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Abstract
Although the problems on Raven’s Progressive Matrices 
intelligence tests resemble geometric analogies, studies of 
human behavior suggest the existence of two qualitatively 
distinct types of strategies:  verbal  strategies  that use 
propositional representations and visual strategies that  use 
iconic representations.  However, all prior computational 
models implemented to solve these tests have modeled only 
verbal strategies: they translate problems into  purely 
propositional representations. We examine here the other half 
of what may be a dual-process mechanism of reasoning in 
humans: visual strategies that use iconic representations.  In 
particular, we present two different  algorithms that use iconic 
visual representations to address problems found on the 
Advanced Progressive Matrices test, the best  of which yields 
performances at levels equivalent to the 75th percentile for 
human test takers aged from 20 to 62 years-old. We discuss 
implications of our work for understanding the computational 
nature of Raven’s and visual analogy in problem solving.

Keywords: Analogy; intelligence tests; knowledge 
representations; mental  imagery; Raven’s Progressive 
Matrices; visual reasoning.

Introduction
The Raven’s Progressive Matrices (RPM) test is a 
standardized intelligence test. The test consists of geometric 
analogy problems in which a matrix of geometric figures is 
presented with one entry missing,  and the correct missing 
entry must be selected from a set of answer choices. Figure 
1 shows an example of a matrix problem of this kind. 

There are currently three published versions of the RPM: 
the original Standard Progressive Matrices (SPM), the 
Advanced Progressive Matrices (APM), developed as a 
more difficult test than the SPM for individuals in high IQ 
ranges, and the Colored Progressive Matrices (CPM), 
intended as a simpler test than the SPM to be used with 
children, the elderly, or other individuals falling into lower 
IQ ranges (Raven et al.,  2003). The RPM tests are 
considered to be the single best psychometric measures of 
general intelligence, outside of multi-domain IQ tests like 
the Wechsler scales (Snow et al., 1984), and all three 
versions of the RPM are widely used in clinical, 
educational, occupational, and scientific settings.

Neuroimaging and behavioral studies suggest that humans 
recruit qualitatively different strategies on the RPM 
regarding what types of mental representations are used, 
specifically in terms of visual versus verbal strategies. 
Visual strategies use iconic mental representations rooted in 
the visual perceptual modality,  such as mental imagery. 

Verbal strategies use amodal propositional mental 
representations, such as linguistic description. 

From factor analyses of both the SPM (Lynn et al.,  2004; 
van der Ven & Ellis, 2000) and the APM (Dillon et al., 
1981; Mackintosh & Bennett,  2005; Vigneau & Bors, 2005) 
as well as from fMRI data (Prabhakaran et al., 1997) comes 
evidence for various categories of RPM problems 
differentially eliciting from people either visual or verbal 
strategies. Studies of patients with focal brain lesions have 
also found linkages between brain regions associated with 
visual or verbal processing and successful performance on 
certain RPM problems (Berker & Smith, 1988; Villardita, 
1985). Individuals with autism, who may exhibit a general 
bias towards using visual strategies over verbal ones (Kunda 
& Goel, 2007, 2011),  tend to do particularly well on the 
RPM (Bölte et al., 2009; Dawson et al., 2007) and have 
been observed with fMRI to prefer predominantly visual 
strategies on the RPM (Soulières et al., 2009).

Despite this breadth of evidence for the existence of both 
visual and verbal RPM strategies, most computational RPM 
accounts have presumed to translate visual inputs into 
propositional representations,  over which various kinds of 
reasoning then take place.  One reason for this may be the 
general preponderance of propositional representations in 
computational accounts of cognition; in many models of 
visual reasoning across various task domains,  visual 
knowledge too is represented using propositions (Carpenter 
et al. 1990, Lovett et al. 2010, Davies et al. 2008).

Figure 1: Example RPM Problem.
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Another reason may stem from the practice of using 
verbal reporting protocols to study RPM problem solving. 
By their very nature, verbal reports are better suited to 
describing verbal strategies than visual strategies,  which 
may introduce bias into the results of such protocols. Of 
even greater significance are findings across multiple task 
domains that the act of verbal reporting actually biases 
individuals towards using verbal strategies and/or impairs 
their use of visual strategies, a phenomenon known as 
“verbal overshadowing” (Schooler & Engstler-Schooler, 
1990; Schooler et al., 1993). DeShon, Chan, and Weissbein 
(1995) found that a verbal reporting protocol on the APM 
significantly impaired accuracy on about half of the 
problems, and specifically on those typically solved using 
visual strategies. 

The goal of our work is to develop computational models 
of a dual cognitive strategy that uses both verbal and visual 
representations.  This first requires the development of 
computational models of the visual strategy itself. Once 
such computational models have been developed,  they then 
may potentially be coupled with existing models of the 
verbal strategy. We have developed two such computational 
models of reasoning on the RPM using iconic visual 
representations.  In earlier work, we tested these models 
against the SPM (Kunda, McGreggor, & Goel, 2010). In this 
paper, we apply these computational models to the APM.

In so far as we know, this work represents several firsts: it 
is the first report of any computational model addressing the 
entirety of the APM test, the first in which the problems are 
attempted using purely iconic visual representations,  and the 
first to tackle the test using scanned images of each test 
page, without any re-rendering or representational change of 
inputs from those presented to a human test-taker.

Computational Accounts of the RPM
Hunt (1974) proposed the existence of two different RPM 
strategies that varied primarily in how problem inputs were 
represented. The “Analytic” algorithm used propositions to 
represent problems as lists of features and logical operations 
to evaluate rules such as constancy and addition/subtraction. 
The “Gestalt” algorithm, akin to mental imagery, used 
iconic representations and perceptual operations like 
continuation and superposition. However, neither algorithm 
was actually implemented. All of the computational RPM 
models that have since been developed resemble Hunt’s 
Analytic algorithm in that they rely on a conversion of 
problem inputs into amodal propositional representations.

Model 1 Carpenter, Just, and Shell (1990) used a 
production system that took hand-coded symbolic 
descriptions of certain problems from the Advanced 
Progressive Matrices (APM) test and then selected from a 
set of predefined rules to solve each problem. The rules 
were generated by the authors from a priori inspection of the 
APM. The rules were experimentally validated using a 
verbal reporting protocol, but the potential confound of a 
verbal overshadowing effect was not addressed. Differences 
between low- and high-scoring participants were modeled 
by developing two different versions (FairRaven and 
BetterRaven) of the production system; the more advanced 
system (BetterRaven) contained an increased vocabulary of 

rules and a goal monitor. Both systems were tested against 
34 of the 48 problems from the APM and solved 23 and 32 
problems, respectively.

Model 2 Bringsjord and Schimanski (2003) used a 
theorem-prover to solve selected RPM problems stated in 
first-order logic, though no specific results were reported. 

Model 3 Lovett, Forbus, and Usher (2010) combined 
automated sketch understanding with the structure-mapping 
analogy technique to solve SPM problems. Their system 
took as input problem entries sketched in Powerpoint as 
segmented shape objects and then automatically translated 
these shapes into propositional descriptions, using a sketch 
understanding system based on work by Biederman (1987). 
A two-stage structure-mapping process, following the theory 
of Gentner (1983), was then used to select the answer that 
most closely fulfilled inferred analogical relations from the 
matrix. This system was tested against 48 of the 60 
problems on the SPM and solved 44 of these 48 problems. 

Model 4  The system of Cirillo and Ström (2010), like 
that of Lovett et al. (2010), took as input hand-drawn vector 
graphics representations of test problems and automatically 
generated propositional representations. Then, like the work 
of Carpenter et al.  (1990), the system drew from a set of 
predefined patterns,  derived by the authors from an a priori 
inspection of the SPM, to find the best-fit pattern for a given 
problem. This system was tested against 36 of the 60 
problems on the SPM and solved 28 of these 36 problems. 

Model 5  Rasmussen and Eliasmith (2011) used a spiking 
neuron model to induce rules for solving RPM problems. 
This system took as input hand-coded vectors of 
propositional attribute-value pairs.  While the system was 
said to correctly solve RPM problems, no specific results 
were reported. 

Our Approach
As mentioned above, despite considerable differences in 
architecture and problem-solving focus, all five of these 
computational models of the RPM have reasoned over 
amodal propositional representations of test inputs. We 
believe that Raven’s problems may be solved via 
computational models that use purely iconic visual 
representations of test inputs, and we present these models 
as a complementary view of reasoning on the RPM.

The two models that we have developed are the affine 
model and the fractal model, both of which use image 
transformations to solve RPM problems without converting 
the input images into any sort of propositional form. 
Previously, we described each of the models along with an 
analysis of their performance on all 60 problems from the 
SPM (Kunda, et al., 2010). 

Iconic Visual Reasoning
The affine and fractal methods differ in important ways, but 
share two intuitions: comparing images under a variety of 
transformations, and judging the similarity based upon 
features which arise from the images. 
Similitude Transformations
Each of our algorithms compares images (or fragments of 
images) under a variety of transformations.   We use 
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similitude transformations, similarity-preserving 
t ransformat ions which a re a subse t o f a ff ine 
transformations.  Similitude transforms are a linear 
composition of a dilation,  an orthonormal transformation, 
and a translation. Our implementation presently examines 
images under eight orthonormal transformations, 
specifically dihedral group D4, the symmetry group of a 
square. The translation is determined as a consequence of 
the searching each algorithm performs. The affine method 
restricts dilation to a value of one, i.e. no scaling, whereas 
the fractal method uses a short sequence of progressively 
smaller dilation values.  Thus, the fractal method’s 
similitude transformations are contractive.

There is evidence that human visual processing can apply 
some of these types of transformations to mental images, or 
at least operations that are computationally isomorphic in 
some sense.  In the theory of mental imagery proposed by 
Kosslyn, Thompson, and Ganis (2006), transformations of 
mental images include scanning (i.e. translation),  zooming 
(i.e. scaling), and rotation, among others.

A Model of Similarity
Our models must judge the similarity between images.  The 
nature of this similarity may be determined by any number 
of means, many of which might associate visual or 
geometric features to points in a coordinate space, and 
compute similarity as a distance metric (Tversky 1977).  
Tversky developed an alternate approach by considering 
objects as collections of features,  and similarity as a feature-
matching process.  We adopt Tversky’s interpretation, and 
seek to derive a set of features for use in our matching 
process. 

We desire a metric of similarity which is normalized, one 
where the value 0.0 means entirely dissimilar and the value 
1.0 means entirely similar.  We use the ratio model of 
similarity as described in (Tversky 1977),  wherein the 
measure of similarity S between two representations A and 
B is calculated by the formula:

S(A,B) = f(A ∩ B) / [f(A ∩ B) + αf(A-B) + βf(B-A)] 

where f(X) is the number of features in the set X.  Tversky 
notes that the ratio model for matching features generalizes 
several set-theoretical models of similarity proposed in the 
psychology literature,  depending upon which values one 
chooses for the weights α and β.

Although the same equation is used for similarity 
calculations, each of our models has its own interpretation 
of what constitutes a feature. In the affine method, a feature 
is defined to be a single pixel, and intersection, union,  and 
subtraction operations are defined as the minimum, 
maximum, and difference of pixel values. This formulation 
assumes that pixels are independent features within the pixel 
sets represented by images A and B. While this notion of 
pixel independence is a strong simplification, it matches 
assumptions made by basic template theories of visual 
similarity that define similarity based purely on evaluations 
of the extent of overlapping figural units (Palmer, 1978), 
e.g. individual pixels. The fractal method uses features 
derived from different combinations of elements from the 

fractal representation of the image comparison (McGreggor, 
Kunda, & Goel, 2010).

Algorithm 1. Inducing a composite transform 

The Affine Model
Given a matrix problem, the affine model makes two basic 
assumptions: (a) that collinear elements are related by a 
composition of a similitude and/or set-theoretic transform, 
and (b) that parallel sets of elements share identical or 
analogous transforms. The model proceeds in three steps:

1) Induce a best-fit composite transform for a 
set of collinear elements in the matrix.

2) Apply this transform to the parallel set of 
elements containing the empty element; the 
result is a predicted answer image.

3) Compare this predicted image to the given 
answer choices for maximum similarity.

Algorithm 1 shows how, for a pair of images A and B,  the 
“best-fit” composite transform is induced. The base unary 
transforms are the eight orthonormal symmetry transforms 
mentioned above (image rotations and mirrors),  along with 
image addition (union of sets) and image subtraction 
(complement of sets). The base binary transforms are the 
five set operations of union, intersection, subtraction (both 
directions), and exclusive-or.

There are two places at which the affine model computes 
visual similarity, first in the induction of a best-fit composite 
transform, and second in the selection of the answer choice 
that most closely matches the predicted image. In addition 
to using Tversky’s ratio model of similarity, as defined 
above, we also implemented a sum-squared-difference 
measure, which we converted to a measure of similarity 
(with minimum value of 0.0 and maximum value of 1.0) as:

SSDsimilarity = 1 / (1 + SSD)]

These two similarity measures exhibit different behaviors. 
The Tversky measure privileges matches that share more 
pixel content. In contrast, the SSD similarity measure 

For each base transform ti: 

· Apply ti to image A to create image ti(A).

· Search all possible translation offsets between images ti(A) 
and B to find single offset (x,y) yielding highest similarity 
between them.

· Calculate similarity s between images ti(A)(x,y) and B

· For set-theoretic addition and subtraction, determine image 
composition operation ⊕ and operand X as follows:

· If ∑(A-B) = 0, then ⊕ and X are null.

· If ∑(A-B) = ∑(B-A), then ⊕ refers to image addition 
and X = B - ti(A)(x,y).

· If ∑(A-B) > ∑(B-A), then ⊕ refers to image 
subtraction and X = ti(A)(x,y) - B.

The composition transformation Ti is thus defined as precisely 
the transformation that changes image A into image B:

Ti(A) = ti(A)(x,y) ⊕ X = B
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effectively ignores any pixel content that is shared; 
similarity is calculated only as a function of pixels that are 
different. 

Once the transformation is found that maximizes 
similarity, the transformation is applied to the first entry or 
entries in the last row or column, as shown in Figure 2.   The 
resulting image represents the algorithm’s best guess as to 
the missing entry.  This image is compared to the answer 
choices, and the best match is chosen as the final answer.

Figure 2. Sets of elements examined by the affine method

The Fractal Method
Like the affine method, the fractal method seeks to find a re-
representation of the images within a Raven’s problem as a 
set of similitude transformations.  Unlike the affine method, 
the fractal method seeks these representations at a 
significantly finer partitioning of the images, and uses 
features derived from these representations to determine 
similarity for each possible answer, simultaneously, across 
the bulk of relationships present in the problem. 

For visual analogy problems of the form A : B :: C : ?, 
each of these analogy elements are a single image. Some 
unknown transformation T can be said to transform image A 
into image B, and likewise, some unknown transformation 
T′ transforms image C into the unknown answer 
image.  The central analogy in the problem may then be 
imagined as requiring that T is analogous to T′. Using 
fractal representations, we shall define the most analogous 
transform T′ as that which shares the largest number of 
fractal features with the original transform T.

To find analogous transformations for A : B :: C : ?, the 
fractal algorithm first visits memory to retrieve a set of 
candidate solution images X to form candidate solution 
pairs in the form <C, X>. For each candidate pair of images, 
we generate a fractal representation of the pairing from the 
fractal encoding of the transformation of candidate image X 
in terms of image C. We store each transform in a memory 
system, indexed by and recallable via each associated fractal 
feature.

Algorithm 2. Fractal Representation of D from S 

To determine which candidate image results in the most 
analogous transform to the original problem transform T, 
we first fractally encode that relationship between the two 
images A and B. Next, using each fractal feature associated 
with that encoding, we retrieve from the memory system 
those transforms previously stored as correlates of that 
feature (if any). Considering the frequency of transforms 
recalled, for all correlated features in the target transform, 
we then calculate a measure of similarity.

Determining Fractal Similarity  The metric we employ 
reflects similarity as a comparison of the number of fractal 
features shared between candidate pairs taken in contrast to 
the joint number of fractal features found in each pair 
member (Tversky 1977). The measure of similarity S 
between the candidate transform T′ and the target transform 
T is calculated using the ratio model.  This calculation 
determines the similarity between unique pairs of 
transforms. However, the problems from the Raven's test, 
even in their simplest form, poses an additional concern in 
that many such pairs may be formed.

Reconciling Multiple Analogical Relationships  In 2x2  
Raven’s problems, there are two apparent relationships for 
which analogical similarity must be calculated: the 
horizontal relationship and the vertical relationship.  Closer 
examination of such problems, however, reveals two 
additional relationships which must be shown to hold as 
well: the two diagonal relationships. Furthermore, not only 
must the "forward" version of each of these relationships be 
considered but also the "backward" or inverse version. 
Therefore for a 2x2 Raven's problem, we must determine 
eight separate measures of similarity for each of the possible 
candidate solutions.

The 3x3 matrix problems from the APM introduce not 
only more pairs for possible relationships but also the 
possibility that elements or subelements within the images 
exhibit periodicity.  Predictably, the number of potential 
analogical relationships blooms. At present, we consider 48 
of these relationships concurrently.

Relationship Space and Maximal Similarity  For each 
candidate solution, we consider the similarity of each 
potential analogical relationship as a value upon an axis in a 

First, systematically partition D into a set of smaller 
images, such that D = {d1, d2, d3, … }. 

For each image di: 

· Examine the entire source image S for an equivalent image 
fragment si such that an affine transformation of si will likely 
result in di. 

· Collect all such transforms into a set of candidates C.

· Select from the set C that transform which most minimally 
achieves its work, according to some predetermined metric.

· Let Ti be the representation of the chosen transformation 
associated with di.

The set T = {T1, T2, T3, … } is the fractal representation 
of the image D.
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large “relationship space.” To specify the overall fit of a 
candidate solution, we construct a vector in this 
multidimensional relationship space and determine its 
Euclidean distance length. The candidate with the longest 
vector length is chosen as the solution to the problem.

The fractal method is described in more detail in 
McGreggor, Kunda, and Goel (2010, 2011).

Method
We tested our affine and fractal models on all 48 problems 
from the Raven’s Advanced Progressive Matrices test, 12 on 
Set I, and 36 on Set II.  To obtain visual inputs, we scanned 
paper copies of each test at 200 dpi and manually corrected 
for small (+/- 3°) rotational misalignments. Thus, the input 
to the models was grayscale images in the PNG format, with 
each image containing a single problem (matrix and answer 
choices).  

The models used a semi-automated procedure to extract 
individual sub-images from each problem image. Each 3x3 
problem contained 8 sub-images (plus one target blank) for 
the matrix entries and 8 sub-images for the answer choices.

The models were run against two variations of the test 
inputs: raw inputs and quantized inputs. For the raw inputs, 
grayscale values were extracted directly from the original 
PNG images, and no color correction of any kind was 
performed. The raw inputs contained numerous pixel-level 
artifacts and some level of noise. For the quantized inputs, 
each grayscale value was rounded to be either white or 
black, thus turning the inputs into pure black-and-white 
images as opposed to grayscale.

In addition,  each model considered multiple strategies 
when solving the problems. The affine method used two 
different similarity measures (Tversky and SSD).   The 
fractal method used three different groupings of 
relationships (horizontal, vertical or both).

Results
Across all input variations and strategies, the affine model 
correctly solved 7 of the 12 problems on Set I, and 14 of the 
36 problems on Set II.  These levels of performance 
generally correspond to the 25th percentile for both sets, for 
20- to 62-year-olds (US norms) (Raven et al. 2003). 
Looking at input variations individually, the scores were 7 
and 10 on each set for raw input, and 6 and 12 on each set 
for quantized input.  Of the similarity measures used,  the 

best scores were achieved using the Tversky measure on the 
quantized set, with scores 6 and 12 on sets I and II 
respectively.

Likewise, the fractal algorithm correctly solved all 12 of 
the problems on Set I, and 26 of the 36 problems on Set II.  
This level of performance corresponds to the 95th percentile 
for set I, and the 75th percentile for set II, for 20- to 62-year-
olds (Raven et al. 2003).  Looking at input variations 
individually, the scores were 10 and 21 on each set for raw 
input,  and 7 and 18 on each set for quantized input.  Of the 
groupings used by the fractal method, the best scores were 
achieved by considering both horizontal and vertical 
groupings on raw input, at 7 and 17 on sets I and II 
respectively.

In comparison, Carpenter et al. (1990) report results of 
running two versions of their algorithm (FairRaven and 
BetterRaven) against a subset of the APM problems.  Their 
results, and ours, are given in Table 2. On the ones not 
attempted by Carpenter et al. (1990), our methods score 4 
and 5 on set I (of the 5 skipped), and 4 and 7 on set II (of the 
9 skipped), for affine and fractal respectively.

Discussion
We have presented two different models that use purely 
iconic visual representations and transformations to solve 
many of the problems on the Raven’s Advanced Progressive 
Matrices test. Our results align strongly with evidence from 
typical human behavior suggesting that multiple cognitive 
factors underlie problem solving on the APM, and in 
particular, that some of these factors appear based on visual 
operations.  Additionally, in so far as we know, this work is 
the first report of any computational model addressing the 
entirety of the APM test, the first in which the problems are 
attempted using purely iconic visual representations,  and the 
first to tackle the test using scanned images of each test 
page, without any re-rendering or representational change of 
inputs from those presented to a human test-taker.

This robust level of performance calls attention to the 
visual processing substrate shared by the affine and fractal 
algorithms: similitude transforms as a mechanism for image 
manipulation, and the ratio model of similarity as a 
mechanism for image comparison. Of course, there are 
many other types of visual processing that may or may not 
be important for accounts of visual analogy, such as non-
similitude shape transformations or image convolutions, 
which certainly bear further investigation. 

Model Representation Input Strategy
Set of APMSet of APM

Model Representation Input Strategy
I (12 problems) II (36 problems)

FairRaven propositional hand-coded 
propositions prediction 7* 16*

BetterRaven propositional hand-coded 
propositions prediction 7* 25*

Affine iconic scanned images prediction 7 14

Fractal iconic scanned images estimate / refine 12 26

*out of 7 and 27 problems attempted, respectively*out of 7 and 27 problems attempted, respectively*out of 7 and 27 problems attempted, respectively*out of 7 and 27 problems attempted, respectively*out of 7 and 27 problems attempted, respectively*out of 7 and 27 problems attempted, respectively

Table 1: Affine and fractal results on the APM compared with results of the Carpenter et al. (1990) model.
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While it has been shown (Davies et al. 2008) that 
visuospatial knowledge alone may be sufficient for 
addressing many analogy problems, the representations used 
in that work were still propositional. In contrast, the 
methods described here use only visual representations. We 
believe the visual methods we have presented for solving 
the APM can be generalized to visual analogy in other 
domains, such as other standardized tests (e.g. the Miller’s 
Geometric Analogies test), as well as to tests of visual 
oddity. We conjecture that these methods may provide 
insight into general visual recognition and recall. 
Cognitively,  we hold that these strategies are a reflection of 
what Davis et al. (1993) referred to as the deep, theoretic 
manner in which representation and reasoning are 
intertwined.
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