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Abstract 

Despite its frequent use, much is unknown about how the n-
back task is performed and how it relates to working memory. 
We conducted a detailed analysis of the accuracy and reaction 
time data from a 4-back version of the task and compared the 
results with previous results from an adaptive training version 
of the task. The experiment was also designed to test the 
novel predictions of a computational model of n-back 
performance. The assessment results were largely consistent 
with both the training data and the model predictions. 

Keywords: working memory; executive functioning; n-back; 
working memory training; computational model. 

N-back and Cognition 

The n-back task is used both to measure (Owen et al., 2005) 

and improve (Jaeggi et al., 2008) working memory (WM). It 

is considered a memory updating task, and updating is 

thought to be a core component of working memory 

(Miyake et al., 2000). However, the task is not consistently 

or strongly correlated with performance on complex 

working memory span tasks, such as operation span or 

reading span (Kane et al., 2007). Furthermore, despite 

transfer to measures of fluid intelligence, n-back training 

has not been found to transfer to other measures of WM 

(Jaeggi et al., 2008; Li et al., 2008). 

To better understand n-back performance and its relation 

to WM, the present study provides a detailed analysis of 4-

back data. This study builds on a previous analysis of an n-

back training task (Harbison, Atkins, & Dougherty 2011) by 

testing if the results from an adaptive, training version of the 

n-back task are replicated in a non-adaptive, assessment 

version of the task. The present study also tests new 

predictions made by the computational model of n-back 

performance based on that training data (Harbison et al., 

2011). 

The N-back Task 

In the n-back task participants are presented with a sequence 

of stimuli (e.g., letters). As each stimulus is presented, 

participants are asked to compare the current stimulus with 

the stimulus that occurred n items prior in the sequence. For 

example, in the 4-back version of the task, participants 

might be presented with the letter sequence “H-G-S-M-L-T-

…”. If the next letter in the sequence is “S” then participants 

should respond “target” as the current letter matches the 

letter occurring four letters prior. If the next letter is 

anything else, then the correct response is “non-target”.  Not 

all non-matching letters are the same in terms of difficulty. 

Lures, stimuli that match an item near to but not at the target 

location, are more difficult than fillers (stimuli that are 

neither lures nor targets). Participants are less accurate and 

take longer to respond to lures relative to fillers (Gray, 

Chabris, & Braver, 2003; Harbison et al., 2011; Kane et al., 

2007; McCabe & Hartmen, 2008; Oberauer, 2005). From 

the example, the letters “H”, “G”, “M”, and “L” are lures. 

They match the 6
th

, 5
th

, 3
rd

, and 2
nd

 letter back, respectively, 

but not the 4
th

 letter back. Letters such as “F”, “P”, and “R” 

are fillers. 

In the training version of the n-back task the level of n 

varies as a function of participant performance. The n level 

is increased when participants perform well and decreased 

when participants perform poorly at their current n level. In 

contrast, assessment versions of the task are non-adaptive; 

participants are given a set number of trials at predetermined 

levels of n. 

Previous Results 

Performance on the n-back task is not often the focus of the 

experiments in which the task is used. Instead, the n-back 

task is either used to measure or to improve WM. Therefore, 

despite its frequent use, there remains a lack of detailed data 

on n-back task performance (for exceptions see Gray et al., 

2003; Kane et al., 2007; McCabe & Hartmen, 2008; 

Oberauer, 2005).  

Previously, we (Harbison et al., 2011) identified four 

results that characterize n-back training task performance. 

First, accuracy for target trials varies as a function of serial 

position. Figure 1a shows the results for sequences of 4-

back from the training data; participants demonstrated 

primacy for target trials whereas this effect was weak to 

non-existent for lure and filler trials. Here the lures were one 

position away from the target, so they matched either the 3
rd

 

or 5
th

 back stimuli. Second, in the reaction time (RT) data, 

we found that participants were faster making correct than 

1644



incorrect responses on lure and filler trials. This was not 

found for target trials. Figure 2a shows the mean RT data 

from 4-back sequences of the training data. Third, correct 

responses to targets and lures were made at approximately 

the same rate. Fourth, and perhaps least surprising, we 

found that participants made correct responses more quickly 

to filler stimuli than to either targets or lures. While only the 

results from 4-back are shown, the results are generally 

consistent across n levels of 3- to 7-back in the training data, 

with minor discrepancies at 1-, 2-, and 8-back.  

 

 
 

Figure 1. Participant (a) and Model (b) accuracy across 

serial position from the 4-back performance in a 

training experiment (Harbison et al., 2011).  

 

We developed a two-process model of recognition to 

account for these accuracy and RT results (Harbison et al., 

2011). The model assumes that when each stimulus in a 

sequence is presented, participants first generate an estimate 

of familiarity. If the stimulus is not familiar, the response is 

“non-target”. If the stimulus is familiar, then an attempt is 

made to determine if it does indeed match the stimulus 

occurring n items back through the process of recollection. 

If the recollected item matches the current stimulus, then a 

“target” response is made. If the recollected item does not 

match, then the “non-target” response is made. Finally, if 

recollection fails, the model guesses. RT predictions are 

based on the number of processes necessary to respond 

(familiarity = 1, familiarity and recollection = 2, familiarity, 

recollection, and guessing = 3). The model’s performance 

on the 4-back training stimuli is shown in Figures 1b and 

2b. The model captures the main qualitative patterns 

observed in the participant data. For example, according to 

the model the observed primacy for targets is due to the 

interference of previous items in the sequence on the 

maintenance of subsequent items (i.e., proactive 

interference). While both targets and lures are reliant on the 

same processes, familiarity and recollection, primacy is 

predicted more for targets as participants are expected to be 

much more likely to guess “non-target” than “target” when 

recollection fails as targets are much less frequent (only 

20% of the stimuli are targets) Therefore, guesses are most 

likely to lead to correct responses for lure trials and 

incorrect responses for target trials. 

 

 
 

Figure 2. Participant (a) and Model (b) reaction time 

data from 4-back performance in a training experiment 

(Harbison et al., 2011). 

N-back Model Details 

The n-back model is implemented within the HyGene 

framework (Thomas et al., 2008) and consists of three 

components: a representation of the current stimulus, the 

active subset in memory, and semantic memory. Stimuli are 

represented by a concatenation of an item vector and the 

current context vector. The elements in both the item and 

context vectors can take on the value of 1, -1, or 0. Here 0 

represents lack of information about a feature, 1 indicates a 

feature’s presence and -1 its absence. Each item’s 

representation and the initial context vector are generated 
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randomly. However, the current context changes with each 

new stimulus. Specifically, when a new stimulus is 

presented each element of the current context has some 

probability of randomly changing to a new value. This 

probability is a parameter in the model (pDrift). 

 

Familiarity The first step in processing a new stimulus is 

judging its familiarity to items in the active subset by  
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where Si is the similarity of the probe (P) and the i-th trace 

in memory (Ti). j is the index of the element in the item 

representation for both the probe and the trace. Ni is the 

number of elements that are non-zero in the trace, the probe, 

or both. M is the number of traces in the active subset. The 

similarity is cubed to calculate the activation (Ai) of each 

trace. Finally, the activations of all the traces in the active 

subset are summed to get the echo intensity for the probe. If 

the echo intensity is less than or equal to 0, then the item is 

unfamiliar and the “non-target” response is made. 

Otherwise, the model moves to the recollection process. 

 

Recollection The model attempts to recollect the stimulus 

that occurred in the n-th back location when the current 

stimulus is familiar. This is performed by first trying to 

reinstate the n-th back context. Each element in the current 

context is changed to the n-th back context with some 

probability, pReinstate. This is the second parameter in the 

model. 

Next, the (partially) reinstated context is used to probe the 

active subset. Equation 1 is again used but now the context 

portion of the representation serves as the probe instead of 

the item portion. Also, instead of summing the activations to 

get the echo intensity, the activations are used to create an 

echo content, a noisy representation of the item that 

occurred with the n-th back position by 
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To identify the item from the noisy representation, the 

model uses the item representation from the echo content as 

the probe for activating the item representations stored in 

semantic memory. Again the results of equation 1 are used 

to generate the similarity and the activation, but this time 

semantic memory is probed and instead of using the 

activations to generate echo intensity or echo content, the 

activations are used to determine the probability of sampling 

and recovery from semantic memory. Specifically, the 

probability of sampling an item in semantic memory is 

calculated by  
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where W is the number of items in semantic memory. 

Therefore, the probability of sampling an item in semantic 

memory is equal to its relative activation. After sampling an 

item, an attempt is made to recover that item.  Recovery is 

successful if the activation of the sampled item is greater 

than the threshold tRetrieval, the third parameter in the 

model. If the recovered item matches the current stimulus, 

than the response is “target”. If it does not match, the 

response is “non-target”. If retrieval fails then the model 

guesses. 

 

Guessing The probability of guessing target is equal to the 

base rate probability of targets in the sequence. This 

probability was .2 in both the training study and in the 

present experiment. 

 

Encoding After a response is made the current stimulus is 

encoded by the model. The representation of the item and 

the current context are stored in the active subset of 

memory. Each item in the active subset competes with every 

other item. Specifically, each feature in an item’s 

representation can only be non-zero for one item in the 

active subset. This assumption is based on the process of 

overwriting (Oberauer & Lewandowsky, 2008). To reduce 

competition, the model attempts to remove irrelevant items. 

In the case of 4-back, any item that occurred more than 4 

items prior, from the active subset is irrelevant. Each time a 

new stimulus is encoded an attempt is made to remove all 

the irrelevant items currently in the active subset of 

memory. The probability of removing irrelevant items is the 

final parameter of the model, pRemove. 

Limitations of Previous Results 

The results from the previous training study provided a 

starting point but there are a number of reasons why a 

replication and extension is needed. The present study is 

motivated by a desire to get cleaner data than is acquired 

from training studies. In training versions of the n-back task, 

the level of n fluctuates as a function of participant 

performance. Therefore, the amount of data that each 

participant provides for each level of n can vary 

substantially. For example, in the previous training study 

some participants never reached 4-back (i.e., were never 

successful enough at 2- and 3-back to reach 4-back). Some 

participants quickly advanced past 4-back to get to higher 

levels of n. Finally, some participants were stuck at 4-back 

for a while, as their accuracy was not high enough for n to 

increase or low enough for n to decrease. More generally, at 

lower levels of n, the majority of data is from participants 

that have the most difficulty performing the task. At higher 

levels of n, there is only data from participants that either 

excelled at the task from the beginning or participants that 

improved and are near the end of their training. 

Another limitation of the reported training data was that it 

was drawn from a larger WM training study in which 

participants performed a number of different WM and WM-

related training tasks and assessments. Extensive practice on 
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these tasks might have changed how they approached the n-

back task. 

In addition, the n-back model makes a number of 

predictions that are not tested by the previous data. First, it 

predicts gradual improvement in accuracy as lures move 

further from the target position. Lures one away from the 

target position (3- and 5-back when n is 4) should be more 

difficult than lures two positions away (2- and 6-back). 

Furthermore, lures the same distance from the target 

position are predicted to have the same approximate 

difficulty (n+2 lures = n-2 lures, n+1 lures = n-1 lures). The 

predictions are shown in Figure 3b. These predictions, like 

all other predictions presented, are made using the same 

parameter values as used in Harbison et al. (2011) for 

matching the training data (pDrift = .33, pRemove = .15, 

pReinstate = .75, tRetrieval = .10) 

Second, unlike accuracy predictions, RT predictions are 

not symmetric around the target position. RTs for lures 

closer to the current stimulus should take longer to respond 

to correctly than lures further away from the current 

stimulus. That is, lures that match the 2-back position 

should take longer to reject than lures in the 6-back position. 

In contrast, the time it takes to make incorrect responses to 

2-back and 6-back lures should not differ. These predictions 

are shown in Figure 5b. 

We conducted a new experiment in which all participants 

had extensive experience at a moderately high level of n, 4-

back. 4-back was chosen because in the training study most 

participants were able to reach that level, 4-back allowed 

lures two positions away that were not the immediately prior 

stimulus (2-back), and because the previous 4-back data 

showed the same reaction time profile as was shown at 

higher levels of n. This pattern was not as consistent at 

lower levels of n, specifically 1- and 2-back. 

Experiment 

One hundred and forty-seven participants were randomly 

assigned into one of two counterbalanced conditions which 

determined if the participants performed sequences with 

lures first or second. Seventy-four participants were in the 

lure-first condition, seventy-three lure-second. Both 

conditions performed 16 sequences with lures and 16 

sequences without lures. Each sequence was 25 letters long 

and contained five targets and either eight or zero lures. 

When the lures were present, there were two of each type in 

the sequence (2-, 3-, 5-, and 6-back lures). After completing 

the 4-back task, participants performed the block span and 

letter-number sequencing (LNS) tasks as measures of WM 

(Atkins et al., 2009). 

Results 

Note that all differences reported have a p value of .05 or 

less. Also, unless otherwise noted, within-participant 

analyses were used. As such, the figures showing results 

averaging over participants can be misleading. Finally, there 

were no significant differences due to condition assignment 

(lures first or lures second). Therefore, order is ignored in 

the reported analyses.  

 

Accuracy The mean accuracy data by trial type is shown in 

Figure 3a. With or without lures, participants were most 

accurate with filler items and least accurate with target 

items. Performance on lures two away from the target (2- 

and 6-back) was worse than filler and better than 

performance on lures one away (3- and 5-back) from the 

target position. There was not a significant difference 

between lures the same distance away from the target. 

Comparing performance on sequences with lures against 

sequences without lures, there was not a significant 

difference in target performance, but participants were 

significantly better on filler items when there were lures. 

 

 
 

Figure 3. Participant (a) and Model (b) mean accuracy 

by trial type. 

 

Serial Accuracy As shown in Figure 4a, participants 

showed primacy for target trials. Also, performance on lures 

two away from the target position were consistently better 

than performance on lures one away from the target 

position. Note that while target accuracy dropped below 

50% in middle and later serial positions, this is not really 

chance performance, as participants would be expected to 

respond “target” only 20% of the time if they guessed 

“target” with the same probability as targets in the sequence. 
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Reaction Times As in the training data, participants were 

significantly faster to respond correctly to lure and filler 

items than they were to respond incorrectly, as shown in 

Figure 5a. In contrast, target RT was not significantly 

different for correct and incorrect responses. Also as in the 

training data, participants were quickest to respond to filler 

items correctly. 

There was not a significant difference between 6-back and 

2-back lures for incorrect responses, but there was for 

correct responses. This pattern of results was predicted by 

the model. However, there were also some inconsistencies 

with the previous data. Inconsistent with both the training 

data and the model’s predictions, the present experiment 

found incorrect filler responses were faster, not slower, than 

the incorrect responses to lures, on average. Also, 

participants were quicker to respond to target items than 

predicted by the model. Both correct and incorrect target 

responses were significantly faster than the average lure 

responses. 

 

 
 

Figure 4. Participant (a) and Model (b) serial accuracy 

results by trial type. 

 

Working Memory There was a weak but significant 

correlation of both LNS and block span with target 

performance (r’s from 0.188 to 0.283). Lure and filler 

accuracy were not correlated with these WM measures (r’s 

< 0.135). This result is consistent with previous assessment 

versions of the n-back Oberauer (2005) but not previous 

training data (Harbison et al., 2011) which found the 

relationship with lure but not target performance. 

 

 
 

Figure 5. Participant (a) and Model (b) reaction time 

results by trial type and accuracy. 

Discussion 

The results from the 4-back task are largely consistent with 

the results of the adaptive, training version of the n-back 

task where difficulty is adjusted based on participant 

performance. In the present experiment three of the four 

results were replicated: target accuracy showed primacy, 

incorrect responses took longer than correct responses for 

lure and filler stimuli, and correct responses to filler items 

were faster than responses to any other trial type. In these 

ways the results are consistent with both the training data 

and the n-back model that was based on the training data.  

In addition, the new data supported two novel predictions 

made by the n-back model. First, lure accuracy fit the 

predicted pattern, with lures one away from target position 

being more difficult than lures two away from the target 

position, while lures the same distance away were 

performed with approximately the same accuracy. Second, 

reaction times were predicted by the model to be longer for 

correct responses to 2-back than 6-back lures despite 

equivalent accuracy and equivalent RT for incorrect 

responses. It should be noted that the model was constructed 

using training results with lures only in positions one away 

from the target position, and yet was able to accurately 
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predict performance on lures two away from the target 

position both in terms of accuracy and reaction time. 

The results were not without discrepancies. Participants in 

the present experiment were faster at responding both 

correctly and incorrectly to targets than either found in the 

training data or predicted by the model. Also, incorrect filler 

responses were not the slowest overall responses in the 

present data. Instead, incorrect lure responses were the 

slowest. Both of these results, plus the fact that participants 

showed a different RT profile in the training version of the 

n-back task at n levels of 1 and 2 from the general trend 

found at n levels 3 and above indicate the model is at best 

incomplete. One natural extension of the model which could 

account for at least some of these results is to include the 

area of direct access in addition to the activated subset of 

long-term memory currently implemented (Cowan, 1988). 

Items in the area of direct access would be able to forgo the 

recollection process, as they would be immediately 

available. 

The present study provides additional support for the 

account of n-back performance as driven by recognition 

processes. Both target (Oberauer, 2005; the present study) 

and lure (Harbison et al, 2011) performance have been 

found to correlate with other WM assessments. Both of 

these trial types rely on recollection according to the present 

model. In contrast, filler trial performance can be accounted 

for by familiarity alone and has not been found to be related 

to other measures of WM. This could account for the 

inconsistent and/or weak relationship between overall n-

back performance and other measures of WM as a large 

portion, often more than half, of the stimuli in a given n-

back sequence are filler trials. 

The purpose of this study is to improve the understanding 

of the cognitive mechanisms behind performance on the n-

back task. As with other working memory tasks which 

correlate with many higher level cognitive processes, it is 

important to determine what is being measured by the n-

back assessment and what might be improved by training 

versions of this task (Shipstead, Redick, & Engle, 2012). 

The results suggest that the relationship between n-back 

performance and other measures of working memory are 

dependent on a specific process, recollection, or the ability 

to comply with the demands of the task and inhibit 

responses based on familiarity alone in order to use 

recollection as the basis for response.  
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