
From Vectors to Symbols to Cognition:
The Symbolic and Sub-Symbolic Aspects of Vector-Symbolic Cognitive Models

Matthew A. Kelly (mkelly11@connect.carleton.ca)
Robert L. West (robert_west@carleton.ca)
Institute of Cognitive Science, Carleton University

1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6 Canada

Abstract
To achieve a full, theoretical understanding of a cognitive
process, explanations of the process need to be provided at
both symbolic (i.e., representational) and sub-symbolic levels
of description. We argue that cognitive models implemented
in vector-symbolic architectures (VSAs) intrinsically operate
at both of levels and thus provide a needed bridge. We
characterize the sub-symbolic level of VSAs in terms of a
small set of linear algebra operations. We characterize the
symbolic level of VSAs in terms of cognitive processes, in
particular how information is represented, stored, and
retrieved, and classify vector-symbolic cognitive models in
the literature according to their implementation of these
processes. On the basis of our analysis, we speculate on
avenues for future research, and suggest means for theoretical
unification of existent models.

Keywords: Vector symbolic architectures; Holographic
reduced representations; cognitive modelling; symbolic
modelling; sub-symbolic modelling.

Introduction
To achieve a full, theoretical understanding of a cognitive
process and how it relates to the physical world,
explanations of the process need to be provided at both
symbolic (i.e., representational) and sub-symbolic levels of
description. The classic symbolic approaches to modelling
do not account for how the symbol manipulations described
in the model could arise from neural tissue, or account for
how the symbols themselves come into existence. Classic
connectionist approaches are more concerned with neural
plausibility, but are notoriously opaque, doing little to aid
our understanding of the cognitive processes modelled. By
contrast, the vector-symbolic approach to modelling
explicitly provides an account at both levels of description.
 Vector Symbolic Architectures (VSAs), a term coined by
Gayler (2003; but see also Plate, 1995), are a set of
techniques for instantiating and manipulating symbolic
structures in distributed representations. VSAs have been
used to successfully model a number of different cognitive
processes (e.g., analogical mapping in Eliasmith & Thagard,
2001; letter position coding in Hannagan, Dupoux, &
Christophe, 2011; semantic memory in Jones & Mewhort,
2007). It has been argued that VSAs provide a bridge
between conventional symbolic modelling and both
connectionist modelling (Rutledge-Taylor & West, 2008)
and more realistic models of neural processing (Eliasmith,
2007). However, if we are to take the bridging metaphor
seriously, it is important to clarify which parts of a VSA are
symbolic in nature and which are sub-symbolic. We will

attempt to lay out a simple system for understanding VSAs
in terms of basic operations and symbolic/sub-symbolic
decisions, and thereby provide a comprehensive and
comprehensible introduction to VSAs for newcomers, and a
common frame of reference for those already using VSAs.
By providing a high-level overview that integrates the
techniques of existent VSA-based cognitive models into a
coherent picture we hope to highlight as yet unexplored
avenues of research and sketch what a VSA-based account
of cognition as a whole would look like.
 In this analysis, the vectors represent symbolic
information. These vectors, or symbols, can be combined
and manipulated using a small number of operations, which
can be understood as sub-symbolic processes. However, the
information processing models built from these operations
are themselves, best characterized at a symbolic level of
description. Importantly, the modelling decisions made at
the sub-symbolic level are to some degree independent of
the modelling decisions made at the symbolic level. This
paper is divided into two parts to reflect these two levels of
description, symbolic and sub-symbolic.

The Sub-Symbolic Level
VSAs are closely related to the better-known tensor product
representations (Smolensky, 1990), but unlike tensor
product representations, VSAs can compactly represent
symbolic expressions of arbitrary complexity. A number of
VSA techniques exist in the literature, including
Holographic Reduced Representations (HRRs; Plate, 1995),
frequency-domain HRRs (Plate, 1994), some earlier forms
of holographic associative memory (Eich, 1982; Murdock,
1982), as well as binary spatter codes (Kanerva, 1992),
Multiply-Add-Permute coding (Gayler, 2003), and square
matrix representations (Kelly, 2010).

Each VSA technique uses the same set of basic
operations, but implements the operations differently. Thus
the choice of a particular VSA dictates how symbols are
instantiated and manipulated and defines the model at the
sub-symbolic level. To ground the discussion, we mainly
discuss Holographic Reduced Representations (HRRs)
(Plate, 1995), as HRRs are the most widely used VSAs in
the cognitive modelling literature. Also, HRRs are used as
the basis for the Neural Engineering Framework (NEF;
Eliasmith, 2007) and thus demonstrably have a clearly
defined and plausible neural implementation. However, the
other VSA techniques are similar and most anything that can
be done with an HRR can be done with any VSA technique.

1768

n-Space and Similarity
In a VSA, a symbol, or representation, is an n-dimensional
vector: a list of n numbers that defines the coordinates of a
point in an n-dimensional space. VSAs work best for values
of n in the hundreds or thousands (Plate, 1995).
 A vector can be understood as a line drawn from the
origin (the zero coordinates) to the coordinates specified by
the vector. The length of the line is the vector's magnitude.
The direction of the vector encodes the meaning of the
representation. Similarity in meaning can thus be measured
by the size of the angles between vectors. This is typically
quantified as the cosine of the angle between vectors. The
cosine of vectors a and b can be calculated as:

 cosine(a, b) = (a • b) / ((a • a)0.5 (b • b)0.5)

where • is the dot product. A cosine of 1 means the vectors
are identical, -1 means they are opposites, and 0 means they
are completely dissimilar. If each vector has a magnitude of
one, the cosine is just the dot-product of the vectors. Thus,
some systems rescale all vectors to a magnitude of one after
vector operations. In memory systems where new memories
are superimposed on old memories, such re-scaling causes a
recency effect and rapid forgetting because new memories
will make-up a fixed fraction of memory, regardless of the
quantity of previous experience.
 While the cosine measures the angle between two vectors,
the cosine is often described as a measure of distance. As it
is more intuitive to describe similarity as a measure of
distance than as a measure of the angle, for convenience, we
can imagine the vectors as describing points on a
hypersphere, such that the size of the angles are the
distances between them.

Atomic versus Complex representations
Representations in a VSA are either atomic or complex. An
atomic representation is a unique representation, a symbol
that cannot be broken down into sub-symbols. In an HRR,
values for an atomic representation are typically generated
by random sampling from a standard normal distribution.
By assigning random values to the vectors, atomic
representations will be uniformly distributed across the
surface of the hypersphere, such that the atomic
representations will have little to no similarity to each other.

Complex representations can be created by either
combining atomic representations or recursively combining
complex representations. Critically, in a VSA, a complex
representation has the same dimensionality as an atomic
representation, allowing representations both atomic and
complex to be compared, or combined together to create
representations of arbitrary complexity. VSAs have two
operators for combining representations: superposition and
binding. In HRRs, superposition is vector addition and
binding is circular convolution. We denote vector addition
by +, and circular convolution by *. Binding and
superposition, along with random permutation, are the basic
operations used to create complex representations in VSAs.

Superposition (+) versus Binding (*)
The key difference between superposition and binding is
their effect on similarity. Superposition is similarity-
preserving: the sum of two vectors is a vector that falls in
the angle between them. Conversely, binding is similarity
destroying: the circular convolution of two vectors is
roughly orthogonal to the two original vectors. The purpose
of superposition is to combine representations to create a
new representation that is similar to all of the combined
representations. The purpose of binding, on the other hand,
is to create "chunks": unique identifiers for combinations of
representations.

Most VSA use a form of vector addition for superposition.
Vector addition is computed by adding together the
corresponding elements of the two vectors. So, for example,
{1,4,7} + {5,4,2} = {6,8,9}.

To bind, HRRs use circular convolution, * , which can be
computed rapidly using element-wise multiplication, ◦ , and
the fast Fourier transform, fft, and its inverse, fft -1:

 a * b = fft -1(fft(a) ◦ fft(b))

Essentially circular convolution is a lossy way of
scrambling the information of the two vectors together to
produce a new vector of the same dimensionally.
 Consider the problem of learning the meaning of the
phrase "kick the bucket", a colloquial euphemism for death.
Suppose the cognitive model has a vector representation of
the concept kick and a vector representation of the concept
bucket. The sum (superposition) of those two vectors will
produce a vector that is close to both kick and bucket,
indicating that the phrase “kick the bucket" has a meaning
similar to kick and to bucket. But in order for the cognitive
model to be able to learn that the phrase "kick the bucket"
has a distinct meaning that is not a function of its parts, the
model needs to be able to assign to "kick the bucket" a
distinct identifier. Binding is the operation that performs this
function in VSA-based models. The vector kick * bucket is
dissimilar to the vectors kick, bucket, and kick + bucket.
 Binding and superposition can also be used jointly to
address the binding problem (Gayler, 2003), that is, the
question of how to couple sets of attributes together such
that the attributes of one object are not confused with the
attributes of another. For example, given a small red square
and a large blue circle, the complex representation (small *
red * square) + (large * blue * circle) creates a single
vector that distinctively represents the knowledge that the
square is small and red and the circle is large and blue.

Unbinding
Unbinding is an inverse of binding that allows vectors that
have been bound together in a complex representation to be
unpacked and recovered. Circular correlation, #, is the
unbinding operator for HRRs. Given a pair of vectors bound
together, and one of the pair, referred to as the probe,
unbinding produces an approximation of the other vector,
referred to as the target, i.e.,

 p # (p * t) = a ≈ t

1769

where p is the probe, t is the target, and a is an
approximation of the target.
 Unbinding can be understood as binding with the inverse
of the probe. The inverse of any vector x is a re-ordering of
the elements of x, i.e. a permutation of x, such that,

 x # x = x * inverse(x) ≈ δ

where δ is the identity vector for binding, i.e. for any vector
x, x * δ = x. Thus binding with the inverse of a vector
unbinds what that vector has been associated with:

 a # (a * b) = inverse(a) * (a * b) ≈ δ * b = b

In HRRs, the inverse of any vector x = {x1 ... xn} is:

 inverse(x) = {x1, xn, xn-1, ... x3, x2}

 Circular convolution, *, is commutative, i.e., the order of
binding does not matter when using circular convolution.
Given vectors a and b, their association a * b = b * a, and
likewise, when unbinding, b # (a * b) = b # (b * a) ≈ a.

Permutation
Gayler (2003) describes random permutation as an operation
used "to quote or protect the vectors from the other
operations". Permutation of the numbers 1 ... n defines a
unary function that can transform a vector. A randomly
chosen permutation of a vector is unlikely to be similar to
the original vector, but the permutation is also reversible.
Given p, there is a permutation p-1 such that, p-1(p(a)) = a.
When permuted, the information within a vector is
essentially hidden and protected from being affected by
other vector operations.
 For example, as noted above, circular convolution is
commutative, that is, a*b = b*a. This property of circular
convolution can be useful, but it can be a hindrance in
situations where the order of items matter, e.g. "dog feed"
and "feed dog" are phrases which carry different meanings
by virtue of differences in word order.
 A non-commutative variant of circular convolution can be
defined using a random permutation p and its inverse p-1. By
always randomly permuting one of the arguments before
convolution, one defines a binding operation that is non-
commutative, i.e. while a*b = b*a, p(a)*b ≠ p(b)*a.
Unbinding then uses the inverse permutation p-1, e.g.

 cosine(p-1(a # (a * p(b))), b) ≈ 0.71
 cosine(p-1(b # (a * p(b))), a) ≈ 0

Non-commutative binding is used by the BEAGLE model
(Jones & Mewhort, 2007) to bind vectors that stand for
words in sentences in order to construct representations of
the semantics of each of those words. For a variety of other
uses of random permutation in VSAs, see Gayler (2003),
Sahlgren, Holst, and Kanerva (2008), and Kelly (2010).

The Symbolic Level
When making a vector-symbolic model, decisions need to
be made at both the symbolic and sub-symbolic levels. At
the sub-symbolic level, the modeller needs to decide how to
instantiate symbols as vectors and symbol-manipulation as
vector algebra. Conversely, at the symbolic level, the
modeller needs to make decisions about how to structure,
manage, store, and retrieve those symbols. Choosing to use
HRRs rather than another kind of VSA can define the sub-
symbolic level, but this choice is largely independent of the
decisions to be made at the symbolic level.
 In fact, we have already seen two examples of
manipulations at the symbolic level. The first was
combining binding and addition to create a vector that
encodes information about bound entities (e.g., small red
square and large blue circle). The second was combining
permutation and binding to create a bound entity that
maintained information about order. Essentially, all VSA
systems work in the same way. Vectors encode the desired
information according to some sort of scheme (i.e., by
combining the operations discussed above), and then, when
needed, the information is retrieved from the vectors.

Encoding and Storage
BEAGLE (Jones & Mewhort, 2007) and DSHM (Rutledge-
Taylor & West, 2008) use the terms environmental vectors
and memory vectors. We extend the use of this terminology
to other vector-symbolic models. An environmental vector is
a vector that stands for atomic perceptions from the
environment (e.g., a red circle needs two environmental
vectors, one for circle and one for red). Environmental
vectors are fixed and do not change. A memory vector is a
complex representation stored by the model and used to
produce behaviour. In some systems, memory vectors
change with experience. Additionally, we use the term
experience vector to refer to a representation that stands for
the model's current experience of its environment created by
combining environmental vectors (e.g., an experience vector
could represent the perception of a red circle by convolving
the environmental vectors of circle and red).
 By examining the relationship between environmental,
experience, and memory vectors across vector-symbolic
models, we distinguish between three main approaches to
storage. In a many-to-one vector model, all experience
vectors are summed into a single memory vector for storage.
In a one-to-one vector model, each experience vector is
stored as a separate memory vector among an ever-growing
number of memory vectors. In a many-to-many vector
model, there are a fixed number of memory vectors, and
incoming environmental vectors are used to update them.
Each of these approaches has strengths and weaknesses.

Many-to-one In a many-to-one vector model, such as
TODAM (Murdock, 1983) or CHARM (Eich, 1982),
memory is modelled as a single, high-dimensional vector.
All experience vectors are added to the memory vector.
There is a limit to how much can be stored in the vector
before mistakes start to be made. Mistakes are, of course, of
interest to psychologists, and the pattern of mistakes made

1770

by a many-to-one vector model allow it to mimic human
forgetting in list-recall tasks. If the goal is to model how
people store a small amount of recently learned or closely
related information, a single memory vector suffices.
 Many-to-one vector models also have the advantage of a
clear neural implementation. In the Neural Engineering
Framework (NEF; Eliasmith, 2007) binding, unbinding, and
and superposition can all be implemented through neural
connectivity. In the NEF interpretation, a many-to-one
memory is a neural group with self-recurrent connections
that acts as a working memory or buffer, and many such
buffers could exist in the brain.

One-to-one In a one-to-one vector model, such as
MINERVA (Hintzman, 1986), the Iterative Resonance
Model (Mewhort & Johns, 2005), and the Holographic
Exemplar Model (Jamieson & Mewhort, 2011), each
experience vector is represented as a separate memory.
While this approach to modelling memory is both simple
and successful, the ever growing number of vectors that
need to be stored and accessed by the memory system is
both neurally implausible and computationally impractical
for modelling tasks in which very large amounts of
knowledge are relevant, e.g., semantic priming tasks (Jones
& Mewhort, 2007). However, these models are able to
reproduce a wide variety of memory effects, providing a
unitary account of episodic, semantic, and implicit memory,
indicating that, although their warehouse-style management
of vectors is implausible, their processes of storage and
retrieval provide a good analogue for biological memory.

Many-to-many Many-to-many vector models, such as
BEAGLE (Jones & Mewhort, 2007) and DSHM (Rutledge-
Taylor, 2008), can be understood as a hybrid of the earlier
many-to-one and one-to-one approaches. In many-to-many
memory, for each item of interest, there is a randomly
generated environmental vector and a specially constructed
memory vector. In BEAGLE the items of interest are words:
the environmental vector stands for the word's orthography
or phonology and the memory vector stands for the word's
meaning. In DSHM, the items are objects relevant to the
experimental task: the environmental vector stands for the
percept of the object and the memory vector stands for the
concept of the object.
 Like the one-to-one models, the management of the
vectors in many-to-many systems is computationally
expensive and, at this point, neurally implausible. However,
the ability to generate memory vectors that stand for
particular concepts in very powerful (e.g., Rutledge-Taylor,
Vellino, & West, 2008) and allows these systems to capture
numerous different phenomena (e.g., Rutledge-Taylor &
West, 2008) and represent vast quantities of data (Jones &
Mewhort, 2007).
 For example, to create an association between keyboards
and computers, each time a computer and keyboard co-
occur a copy of the environmental vector for keyboard can
be added to the memory vector for computer and a copy of
the environmental vector for computer can be added to the
memory vector for keyboard. The effect to this would be to
move the memory vector for computer closer to the

environmental vector for keyboard and move the memory
vector for keyboard closer to the environmental vector for
computer. Over time, the result of this is to organize the
space so that memory vectors are clustered around
environmental vectors that they co-occur with so that the
distance between the vectors equals strength of association.
 Another, more complicated example involves binding and
the use of the placeholder vector. The placeholder vector is
an atomic (i.e, random) vector, but it is used to encode all
associations, and thus can be used as a universal retrieval
cue. Consider the phrase or stimulus blue triangle. Without
using the placeholder, we could update memory as follows:

memoryblue += blue * triangle
memorytriangle += blue * triangle

By binding together the environmental vectors for blue and
triangle and adding the result to the memory vectors for
blue and triangle (an operation denoted by +=), we move
the two memory vectors towards the point in space
described by the vector blue * triangle, and thereby move
memoryblue and memorytriangle closer together. But people
almost never get the concepts blue and triangle confused
with each other. This is because blue is a colour (or an
adjective), and triangle is a shape (or a noun), i.e. they are
different sorts of thing.
 Conversely, consider updating using the placeholder:

memoryblue += placeholder * triangle
memorytriangle += blue * placeholder

This moves memoryblue towards placeholder * triangle,
i.e. towards all properties of triangles, and moves
memorytriangle towards blue * placeholder, i.e. towards all
things that are blue. Thus, by using a placeholder, the
memory vectors for nouns will cluster together in one region
of space, and the vectors for adjectives will cluster together
in another region of space, and things that are colours will
cluster separately from things that are coloured. This is a
subtle distinction but Jones and Mewhort (2007) have
shown it to be very important and very powerful.

Retrieval
There are two categories of information retrieval processes
used in vector-symbolic models: unbinding, which retrieves
information from a particular vector, and resonance, which
allows information to be retrieved from the entire library of
vectors in memory. Many-to-one models, such as TODAM
(Murdock, 1982) only use unbinding. One-to-one models
that do not use binding to encode associations, such as
MINERVA (Hintzman, 1986), only use resonance. In many-
to-many systems, these two retrieval processes are
complementary. For example, resonance can be used to
retrieve a vector, which can then be unbound.

Unbinding Consider a simple example where the, agent is
given a set of coloured shapes to remember: blue triangle,
green square, red circle. In a many-to-one vector model this
could be encoded by binding (*) the vectors for the shapes
to the colours, then summing to create a memory vector:

1771

 memory = blue*triangle + green*square + red*circle

The colour of any one of these shapes could then be recalled
by unbinding (#) using the shape to probe memory:

 triangle # memory ≈ blue

In a many-to-many vector model, unbinding may use the
placeholder as the probe. The placeholder is a special,
randomly generated atomic vector that acts as a key to all of
memory. The placeholder is initially used in binding:

memoryblue = placeholder * triangle
memorytriangle = placeholder * blue

The placeholder can then be used in unbinding:

 placeholder # memorytriangle ≈ blue

Resonance (one-to-one) The term resonance comes from
MINERVA (Hintzman, 1986), but it is implemented
differently across different models. In MINERVA, the
process of resonance begins by measuring the similarity
(cosine) of each vector in memory to the probe. Then
resonance computes a weighted sum of all vectors in
memory. This sum, termed the echo, is what the model
retrieves from memory. Each vector in the sum is weighted
by its similarity to the probe raised to an exponent.
 For example, the three shapes might be represented as:

 memory1 = triangle + blue
 memory2 = square + green
 memory3 = circle + red

If the probe is triangle, then the echo would approximate:

 echo ≈ 0.5bmemory1 + 0.0bmemory2 + 0.0bmemory3

 echo ≈ 0.5b(triangle + blue)

such that the memory system would remember that the
triangle is blue. The exponent b is a small, positive integer
that is odd-numbered so as to preserve the sign of the
similarity. Note that the similarity values of 0.5 and 0.0 are
approximate. Random vectors in a high dimensional space
have an expected cosine of 0, but the actual cosine between
any two random vectors will be a little more or a little less.
 The exponent b critically allows one-to-one vector models
to function even when there is a very large amount of data
in memory. If the exponent b is 1, the result of resonance
roughly imitates decoding in a simple associative memory,
such as a Hopfield network. With an exponent greater than
one, resonance increases the signal to noise ratio in the echo
by increasing the relative weighting of the memory vectors
most similar to the probe. If b is too low, a large number of
partial matches in memory could easily overwhelm an exact
match to the probe, resulting in a poor echo. With a high b,
the echo will essentially just be the most similar vector in
memory to the probe. In MINERVA, a b of 3 is standardly
used, but a b of 3 may be too low when modelling a larger

sum of knowledge than what is typically necessary to model
a psychology experiment (e.g., in modelling word
pronunciation, such as in Kwantes & Mewhort, 1999).
 In the Iterative Resonance Model (IRM; Mewhort &
Johns, 2005), resonance is iterated, and with each iteration b
is increased until a decision to stop iterating is made,
resulting in either successful retrieval or a failure to retrieve.
This approach has two benefits: (1) the number of iterations
can be used to predict response time in memory tasks, and
(2) it eliminates b as a tweaking parameter by introducing a
theory-driven approach to setting its value.

Resonance (many-to-many) Although the term resonance is
used to describe retrieval in many-to-many vector models,
the implementation is different and simpler: Essentially, the
memory vector most similar to the probe is retrieved. This
can be understood as a kind of spreading activation
(Rutledge-Taylor & West, 2008). The probe and memory
vectors can be understood as points on a hypersphere, such
that the cosine measures the distance between them. One
can imagine a ripple of activation spreading out from the
probe across the surface of the hypersphere. The memory
vectors closest to the probe become active in working
memory, with the closer vectors becoming active sooner.
This model of resonance allows BEAGLE (Jones &
Mewhort, 2007) to make semantic priming reaction time
predictions (e.g., that doctor is recognized faster when
preceded by nurse than when preceded by an unrelated
prime such as stapler) and to model the fan-effect in DSHM
(Rutledge-Taylor & West, 2008).

Conclusions
We hold that, in order to bridge the gap between human
experience and neural connectivity, explanations at both the
symbolic and sub-symbolic levels of description are
necessary parts of theory in cognitive science. As we
illustrate in this paper, cognitive models that use vector-
symbolic architectures intrinsically operate at both of these
levels of description and thereby provide a needed bridge
between the two kinds of explanation.
 At the sub-symbolic level is the vector-symbolic
architecture itself, and the linear algebra operations on
vectors that comprise the architecture: similarity,
superposition, binding, unbinding, permuting, un-
permuting. All of these operations are easily amenable to
neural implementation, as in the NEF (Eliasmith, 2007).
 At the symbolic level, we have the cognitive model itself,
and the cognitive processes that define it. On the basis of
their storage and retrieval mechanisms, we classify existing
vector-symbolic cognitive models into many-to-one, one-to-
one, and many-to-many vector models. This classification
scheme highlights stark differences between these models.
 Many-to-many vector models differ from the other two
classes of model in two important ways. First, many-to-
many models use a placeholder vector to stand for "this item
I am thinking about". The placeholder acts as a symbol with
an important functional role but no perceptual or conceptual
meaning. It may be useful to incorporate other kinds of
function vectors in future models, e.g., a wildcard vector to

1772

stand for "that item that I'm not thinking about", vectors to
stand for emotional states, for truth values, et cetera.
 Secondly, in many-to-many models, memory vectors are
labelled and stand for particular concepts, whereas in one-
to-one models concepts are an emergent phenomenon
produced by the echoes retrieved using resonance
(Hintzman, 1986). While the conceptual representations in
many-to-many models are powerful, having a predefined
number of concepts is implausible and limiting.
 Many-to-one vector models can be constructed in NEF as
self-recurrent neural groups and are understood as working
memory buffers. By contrast, one-to-one and many-to-many
models are best understood as models of long-term memory,
but as yet lack a neural explanation.
 Finding a means of translating one-to-one and many-to-
many vector models into neural models may provide a route
to a unified, vector-symbolic account of memory storage
and retrieval. As we noted earlier, a one-to-one model
behaves somewhat like a Hopfield network when the
resonance exponent b is set to 1. To implement a one-to-one
model as a network, one needs to find a mechanism
analogous to b that can act to increase the signal to noise
ratio in the echo. We speculate that the vector-symbolic
intersection circuit proposed by Levy and Gayler (2009)
might provide a start for developing such a mechanism.
 We suspect that the memory vectors that stand for
concepts in many-to-many vector models are, in fact, the
echoes in one-to-one vector models. That is to say, we agree
with Hintzman (1986) that concepts are an emergent
property of retrieval. Using a one-to-one model to do the
kind of large scale modelling in many-to-many models is
impossible because one-to-one models store all experiences
without any form of compression. However, a neural
implementation of a one-to-one model would naturally be
lossy in its storage, and so could provide a plausible account
of concept formation over a lifetime of experiences.
 Unification in other areas, such as representation, is
important too. Incorporating a vector-symbolic model of
string encoding (Hannagan et al., 2011) into the BEAGLE
model of semantics (Jones & Mewhort, 2007) could, for
instance, allow BEAGLE to model how shared orthography
can help and hinder in understanding the meaning of words.
 Eventually, we hope to see developed a vector-symbolic
cognitive architecture, which not only presents a unified and
neurally plausible approach to representation, storage, and
retrieval, but also extends the vector-symbolic account
beyond its roots in memory theory, and integrating it into
accounts of emotions, attention, perception, and
consciousness. As cognitive scientists, it is important to
keep in mind our ultimate, lofty, and collective goal of a
theory that unifies not only all aspects of the cognition, but
all relevant levels of description.

References
Eich, J. M. (1982). A composite holographic associative

recall model. Psychological Review, 89, 627–661.
Eliasmith, C., & Thagard, P. (2001). Integrating structure

and meaning: a distributed model of analogical mapping.
Cognitive Science, 25, 245-286.

Eliasmith, C. (2007). How to build a brain: From function to
implementation. Synthese, 159, 373-388.

Gayler, R. (2003). Vector symbolic architectures answer
Jackendoff’s challenges for cognitive neuroscience. ICCS/
ASCS International Conference on Cognitive Science.

Hannagan, T., Dupoux, E., & Christophe, A. (2011).
Holographic string encoding. Cognitive Science, 35,
79-118.

Hintzman, D. L. (1986). "Schema abstraction" in multiple-
trace memory models. Psychological Review, 93,
441-428.

Jamieson, R. K., & Mewhort, D. J. K. (2011).
Grammaticality is inferred from global similarity: A reply
to kinder (2010). The Quarterly Journal of Experimental
Psychology, 64, 209-216.

Jones, M. N., & Mewhort, D. J. K. (2007). Representing
word meaning and order information in a composite
holographic lexicon. Psychological Review, 114, 1-37.

Kelly, M. A. (2010). Advancing the theory and utility of
holographic reduced representations. (Master’s thesis,
School of Computing, Queen’s University).

Kanerva, P. (1996). Binary spatter-coding of ordered k-
tuples. Proceedings of the 1996 International Conference
on Artificial Neural Networks, 869-873.

Kwantes, P. J., & Mewhort, D. J. K. (1999). Modeling
lexical decision and word naming as a retrieval process.
Canadian Journal of Experimental Psychology, 53,
306-315.

Levy, S.D., & Gayler, R.W. (2009). A distributed basis for
analogical mapping. New frontiers in analogy research;
Proceedings of the Second International Analogy
Conference - Analogy 09, 165-174.

Mewhort, D. J. K., & Johns, E. E. (2005). Sharpening the
echo: An iterative-resonance model for short-term
recognition memory. Memory, 13, 300-307.

Murdock, B. B. (1982). A theory for the storage and
retrieval of item and associative information.
Psychological Review, 89, 609–626.

Plate, T. A. (1994). Distributed representations and nested
compositional structure. (Doctoral dissertation,
Department of Computer Science, University of Toronto).

Plate, T. A. (1995). Holographic reduced representations.
IEEE Transactions on Neural Networks, 6, 623– 641.

Rutledge-Taylor, M. F., Vellino, A., & West, R. L. (2008). A
holographic associative memory recommender system,
Proceedings of the Third International Conference on
Digital Information Management, 87-92.

Ruteldge-Taylor, M. F. & West R. L. (2008). Modeling the
fan-effect using dynamically structured holographic
memory. Proceedings of the 30th Annual Conference of
the Cognitive Science Society, 385-390.

Sahlgren, M., Holst, A., & Kanerva, P. (2008). Permutations
as a means to encode order in word space. Proceedings of
the 30th Annual Conference of the Cognitive Science
Society, 1300-1305.

Smolensky, P. (1990). Tensor product variable binding and
the representation of symbolic structures in connectionist
systems. Artificial Intelligence, 46, 159-216.

1773

