B :: C : ?, the
fractal algorithm first visits memory to retrieve a set of
candidate solution images X to form candidate solution
pairs in the form <C, X>. For each candidate pair of images,
we generate a fractal representation of the pairing from the
fractal encoding of the transformation of candidate image X
in terms of image C. We store each transform in a memory
system, indexed by and recallable via each associated fractal
feature.

First, systematically partition D into a set of smaller
images, such that D = {di, d>, d3, ... }.

For each image di:

Examine the entire source image S for an equivalent image
fragment si such that an affine transformation of si will likely
result in di.

Collect all such transforms into a set of candidates C.

Select from the set C that transform which most minimally
achieves its work, according to some predetermined metric.

Let Ti be the representation of the chosen transformation
associated with di.

The set T = {T1, T2, T3, ... } is the fractal representation
of the image D.

Algorithm 2. Fractal Representation of D from S

To determine which candidate image results in the most
analogous transform to the original problem transform T,
we first fractally encode that relationship between the two
images A and B. Next, using each fractal feature associated
with that encoding, we retrieve from the memory system
those transforms previously stored as correlates of that
feature (if any). Considering the frequency of transforms
recalled, for all correlated features in the target transform,
we then calculate a measure of similarity.

Determining Fractal Similarity The metric we employ
reflects similarity as a comparison of the number of fractal
features shared between candidate pairs taken in contrast to
the joint number of fractal features found in each pair
member (Tversky 1977). The measure of similarity S
between the candidate transform T’ and the target transform
T is calculated using the ratio model. This calculation
determines the similarity between unique pairs of
transforms. However, the problems from the Raven's test,
even in their simplest form, poses an additional concern in
that many such pairs may be formed.

Reconciling Multiple Analogical Relationships In 2x2
Raven’s problems, there are two apparent relationships for
which analogical similarity must be calculated: the
horizontal relationship and the vertical relationship. Closer
examination of such problems, however, reveals two
additional relationships which must be shown to hold as
well: the two diagonal relationships. Furthermore, not only
must the "forward" version of each of these relationships be
considered but also the "backward" or inverse version.
Therefore for a 2x2 Raven's problem, we must determine
eight separate measures of similarity for each of the possible
candidate solutions.

The 3x3 matrix problems from the APM introduce not
only more pairs for possible relationships but also the
possibility that elements or subelements within the images
exhibit periodicity. Predictably, the number of potential
analogical relationships blooms. At present, we consider 48
of these relationships concurrently.

Relationship Space and Maximal Similarity For each
candidate solution, we consider the similarity of each
potential analogical relationship as a value upon an axis in a
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Set of APM
Model Representation Input Strategy
I (12 problems) II (36 problems)
. - hand-coded I
ES X
FairRaven propositional propositions prediction 7 16
. hand-coded I
% E3
BetterRaven propositional propositions prediction 7 25
Affine iconic scanned images prediction 7 14
Fractal iconic scanned images estimate / refine 12 26

*out of 7 and 27 problems attempted, respectively

Table 1: Affine and fractal results on the APM compared with results of the Carpenter et al. (1990) model.

large “relationship space.” To specify the overall fit of a
candidate solution, we construct a vector in this
multidimensional relationship space and determine its
Euclidean distance length. The candidate with the longest
vector length is chosen as the solution to the problem.

The fractal method is described in more detail in
McGreggor, Kunda, and Goel (2010, 2011).

Method

We tested our affine and fractal models on all 48 problems
from the Raven’s Advanced Progressive Matrices test, 12 on
Set I, and 36 on Set II. To obtain visual inputs, we scanned
paper copies of each test at 200 dpi and manually corrected
for small (+/- 3°) rotational misalignments. Thus, the input
to the models was grayscale images in the PNG format, with
each image containing a single problem (matrix and answer
choices).

The models used a semi-automated procedure to extract
individual sub-images from each problem image. Each 3x3
problem contained 8 sub-images (plus one target blank) for
the matrix entries and 8 sub-images for the answer choices.

The models were run against two variations of the test
inputs: raw inputs and quantized inputs. For the raw inputs,
grayscale values were extracted directly from the original
PNG images, and no color correction of any kind was
performed. The raw inputs contained numerous pixel-level
artifacts and some level of noise. For the quantized inputs,
each grayscale value was rounded to be either white or
black, thus turning the inputs into pure black-and-white
images as opposed to grayscale.

In addition, each model considered multiple strategies
when solving the problems. The affine method used two
different similarity measures (Tversky and SSD). The
fractal method used three different groupings of
relationships (horizontal, vertical or both).

Results

Across all input variations and strategies, the affine model
correctly solved 7 of the 12 problems on Set I, and 14 of the
36 problems on Set II. These levels of performance
generally correspond to the 25™ percentile for both sets, for
20- to 62-year-olds (US norms) (Raven et al. 2003).
Looking at input variations individually, the scores were 7
and 10 on each set for raw input, and 6 and 12 on each set
for quantized input. Of the similarity measures used, the

best scores were achieved using the Tversky measure on the
quantized set, with scores 6 and 12 on sets I and II
respectively.

Likewise, the fractal algorithm correctly solved all 12 of
the problems on Set I, and 26 of the 36 problems on Set II.
This level of performance corresponds to the 95™ percentile
for set I, and the 75 percentile for set II, for 20- to 62-year-
olds (Raven et al. 2003). Looking at input variations
individually, the scores were 10 and 21 on each set for raw
input, and 7 and 18 on each set for quantized input. Of the
groupings used by the fractal method, the best scores were
achieved by considering both horizontal and vertical
groupings on raw input, at 7 and 17 on sets I and II
respectively.

In comparison, Carpenter et al. (1990) report results of
running two versions of their algorithm (FairRaven and
BetterRaven) against a subset of the APM problems. Their
results, and ours, are given in Table 2. On the ones not
attempted by Carpenter et al. (1990), our methods score 4
and 5 on set I (of the 5 skipped), and 4 and 7 on set II (of the
9 skipped), for affine and fractal respectively.

Discussion

We have presented two different models that use purely
iconic visual representations and transformations to solve
many of the problems on the Raven’s Advanced Progressive
Matrices test. Our results align strongly with evidence from
typical human behavior suggesting that multiple cognitive
factors underlie problem solving on the APM, and in
particular, that some of these factors appear based on visual
operations. Additionally, in so far as we know, this work is
the first report of any computational model addressing the
entirety of the APM test, the first in which the problems are
attempted using purely iconic visual representations, and the
first to tackle the test using scanned images of each test
page, without any re-rendering or representational change of
inputs from those presented to a human test-taker.

This robust level of performance calls attention to the
visual processing substrate shared by the affine and fractal
algorithms: similitude transforms as a mechanism for image
manipulation, and the ratio model of similarity as a
mechanism for image comparison. Of course, there are
many other types of visual processing that may or may not
be important for accounts of visual analogy, such as non-
similitude shape transformations or image convolutions,
which certainly bear further investigation.

1832



While it has been shown (Davies et al. 2008) that
visuospatial knowledge alone may be sufficient for
addressing many analogy problems, the representations used
in that work were still propositional. In contrast, the
methods described here use only visual representations. We
believe the visual methods we have presented for solving
the APM can be generalized to visual analogy in other
domains, such as other standardized tests (e.g. the Miller’s
Geometric Analogies test), as well as to tests of visual
oddity. We conjecture that these methods may provide
insight into general visual recognition and recall.
Cognitively, we hold that these strategies are a reflection of
what Davis et al. (1993) referred to as the deep, theoretic
manner in which representation and reasoning are
intertwined.
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