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Abstract

Despite its frequent use, much is unknown about how the n-
back task is performed and how it relates to working memory.
We conducted a detailed analysis of the accuracy and reaction
time data from a 4-back version of the task and compared the
results with previous results from an adaptive training version
of the task. The experiment was also designed to test the
novel predictions of a computational model of n-back
performance. The assessment results were largely consistent
with both the training data and the model predictions.

Keywords: working memory; executive functioning; n-back;
working memory training; computational model.

N-back and Cognition

The n-back task is used both to measure (Owen et al., 2005)
and improve (Jaeggi et al., 2008) working memory (WM). It
is considered a memory updating task, and updating is
thought to be a core component of working memory
(Miyake et al., 2000). However, the task is not consistently
or strongly correlated with performance on complex
working memory span tasks, such as operation span or
reading span (Kane et al., 2007). Furthermore, despite
transfer to measures of fluid intelligence, n-back training
has not been found to transfer to other measures of WM
(Jaeggi et al., 2008; Li et al., 2008).

To better understand n-back performance and its relation
to WM, the present study provides a detailed analysis of 4-
back data. This study builds on a previous analysis of an n-
back training task (Harbison, Atkins, & Dougherty 2011) by
testing if the results from an adaptive, training version of the
n-back task are replicated in a non-adaptive, assessment
version of the task. The present study also tests new
predictions made by the computational model of n-back
performance based on that training data (Harbison et al.,
2011).

The N-back Task

In the n-back task participants are presented with a sequence
of stimuli (e.g., letters). As each stimulus is presented,
participants are asked to compare the current stimulus with
the stimulus that occurred n items prior in the sequence. For
example, in the 4-back version of the task, participants

might be presented with the letter sequence “H-G-S-M-L-T-
...”. If the next letter in the sequence is “S” then participants
should respond “target” as the current letter matches the
letter occurring four letters prior. If the next letter is
anything else, then the correct response is “non-target”. Not
all non-matching letters are the same in terms of difficulty.
Lures, stimuli that match an item near to but not at the target
location, are more difficult than fillers (stimuli that are
neither lures nor targets). Participants are less accurate and
take longer to respond to lures relative to fillers (Gray,
Chabris, & Braver, 2003; Harbison et al., 2011; Kane et al.,
2007; McCabe & Hartmen, 2008; Oberauer, 2005). From
the example, the letters “H”, “G”, “M”, and “L” are lures.
They match the 6", 5" 3" and 2™ letter back, respectively,
but not the 4" letter back. Letters such as “F”, “P”, and “R”
are fillers.

In the training version of the n-back task the level of n
varies as a function of participant performance. The n level
is increased when participants perform well and decreased
when participants perform poorly at their current n level. In
contrast, assessment versions of the task are non-adaptive;
participants are given a set number of trials at predetermined
levels of n.

Previous Results

Performance on the n-back task is not often the focus of the
experiments in which the task is used. Instead, the n-back
task is either used to measure or to improve WM. Therefore,
despite its frequent use, there remains a lack of detailed data
on n-back task performance (for exceptions see Gray et al.,
2003; Kane et al., 2007; McCabe & Hartmen, 2008;
Oberauer, 2005).

Previously, we (Harbison et al., 2011) identified four
results that characterize n-back training task performance.
First, accuracy for target trials varies as a function of serial
position. Figure 1la shows the results for sequences of 4-
back from the training data; participants demonstrated
primacy for target trials whereas this effect was weak to
non-existent for lure and filler trials. Here the lures were one
position away from the target, so they matched either the 3
or 5™ back stimuli. Second, in the reaction time (RT) data,
we found that participants were faster making correct than
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incorrect responses on lure and filler trials. This was not
found for target trials. Figure 2a shows the mean RT data
from 4-back sequences of the training data. Third, correct
responses to targets and lures were made at approximately
the same rate. Fourth, and perhaps least surprising, we
found that participants made correct responses more quickly
to filler stimuli than to either targets or lures. While only the
results from 4-back are shown, the results are generally
consistent across n levels of 3- to 7-back in the training data,
with minor discrepancies at 1-, 2-, and 8-back.
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Figure 1. Participant (a) and Model (b) accuracy across
serial position from the 4-back performance in a
training experiment (Harbison et al., 2011).

We developed a two-process model of recognition to
account for these accuracy and RT results (Harbison et al.,
2011). The model assumes that when each stimulus in a
sequence is presented, participants first generate an estimate
of familiarity. If the stimulus is not familiar, the response is
“non-target”. If the stimulus is familiar, then an attempt is
made to determine if it does indeed match the stimulus
occurring n items back through the process of recollection.
If the recollected item matches the current stimulus, then a
“target” response is made. If the recollected item does not
match, then the “non-target” response is made. Finally, if
recollection fails, the model guesses. RT predictions are
based on the number of processes necessary to respond
(familiarity = 1, familiarity and recollection = 2, familiarity,
recollection, and guessing = 3). The model’s performance

on the 4-back training stimuli is shown in Figures 1b and
2b. The model captures the main qualitative patterns
observed in the participant data. For example, according to
the model the observed primacy for targets is due to the
interference of previous items in the sequence on the
maintenance of subsequent items (i.e.,, proactive
interference). While both targets and lures are reliant on the
same processes, familiarity and recollection, primacy is
predicted more for targets as participants are expected to be
much more likely to guess “non-target” than “target” when
recollection fails as targets are much less frequent (only
20% of the stimuli are targets) Therefore, guesses are most
likely to lead to correct responses for lure trials and
incorrect responses for target trials.
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Figure 2. Participant (a) and Model (b) reaction time
data from 4-back performance in a training experiment
(Harbison et al., 2011).

N-back Model Details

The n-back model is implemented within the HyGene
framework (Thomas et al., 2008) and consists of three
components: a representation of the current stimulus, the
active subset in memory, and semantic memory. Stimuli are
represented by a concatenation of an item vector and the
current context vector. The elements in both the item and
context vectors can take on the value of 1, -1, or 0. Here 0
represents lack of information about a feature, 1 indicates a
feature’s presence and -1 its absence. Each item’s
representation and the initial context vector are generated
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randomly. However, the current context changes with each
new stimulus. Specifically, when a new stimulus is
presented each element of the current context has some
probability of randomly changing to a new value. This
probability is a parameter in the model (pDrift).

Familiarity The first step in processing a new stimulus is
judging its familiarity to items in the active subset by
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where S; is the similarity of the probe (P) and the i-th trace
in memory (T;). j is the index of the element in the item
representation for both the probe and the trace. N; is the
number of elements that are non-zero in the trace, the probe,
or both. M is the number of traces in the active subset. The
similarity is cubed to calculate the activation (A;) of each
trace. Finally, the activations of all the traces in the active
subset are summed to get the echo intensity for the probe. If
the echo intensity is less than or equal to 0, then the item is
unfamiliar and the “non-target” response is made.
Otherwise, the model moves to the recollection process.

Eq. 1

Recollection The model attempts to recollect the stimulus
that occurred in the n-th back location when the current
stimulus is familiar. This is performed by first trying to
reinstate the n-th back context. Each element in the current
context is changed to the n-th back context with some
probability, pReinstate. This is the second parameter in the
model.

Next, the (partially) reinstated context is used to probe the
active subset. Equation 1 is again used but now the context
portion of the representation serves as the probe instead of
the item portion. Also, instead of summing the activations to
get the echo intensity, the activations are used to create an
echo content, a noisy representation of the item that
occurred with the n-th back position by

C =iATU. .

To identify the item from the noisy representation, the
model uses the item representation from the echo content as
the probe for activating the item representations stored in
semantic memory. Again the results of equation 1 are used
to generate the similarity and the activation, but this time
semantic memory is probed and instead of using the
activations to generate echo intensity or echo content, the
activations are used to determine the probability of sampling
and recovery from semantic memory. Specifically, the
probability of sampling an item in semantic memory is
calculated by

Eq. 2
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where W is the number of items in semantic memory.
Therefore, the probability of sampling an item in semantic
memory is equal to its relative activation. After sampling an
item, an attempt is made to recover that item. Recovery is
successful if the activation of the sampled item is greater
than the threshold tRetrieval, the third parameter in the
model. If the recovered item matches the current stimulus,
than the response is “target”. If it does not match, the
response is ‘“non-target”. If retrieval fails then the model
guesses.

Guessing The probability of guessing target is equal to the
base rate probability of targets in the sequence. This
probability was .2 in both the training study and in the
present experiment.

Encoding After a response is made the current stimulus is
encoded by the model. The representation of the item and
the current context are stored in the active subset of
memory. Each item in the active subset competes with every
other item. Specifically, each feature in an item’s
representation can only be non-zero for one item in the
active subset. This assumption is based on the process of
overwriting (Oberauer & Lewandowsky, 2008). To reduce
competition, the model attempts to remove irrelevant items.
In the case of 4-back, any item that occurred more than 4
items prior, from the active subset is irrelevant. Each time a
new stimulus is encoded an attempt is made to remove all
the irrelevant items currently in the active subset of
memory. The probability of removing irrelevant items is the
final parameter of the model, pRemove.

Limitations of Previous Results

The results from the previous training study provided a
starting point but there are a number of reasons why a
replication and extension is needed. The present study is
motivated by a desire to get cleaner data than is acquired
from training studies. In training versions of the n-back task,
the level of n fluctuates as a function of participant
performance. Therefore, the amount of data that each
participant provides for each level of n can vary
substantially. For example, in the previous training study
some participants never reached 4-back (i.e., were never
successful enough at 2- and 3-back to reach 4-back). Some
participants quickly advanced past 4-back to get to higher
levels of n. Finally, some participants were stuck at 4-back
for a while, as their accuracy was not high enough for n to
increase or low enough for n to decrease. More generally, at
lower levels of n, the majority of data is from participants
that have the most difficulty performing the task. At higher
levels of n, there is only data from participants that either
excelled at the task from the beginning or participants that
improved and are near the end of their training.

Another limitation of the reported training data was that it
was drawn from a larger WM training study in which
participants performed a number of different WM and WM-
related training tasks and assessments. Extensive practice on
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these tasks might have changed how they approached the n-
back task.

In addition, the n-back model makes a number of
predictions that are not tested by the previous data. First, it
predicts gradual improvement in accuracy as lures move
further from the target position. Lures one away from the
target position (3- and 5-back when n is 4) should be more
difficult than lures two positions away (2- and 6-back).
Furthermore, lures the same distance from the target
position are predicted to have the same approximate
difficulty (n+2 lures = n-2 lures, n+1 lures = n-1 lures). The
predictions are shown in Figure 3b. These predictions, like
all other predictions presented, are made using the same
parameter values as used in Harbison et al. (2011) for
matching the training data (pDrift = .33, pRemove = .15,
pReinstate = .75, tRetrieval = .10)

Second, unlike accuracy predictions, RT predictions are
not symmetric around the target position. RTs for lures
closer to the current stimulus should take longer to respond
to correctly than lures further away from the current
stimulus. That is, lures that match the 2-back position
should take longer to reject than lures in the 6-back position.
In contrast, the time it takes to make incorrect responses to
2-back and 6-back lures should not differ. These predictions
are shown in Figure 5b.

We conducted a new experiment in which all participants
had extensive experience at a moderately high level of n, 4-
back. 4-back was chosen because in the training study most
participants were able to reach that level, 4-back allowed
lures two positions away that were not the immediately prior
stimulus (2-back), and because the previous 4-back data
showed the same reaction time profile as was shown at
higher levels of n. This pattern was not as consistent at
lower levels of n, specifically 1- and 2-back.

Experiment

One hundred and forty-seven participants were randomly
assigned into one of two counterbalanced conditions which
determined if the participants performed sequences with
lures first or second. Seventy-four participants were in the
lure-first condition, seventy-three lure-second. Both
conditions performed 16 sequences with lures and 16
sequences without lures. Each sequence was 25 letters long
and contained five targets and either eight or zero lures.
When the lures were present, there were two of each type in
the sequence (2-, 3-, 5-, and 6-back lures). After completing
the 4-back task, participants performed the block span and
letter-number sequencing (LNS) tasks as measures of WM
(Atkins et al., 2009).

Results

Note that all differences reported have a p value of .05 or
less. Also, unless otherwise noted, within-participant
analyses were used. As such, the figures showing results
averaging over participants can be misleading. Finally, there
were no significant differences due to condition assignment

(lures first or lures second). Therefore, order is ignored in
the reported analyses.

Accuracy The mean accuracy data by trial type is shown in
Figure 3a. With or without lures, participants were most
accurate with filler items and least accurate with target
items. Performance on lures two away from the target (2-
and 6-back) was worse than filler and better than
performance on lures one away (3- and 5-back) from the
target position. There was not a significant difference
between lures the same distance away from the target.
Comparing performance on sequences with lures against
sequences without lures, there was not a significant
difference in target performance, but participants were
significantly better on filler items when there were lures.
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Figure 3. Participant (a) and Model (b) mean accuracy
by trial type.

Serial Accuracy As shown in Figure 4a, participants
showed primacy for target trials. Also, performance on lures
two away from the target position were consistently better
than performance on lures one away from the target
position. Note that while target accuracy dropped below
50% in middle and later serial positions, this is not really
chance performance, as participants would be expected to
respond “target” only 20% of the time if they guessed
“target” with the same probability as targets in the sequence.
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Reaction Times As in the training data, participants were
significantly faster to respond correctly to lure and filler
items than they were to respond incorrectly, as shown in
Figure 5a. In contrast, target RT was not significantly
different for correct and incorrect responses. Also as in the
training data, participants were quickest to respond to filler
items correctly.

There was not a significant difference between 6-back and
2-back lures for incorrect responses, but there was for
correct responses. This pattern of results was predicted by
the model. However, there were also some inconsistencies
with the previous data. Inconsistent with both the training
data and the model’s predictions, the present experiment
found incorrect filler responses were faster, not slower, than
the incorrect responses to lures, on average. Also,
participants were quicker to respond to target items than
predicted by the model. Both correct and incorrect target
responses were significantly faster than the average lure
responses.
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Figure 4. Participant (a) and Model (b) serial accuracy
results by trial type.

Working Memory There was a weak but significant
correlation of both LNS and block span with target
performance (r’s from 0.188 to 0.283). Lure and filler
accuracy were not correlated with these WM measures (r’s
< 0.135). This result is consistent with previous assessment
versions of the n-back Oberauer (2005) but not previous

training data (Harbison et al.,, 2011) which found the
relationship with lure but not target performance.
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Figure 5. Participant (a) and Model (b) reaction time
results by trial type and accuracy.

Discussion

The results from the 4-back task are largely consistent with
the results of the adaptive, training version of the n-back
task where difficulty is adjusted based on participant
performance. In the present experiment three of the four
results were replicated: target accuracy showed primacy,
incorrect responses took longer than correct responses for
lure and filler stimuli, and correct responses to filler items
were faster than responses to any other trial type. In these
ways the results are consistent with both the training data
and the n-back model that was based on the training data.

In addition, the new data supported two novel predictions
made by the n-back model. First, lure accuracy fit the
predicted pattern, with lures one away from target position
being more difficult than lures two away from the target
position, while lures the same distance away were
performed with approximately the same accuracy. Second,
reaction times were predicted by the model to be longer for
correct responses to 2-back than 6-back lures despite
equivalent accuracy and equivalent RT for incorrect
responses. It should be noted that the model was constructed
using training results with lures only in positions one away
from the target position, and yet was able to accurately
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predict performance on lures two away from the target
position both in terms of accuracy and reaction time.

The results were not without discrepancies. Participants in
the present experiment were faster at responding both
correctly and incorrectly to targets than either found in the
training data or predicted by the model. Also, incorrect filler
responses were not the slowest overall responses in the
present data. Instead, incorrect lure responses were the
slowest. Both of these results, plus the fact that participants
showed a different RT profile in the training version of the
n-back task at n levels of 1 and 2 from the general trend
found at n levels 3 and above indicate the model is at best
incomplete. One natural extension of the model which could
account for at least some of these results is to include the
area of direct access in addition to the activated subset of
long-term memory currently implemented (Cowan, 1988).
Items in the area of direct access would be able to forgo the
recollection process, as they would be immediately
available.

The present study provides additional support for the
account of n-back performance as driven by recognition
processes. Both target (Oberauer, 2005; the present study)
and lure (Harbison et al, 2011) performance have been
found to correlate with other WM assessments. Both of
these trial types rely on recollection according to the present
model. In contrast, filler trial performance can be accounted
for by familiarity alone and has not been found to be related
to other measures of WM. This could account for the
inconsistent and/or weak relationship between overall n-
back performance and other measures of WM as a large
portion, often more than half, of the stimuli in a given n-
back sequence are filler trials.

The purpose of this study is to improve the understanding
of the cognitive mechanisms behind performance on the n-
back task. As with other working memory tasks which
correlate with many higher level cognitive processes, it is
important to determine what is being measured by the n-
back assessment and what might be improved by training
versions of this task (Shipstead, Redick, & Engle, 2012).
The results suggest that the relationship between n-back
performance and other measures of working memory are
dependent on a specific process, recollection, or the ability
to comply with the demands of the task and inhibit
responses based on familiarity alone in order to use
recollection as the basis for response.
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