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Abstract

One of the largest remaining unsolved mysteriesoignitive
science is how the rapid input of spoken languageapped
onto phonological and lexical representations otiere.
Attempts at psychologically-tractable computationabdels

of spoken word recognition tend either to ignoradior to
transform the temporal input into a spatial repméston.
This is the approach taken in TRACE (McClelland En&n,
1986), the model of spoken word recognition thas kize
broadest and deepest coverage of phenomena in hspeec
perception, spoken word recognition, and lexicalsipg of
multi-word sequences. TRACE reduplicates featural,
phonemic, and lexical inputs at every time step an
potentially very large memory trace, and has rich
interconnections  (excitatory forward and backward
connections between levels and inhibitory links himit
levels). This leads to a rather extreme proliferatof units
and connections that grows dramatically as thectexior the
memory trace grows. Our starting point is the obeteon that
models of visual object recognition — includinguas word
recognition — have long grappled with the fundarakent
problem of how to model spatial invariance in hunoiject
recognition. We introduce a model that combines aspect

of TRACE - time-specific phoneme representationand
higher-level representations that have been usedisnal
word recognition — spatially- (here, temporallyaiéependent
diphone and lexical units. This reduces the nundfennits
and connections required by several orders of nagdmi
relative to TRACE. In this first report, we demaase¢ that
the model (dubbed TISK, for Time-Invariant Stringndel)
achieves reasonable accuracy for the basic TRARIEOe
and successfully models the time course of phonmwébg
activation and competition. We close with a dis@ussof
phenomena that the model does not yet successiutiylate
(and why), and with novel predictions that follovorh this
architecture.

Keywords: Keywords: Spoken Word Recognition; Time
invariance ; Computational models; TRACE.

Background

Could it be that despite very salient differencés
auditory and visual systems actually rely on thenesa
mechanisms in order to recognize words? One sigasila
temporal dimension and is carried by transient dovaves,
the other is spatially extended and travels atsieed of
light. One signal travels sequentially (over tirtt@pugh the

cochlear nerve, the other in parallel through thconerve.
In their own dedicated primary cortical regionswewoer,
both arrive at spatial representations — tonotdpicthe
auditory system, retinotopic for the visual systewihat
happens next, according to computational modelgsofal
and spoken word recognition, further hints at s@ossible
unification.

M odeling spoken and visual word recognition:
TRACE and IA

From a psycholinguistic point of view, two early deds of
word recognition based on the same computational
framework have been enormously successful. In theal/
domain, the Interactive Activation (IA) model antb i
extensions (McClelland & Rumelhart, 1981; Grainger
Jacobs, 1996) can account for a large number afstadnd
sometimes counterintuitive behavioral findings aisimple
and elegant hierarchical structure where unitsngt lavel
compete to represent the stimulus, and engageliying"

up and down in the hierarchy. In the auditory domai
TRACE (an extension of the IA framework for speech;
McClelland & Elman, 1986) continues to produce new
insights into human behavior, including close fitsfine-
grained estimates of the time course of spoken word
recognition from the visual world paradigm (Allopen et

al., 1998; Dahan, Magnuson, Tanenhaus, & Hogan1)200
Dahan, Magnuson, & Tanenhaus, 2001).

One probably superficial difference between the two
models is that between-level connections in IA nedd
reading typically include both inhibitory and extiry
connections, whereas between-level connectiondRIAAE

11t is important to note that current, psycholotlicaractable
models of spoken word recognition do not take spalech as their
input. While Grossberg & Myers (2000) have modelsgects of
speech and word processing using real speech jripete efforts
have not yet yielded a model that can handle spegmit and a
broad range of phenomena in spoken word recognitioarder to
be able to address complex issues in word recognitithout first
solving all fundamental problems in speech peroeptiRACE'’s
inputs (for example) are "pseudo-spectral" acotstignetic
features that ramp on and off over time, with terap@verlap
between adjacent phonemes providing a coarse anafog
coarticulation.
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are only excitatory. The evidence that this is sfigal
comes from demonstrations in visual letter idecsifion
that performance is at least as good without indipi
connections between levels (Rey et al., 2009). Ammore
serious difference, however, is that the |A modmh only
recognize words at one location on the retina, eder
TRACE has to recognize words at any point in time.

But this impressive ability of TRACE is only achexl at
the price of duplicating each unit for as many tistiees as
needed in the simulation. That is, the processinigsun
TRACE form a large memory, with units aligned witme
'slices’. Essentially, there is a copy of every tiea,
phoneme, and word unit at every time slice (the pete
details are more complex — for example, words ary o
duplicated every 3 time slices; see McClelland &n&h,
1986, for details). When input begins, the firsttamt of the
input aligns with and activates units in the fiigte slice in
memory. As the input continues, it activates noalgned
with specific time slices. Those units can beconmel a
remain active for a considerable time after theuinpas
continued on. Conceptually, this is like marks guage left
by a seismograph — the memory banks contain a tfite
input that has come along. But these are not paseaces,
since unit activations flux as a function of extwty and
inhibitory input from other units, and a decay paeger.

report first results on a model that achieves decen
performance using many fewer nodes and connectiars
TRACE. With a 2 second layer of time-invariant iopu
nodes and TRACE's 14 phonemes and 212 words, TISK
requires 9.7 thousand units and 62 thousand ctionsc
This represents a 9-fold improvement over TRACE for
units, and 2 orders of magnitude for connectiongically,

the orders of magnitude in improvement turn outbt®
proportional to lexicon size: with 20,000 words a#d
phonemes, TISK would require 48 thousand units (CEA
requires 84 times more) and 3.3 million connections
(TRACE requires 24housand times more).

String kernels

In the machine learning literature, one computaion
technique that has been very successful at regmegen
sequences of symbols independently of their posijoes
under the name ddtring kernels (Hofmann et al., 2007).
Symbols can be amino-acids, nucleotides, or letiera
webpage: in every case the gist of string kernsldoi
represent strings (such as "TIME") as points inighh
dimensional space of symbol combinations (for instaas
a vector where each component stands for a conntxinaf
two symbols, and only the components for “TI”, “TM”
“TE”, “IM”, “IE”, “"ME” would be non-zero). It is known

Having reduplicated units allows TRACE to solve thetnat this space is propitious to linear patterrasations and

temporal alignment problem by brute force; givea ihput
/dad/, it can tell that the phoneme /d/ should bevated
twice and how far apart in time the two occurrenass —
because the two instances of /d/ are encoded bylebaty
independent /d/ detectors aligned with differeninfmin
time. The same applies at the word level; TRACE tedin
that /dag/ (the TRACE representation of DOG) octwise
in /dagitsdag/ (DOG EATS DOG) because the two imsta
are encoded by independent /dag/ detectors aligvitd
different points in time.

But this comes at a cost. Consider the number it$ per

slice: 63 x 3 features, 14 phonemes, and, in th&cbha

TRACE lexicon, 212 words, for 415 units. If we Ipatk

yet can also capture the (domain-dependent) siitigisr
between them. Although it has been argued in tiseabi
modality that string kernels can account for magkeahing
effects and are thus likely involved in the eargges of
processing, there has been very little investigatib String
kernels in the auditory domain (Gales, 2009, beinget
unpublished exception).

Given the demonstrated versatility of the technjgbere
is every reason to suspect that string kernelsdcalglo work
in spoken word recognition, where symbols wouldhthe
discrete and time-specific phonemes, which woultubeed
into vectors in the space of time-invariant phoneme
combinations. This would entail that the same tygde

the number of connections by assuming an averagé of representations are in fact at work in spoken aistiav
featural connections per phoneme, and 3 phonemes Pgord recognition. However, while one can find soappeal
word, and allowing for connections between units afn this unification (this would for instance paveetway to

adjacent time slices, we would have approximatélypd0
connections per time slice with a 200-word lexictinwe
make the trace approximately 2 seconds long (thmatidn

establishing connections between sublexical ortyugy
and sublexical phonology), there remains the naggin
problem of how to turn sequences of time-specific

of echoic memory), we need approximately 83 thodsanphonemes into time-invariant phoneme combinatiotisat

units and 9.4 million connections. If we incredse kexicon
to a more realistic size of 20,000 words and thengme
inventory to 40, these figures reach approximadetyillion
units and 80 billion connections.

is, how to compute the string kernel for spoken dsor
Thinking in the unified framework of string kernelgggests
that similar problems across modalities can recsiwdlar
solutions, and we now introduce our time-invariant

One might argue that this may not be an unreasenabhjternative to the TRACE model, which handles the

scale, given the number of neurons and connectiotise
brain. However, principles of parsimony (might #hdre a
simpler solution?) and evolutionary pressures taimmze
energy consumption would be reasonable motivatimns
seek a less costly solution to time-invariance. |&xpg
such an alternative is the purpose of this paped, w&e

transition between time-specific and time-invarianits in
much the same way as location-specific and location
invariant units are activated in the visual mogalihrough
the use of symmetry networks (Shawe-Taylor, 1989).
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Model

Architecture and dynamics

The model is illustrated in Figure 1. It uses thme lexicon
and basic activation dynamics as the TRACE modet,ab
radically different architecture. It is comprised four
levels: inputs, phonemes, nphones (currently, nphaare
single phones or diphones) and words. Inputs cbos$is
bank of time-specific feature units as in TRACE;otigh
which a wave of transient activation pattern travel
However, this input layer is deliberately very slifigd
compared to its TRACE analog, given that at anyetthrere
is always at most one input unit active — inputs ro
overlap in time, and do not code for phonetic sanitiy (that
is, the /d/ unit is equally similar to /a/ and 4& each unit
can either be on or off; we will address phonetiairg in
future work). This input level sends activationviard to
the phoneme level. The time-specific phoneme
consists of 10 banks of 14 phonemes that servapas to
the network (the limitation to 10 is completely itndry, but
sufficient for single-word recognition; there aralyp 14

leve

Note that feedback serves several functions, as doe

lexical-phonemic feedback in TRACE: it provides asis
for lexical effects on phoneme decisions; it makesmodel
more efficient and robust against noise (Magnusboal.e
2005); and it provides an implicit sensitivity tbgnotactics
— the more often a phoneme or nphone occurs ircdéxi
items, the more feedback it potentially receivesedback in
models of spoken word recognition is a controvérsipic
(see McClelland et al., 2006; McQueen et al., 200iBman
et al., 2006), which we do not address here; qurigito see
whether a model with a radically simpler computagio
architecture compared to TRACE can (begin to) astéar
a similar range of phenomena in spoken word rediogni

Units in the model are leaky integrators: at eaatie; all
units are activated according to the net input tregeive
and to their previous activation, minus a decaynteas
described in equation 1:

Ai(t —1) % (1 — Decay) + Net;(t) * (1 —A;(t — 1)),
ifNet; >0

Ai(t — 1) % (1 — Decay) + Net;(t) = Ai(t — 1),
ifNet; <0

Ai(t) =

phonemes because we are using the 14 phonemeaad where the netinput of uniti at time t is givsy:

implemented in TRACE). Input phonemes are introduce

one at a time and activate the time-invariant nghtavel
via  feedforward  connections.
connection weights are set according to a gragieighting
scheme that we will shortly describe. The nphoneelle
consists of 196 + 14 units, one for each phonentefan

each of the 142 possible diphones that can be cesapo

with the set of phonemes. Units at this level cotapeith
one another via lateral inhibition, and send atiiva
forward to the time invariant word level throughcatory
connections, whose weights were normalized by threlrer
of nphones of the destination word. The word legisists
of 212 units, one for each of the original words tie
TRACE lexicon, with lateral inhibition between watdand
feedback excitatory connections from words to ngison

%

Word level Jtab/

/bark/ /bat/ ooo

Time invariant /
\\(} /a//b/ ooo /S/ @
N A
Nphone level
o R ) o
Time invariant 53 o 6‘)

<

i"\
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Phoneme
level
Time specific

/a/,/b/, 000 /S/,
222 o0

/a/¢/b/; 000 /S/;
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Figure 1: The TISK model - a time-invariant architecture
for spoken word recognition.

Neti(t) = SUM*_ ywija(t)

J

Phoneme-to-nphone The python code for the model as well as the list o

parameters are available upon request to thesfitstor. We
now describe how the connections between phonemds a
nphones are set in the model.

l,‘ T o y

12X 210

w N = O
w N = O

£—— Gatingconnections
Excitatory connections
Figure 2: A symmetry network for time-invariant nphone
recognition that can distinguish between anaphones.

A symmetry network for phonological string
kernels

The problem we are confronting here is to achiemeet
invariant recognition while still distinguishing tveeen
transposed phoneme combinations.
recognize a succession of phonemes like, [/&¥.1]

whatever time “t” is, we need to be able to recagneach
phoneme /a/ and /b/ at any “t”. But since each umitst
activate at any time, how then can we activate (adi
rather than /ba/ at the nphone level?
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This issue of selectivity (here, between “anaphbnes reaches 100% recognition. A consideration of the fe
words with the same phonemes in different ordersu® unrecognized words, like /triti/ and /st*did/, isiructive in
invariance (here, to position-in-time) has long rbee that they were often confused with their cohortdidates
identified in the fields of visual recognition amdmputer (e.g. /trit/ and /stAdi/), which activate exactliiet same
vision, and has recently received attention in aeseof nphones but one (resp. /ti/ and /id/). This coigiuscan
articles investigating invariant visual word reciigm only happen in the current model when two phoneares
(Dandurand, Grainger, & Dufau, 2010; Dandurandclosely repeated at the end of a relatively longdysince
Hannagan, & Grainger, 2010; Hannagan, Dandurand &he importance of any one nphone for recognitioa @ford
Grainger, 2011). The solution adopted in the presedel is currently inversely proportional to how many ophbs it
is illustrated in Figure 2, and was inspired by whas been activates. We note that a model whose nphone-tatwor
learned through this recent work on the way variousveights would be set following other criteria (fimstance,
backpropagation networks deal with the selectiviggsus the conditional probability of the word given thphone)
invariance dilemma (to our knowledge this solutf@s not would give more importance to diagnostic nphoned an
yet been proposed in spoken word recognition mpdelsreach perfect accuracy.

Briefly stated, this consists of correlating phomeeto-
nphone connection strengths with phoneme positien-i Competitor effects. Cohort, rhyme and embedding

If the weights from phoneme units Jalab,..., /af t0  model (left panel) and in TRACE (right panel). Ttwerves
diphone unit /ab/ decrease linearly from T-1 toozemd if  \vere calculated by averaging across trials thevatiin

on the contrary the weights from phoneme unitg /bk,....  |evels of all targets (“target” curve in black), all words
/bly to diphone unit /ab/ increase at the same pace #&10  that started with the same phonemes as the t&gehgrts”
to T-1, then presenting the input sequence, [flad.] Will  cyrve in red), of all words that ended with the eam

always result in a constant net input for /ab/ what the phonemes as the target (“Rhymes” curve in blue)albf
time “t” is, and it will result in a smaller consitanet input  \words contained in the target (“Embeddings” curve i

to /ba/. By setting the weights from these phonemies to  pyrple) and of all other words (“Mean of all wotdsirve
the transposed diphone /ba/ in exactly the oppg@siteern, grey).

and by setting once and for all a common activation

threshold for every diphone unit anywhere betwedwse TISK competor types TRACE competor types

. —— Target —— Target
two net inputs, one can ensure that the networkabanys 05|« Cohorts 05| "+ Cohorts
neatly distinguish between /ab/ and /ba/. To preven | freaee "  Cedangs |
sequences with repeated phonemes like, [fab, /b/] from 4 | o Mean of allwords Y o e o elwons |
activating large sets of unwanted nphones like /biY/), it 03 ,f’ 03 ’d
is however necessary to introduce gating connestiplack o 7
connections in Figure 2), whereby for instance digables g“ ,.-" o2 Jf
the connection between all future/b/and diphones /*b/ =, I I I L
(where “*” stands for any phoneme but b). fﬂﬁﬁm ,,-"F .

Other architectures exist that can operate thesitian o0 00 T i

between time-specific phonemes and time-invarian 5 N ———
nphones, but the symmetry network we introduce imith ' ok,
this model builds on a solution found by the o ¢ w ez w % @ w s oo oo osannessosn

Cycle Cycle

backpropagation algorithm, and has thus arguably a
headstart in learnability. It also seems to prowadaithful
implementation of the “string kernel” code
described by Hannagan & Grainger (2011).

Figure 3: Average activationsin the lexicon, when
recently partitioned for each trial as Target, Cohort words, Rhyming
words, embedded words and All words.
Left panel: TISK modedl.
Results Right panel: TRACE model.

L Apart from superficial differences in zero-valuedraus
Recognition rate neggtive restingplevels, Figure 3 shows that threeagent
We presented the model with every word in its 2Iev  petween models is good on competitor effects. Iddbe
lexicon. A word was counted as correctly recogniieid magnitude and ordering of the Cohorts, Rhymes and
had been the most active lexical unit for ten cydfea row  Embeddings effects is similar in the two modeltatiee to
before the deadline, which was set to 100 cyclesthe baseline Mean of all words.

Recognition performance was similar across differen The behavior exhibited by both models also mirres
operational measures of recognition. With thesengt, the  cohort and rhyme effects that have been reportéuiimnans
model correctly recognizes 98% of the 216 words. Weyerforming for instance the so-called “visual wrask. In
consider this satisfactory for a first test of awne g npytshell, overall candidate words that begin the target
computational approach, although the TRACE modehre more active early on during processing whitess¢hthat
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end like the target are more active later one duringyri, a VWFA homologue for speech has not yet been

processing, without ever rising to the activatiendl of the
target, or going below the activation level of udated
words.

Discussion

The previous results tentatively suggest that &-tispecific
model of spoken word recognition like TRACE couhd
principle be replaced by a time-invariant altewa{fTISK).
This raises the questions of whether there is i@y kind
of evidence for time-invariant phonological repres¢éons
in the brain, above and beyond considerations dipany,
and whether one could find predictions that wouldvaus
to uniquely distinguish between the time-invariant time-
specific candidate models. We now address these
guestions.

Neural evidence for timeinvariant spoken word
recognition?

Researchers interested in the neural represerdation
visual words are blessed with the Visual Word Féuaa, a
well-defined region in the brain that sits at thp bf what is
still known as the ventral visual stream, and
demonstratively the locus of our ability to read rds
(Galillard et al., 2006), but critically not to heem. Until
recently, the common wisdom was that by the meateeviof
its situation in the brain — if not by its purpatteierarchical
architecture with increasingly large receptive diel- the
VWFA was bound to achieve complete location invaré&
for word stimuli. However recent fMRI studies shohat,
and computational modeling explains why, a sigaific
degree of sensitivity to location is present in M&/FA
Rauschecker et al. (2011). A trained, functionaldetoof
location invariance for visual words explains wimstcan
be so: in this model the conflicting requirememtslbcation
invariant and selectivity conspire with limited oesces,
and force the model to develop in a symmetry ndtwath
broken location symmetry on its weights. This irrntu
produces “semi-location invariant” distributed ®ityi
patterns, which are more sensitive to location ffiaore

detected.

The second is that paradigms for testing time-iiawvene
are less easily designed than those which testidoea
invariance in the visual case. Varying on Rausceeek al.
(2011) however, we can propose a task that testshfo
presence of time-specific word representationswhich
subjects would be presented with a sequence ofingass
sounds where one spoken word would be embedded.
manipulating the position of this word in the seuges one
could then test whether a “blind” classifier coble trained
on the evoked fMRI activation patterns to discriaten
which activation patterns correspond to which pos#-in-
time. A clear demonstration that a classifier ishle to
“blindly” map phonological patterns to positiondime

By

tWRould be good evidence for the model we have iniced.

In the alternative scenario, a successful blindssifeer
would be a smoking gun for this model. Following @ur
work in the visual modality, we would then needctmsider
a revised version with limited and shared unitg twuld
possibly achieve semi-time invariant representation

Specific predictions

iSA specific prediction of this model concerns theatment of
repeated phonemes in a word. As we have seen RAECE
model deals with both cases by assigning activatmn
different time-specific units, whereas the model have
introduced must activate for instance the same tmat in
“banana’at two different times. Finding evidenceaiagt
this central feature would plainly falsify the mabde
However it is still unclear at this point how tlisuld really
manifest in the model (for instance would words hwit
repeated diphones such as “banana” get more aotivat
from the diphone level than in the TRACE model®)fdct
one critical test for the current model will residets ability
to handle such inputs in a way that is consisteith w
humans. If the expected differences with TRACEiadeed
obtained, experimental evidence could then be gathe
with the “visual world paradigm” by presenting tatg and
distractors with or without repeated diphones. &iry, one
would expect the same phenomena to be within redch

confusable words (Hannagan, Dandurand & Graingerempirical investigations for repeated words in ateece.
2011). Thus brain studies have already been highly

informative and have helped constrain our thinkbmghow
the brain recognizes visual words.

But attempts to proceed in the same way for thét@yd
modality quickly run into at least two brick wall§he first
is that there is no clear homologue of the VWFAdpoken
words. This might be because the speech signabs/ani
more dimensions than the visual signal correspanttina
visual object; a VWFA homologue for speech mighedhé&o
provide invariance not just in temporal alignmemnif also
across variation in rate, speaker characteriséits, While
there have been reports of hints of such invariar#/or
multidimensional sensitivity in the superior (Sablvat al.,
in press) and medial (Chandrasekaran et al., 2@hiporal

Conclusions

We have presented a computational model of spolad w
recognition (TISK) that achieves a close-to-perfeaird
recognition rate (98%), while also exhibiting thiligy to
account for basic aspects of phonological competiti the
time course of cohort and rhyme effects. This timeariant
alternative uses vastly (orders of magnitude)
computational resources than its time-specific tenpart,
TRACE, the economy in number of units being invirse
proportional to the number of time steps allowedrgmit
and (in TRACE) memory at all levels or (in our mb)ckt
the phoneme level. A notable property of the maslehat
the computational mechanisms involved — string &ksrand
symmetry networks — are exactly the same as haee be

less
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