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Abstract

This study investigated the relation between word surprisal and
pupil dilation during reading. Participants’ eye movements
and pupil size were recorded while they read single sentences.
Surprisal values for each word in the sentence stimuli were
estimated by both a recurrent neural network and a phrase-
structure grammar. Higher surprisal corresponded to longer
word-reading time, and this effect was stronger when surprisal
values were estimated by the neural network. In addition, there
was an early, positive effect of surprisal on pupil size, from
about 250 ms before word fixation until 100 ms after fixation.
This early effect, which was only significant for the network-
based surprisal estimates, is suggestive of a preparation-based
account of surprisal.
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Introduction
Language comprehension is mostly incremental: When lis-
tening to or reading a sentence, each word is immediately
integrated with information from the sentence so far (e.g.,
Just, Carpenter, & Woolley, 1982). It has been argued that the
amount of cognitive effort required to process a given word
can be quantified by itssurprisal (Hale, 2001; Levy, 2008),
an information-theoretic measure of the extent to which the
word’s occurrence was unexpected. Formally, ifw1...t de-
notes the sentence’s firstt words, the surprisal of the fol-
lowing word is: surprisal(wt+1) =− logP(wt+1|w1...t). These
values can be estimated by any language model that assigns
probabilities to word sequences.

The relationship between surprisal and cognitive load (i.e.,
relative difficulty in processing) has indeed been observed
in reading studies: Words with higher surprisal values take
longer to read, which accounts for several phenomena in sen-
tence comprehension, such as garden-path effects (Brouwer,
Fitz, & Hoeks, 2010) and anti-locality effects (Levy, 2008).
More generally, reading times at each word in sentences
or texts have been shown to correlate with surprisal (e.g.,
Boston, Hale, Patil, Kliegl, & Vasishth, 2008; Demberg
& Keller, 2008; Fernandez Monsalve, Frank, & Vigliocco,
2012; Frank & Bod, 2011; Smith & Levy, 2008).

Here, we investigate an alternative empirical index of cog-
nitive load; one that can be measured continuously and with
precise time-resolution: pupil size. By analyzing how and

when effects of word surprisal appear in pupillometry data,
we are able to use a physiological measure to investigate
the fine-grained time course of sentence-comprehension pro-
cesses.

A large number of studies, using a variety of tasks, have
looked at the relationship between cognitive load and pupil
dilation (for a recent overview, see Laeng, Sirois, & Gre-
deb̈ack, 2012). Although these studies differ in how cogni-
tive load is operationalized, increased cognitive load is invari-
ably found to result in larger pupil size. In a non-linguistic
context, Preuschoff, ’t Hart, and Einhäuser (2011) showed
that pupil size (and therefore, presumably, cognitive load) in-
creases when a stimulus is less expected. They had partici-
pants perform a simple gambling task and found that expe-
riencing surprise causes pupil dilation: Pupil size correlated
not with the gambling outcome itself but with its unexpected-
ness.

Whether unexpectedness of words in sentences also results
in pupil dilation is still an open question. In fact, there has
been only very little pupillometry research in psycholinguis-
tics. Engelhardt, Ferreira, and Patsenko (2010) found thata
mismatch between syntactic and prosodic structure of audito-
rily presented sentences results in larger pupil size compared
to a condition in which the two structures matched. In another
sentence-listening study, Piquado, Isaacowitz, and Wingfield
(2010) found a pupil response to both syntactic complexity
and sentence length. To the best of our knowledge, there ex-
ists only two published studies in which pupillometry is ap-
plied during sentence reading: Raisig, Hagendorf, and Van
der Meer (2012) presented participants with written descrip-
tions of simple events in everyday activities and found in-
creased pupil dilation when the order of presentation was
incongruent with the actual temporal order of the described
activities. Just and Carpenter (1993) compared object- and
subject-relative clauses and found increased reading times
and pupil dilation on the object-relatives, which have long
been known to be more difficult to process (Hakes, Evans, &
Brannon, 1976). Moreover, the occurrence of a semantically
implausible word resulted in increased pupil size compared
to a plausible-word condition.

Here, we did not compare particular sentence pairs but, in-
stead, investigate the general relation between word surprisal
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and pupil size, looking for effects on each word within a large
set of visually-presented sentences. The goals of this study
were to explore pupillometry as a methodology for investi-
gating sentence-comprehension processes during reading;to
uncover the time-course of surprisal effects; and to assess
the suitability of two very different model types for surprisal
estimation: recurrent neural networks (RNNs) and phrase-
structure grammars (PSGs). We found a very early, positive
effect of surprisal on pupil size, which was only significant
for the surprisal values generated by the RNN. These find-
ings suggest that surprisal effects are caused by a process of
word prediction rather than word integration.

Method

Eye tracking and pupillometry

Materials The self-paced reading study by Fernandez
Monsalve et al. (2012) and Frank (2012) used 361 sentence
stimuli, semi-randomly selected from three novels published
on www.free-online-novels.com. Two hundred and five of
these sentences (comprising 1931 word tokens) could fit on
a single line of the display and were therefore used in the cur-
rent eye-tracking experiment. Of those 205 sentences, 110
had a corresponding yes/no comprehension question to en-
sure that subjects were reading for meaning.

Participants Seventeen monolingual, native English
speakers were recruited from the University College London
subject pool. One participant was excluded due to technical
issues, leaving 16 participants (11 women, mean age 27.6)
with analyzable data.

Procedure Subjects were seated 50 cm from the monitor
with their chin on a chin rest. Both eyes were tracked using
a head-mounted eye-tracker (SR Research, EyeLink II). Indi-
vidual sentences were presented in 18-point Courier font, left-
aligned on the display. Each sentence was preceded by a left-
aligned fixation cross that was presented for 800 ms. Gaze
direction and pupil area were sampled at a rate of 500 Hz.

After initial calibration (nine fixation points) and five prac-
tice trials, subjects were invited to ask clarification questions
and the experiment began. Another calibration check was
performed after the practice items and then again after ev-
ery 35 trials (the final set had only 30 trials), at which time
subjects took a self-paced break (total 205 trials, six sets).
Additionally, drift correction on a single centrally located fix-
ation point was performed at the start of each trial. Responses
were recorded using a mouse (center button to continue after
finishing a sentence; right and left buttons to respond ‘yes’or
‘no’, respectively, to comprehension questions). The entire
experiment (with instructions and calibration) took approxi-
mately 50 minutes to complete. The order of trial presentation
was randomized throughout.

Surprisal estimation

For each word in the experimental sentences, surprisal val-
ues were generated by the same set of probabilistic language

models as used by Fernandez Monsalve et al. (2012). All
models were trained on 702,412 sentences (comprising 7.6
million word tokens; 7,754 word types) from the written-text
part of the British National Corpus.

Recurrent neural network Although RNNs are often used
for learning the statistics of language, they are nearly always
applied to artificial toy languages. Training such models ona
large, English-language corpus, as we do here, requires some-
thing more advanced than the standard Simple Recurrent Net-
work (SRN; Elman, 1990). The solution was to first encode
each word as a distributed vector and train the network on se-
quences of those word representations. More precisely, net-
work training was divided into three distinct stages (see also
Fernandez Monsalve et al., 2012; Frank, 2012):

1. A co-occurrence matrixP = (pi j) was constructed, where
eachpi j is the (smoothed) probability that word typesi and
j occur adjacently in the training data. These values were
then transformed intoqi j = logpi j − log(∑k pik ∑k pk j).
The 400 columns ofQ with highest variance were selected,
and formed the 400-dimensional vectors for each of the
7,754 word types. This representational space captures the
paradigmatic relations between words (e.g., words of the
same syntactic category tend to receive similar representa-
tions), which boosts generalization to untrained input.

2. The 702,412 training sentences, in the form of word-vector
sequences, were given as input to an SRN that learned
to predict the vector representation of the upcoming word
wt+1 after each sentence-so-farw1...t . The SRN used stan-
dard backpropagation and received the complete training
corpus five times.

3. A two-layer feedforward network with 200 hidden units
learned to ‘decode’ the SRN’s output vectors into local-
ist representations, that is, into 7,754-dimensional vectors
where each element corresponds to a word type. It received
the training data two times and, like the SRN, used stan-
dard backpropagation for connection-weight update. Its
output units have softmax activation functions, so each out-
put vector forms a probability distribution over word types.

The complete model, combining these three stages, gener-
ates estimates of the probabilitiesP(wt+1|w1...t) for all word
types, from which the surprisal of the actual next word fol-
lows directly. These surprisal values were obtained at ten
intervals during training of the decoder network, resulting in
ten sets of surprisal estimates (by an increasingly well-trained
model) each of which was analyzed independently.

Phrase-structure grammar Grammars are usually not in-
duced from ‘flat’ word sequences but require complete syn-
tactic tree structures as training material. It was therefore
necessary to first obtain such structures by parsing the train-
ing sentences. This was done by the Stanford Parser (version
1.6.7; Klein & Manning, 2003). The resulting collection of
tree structures served as the PSG training corpus.
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In a standard probabilistic context-free grammar, the prob-
ability of a production rule is conditioned on the rule’s left-
hand side. For example, the rule ‘NP→ Det N’ would be
associated with the probability that a phrase consists of a
determiner (Det) followed by a noun (N), given that it is
a noun phrase (NP). A grammar’s structural sensitivity can
be increased by also conditioning on other parts of the tree
structure, for example, by estimating the probability of ‘Det
N’ given that the current phrase is an NP that belongs to
a verb phrase. In this manner, many different grammars,
with different structural sensitivities, can be induced from
the same set of training data. Here, we applied Roark’s
(2001) grammar-induction algorithm to obtain eight differ-
ent grammars (see also Fernandez Monsalve et al., 2012;
Frank & Bod, 2011). Next, an incremental parser (Roark,
2001) processed the experimental sentences. At each word,
it computed the probabilities of possible syntactic structures1

(under each of the eight grammars) given the sentence-so-
far w1...t . The sum of those probabilities equalsP(w1...t),
and surprisal values follow because− logP(wt+1|w1...t) =
logP(w1...t)− logP(w1...t+1). That is, for each word we ob-
tain eight grammar-based surprisal values, in addition to the
ten RNN-based surprisals discussed above.

Results
All participants displayed adequate comprehension by an-
swering at least 80% of the comprehension questions cor-
rectly. We excluded from consideration the first and last
word of each sentence, clitics, words attached to a comma,
the first fixated word, and non-fixated words. Further, data
corresponding to fixations outside the sentence presentation
region, as well as regressions (i.e., fixations to words earlier
in a sentence after a fixation on a later word) were discarded.

Word-reading time

Analysis As a measure of word-reading time, we took total
fixation time on a word before fixation on any other word
(i.e., the first-pass reading time, or gaze duration; av. 231
ms, s.d. 116 ms). A mixed-effects regression model was fit-
ted to this dependent variable (14,304 data points), using as
predictor variables: sentence presentation order (both linear
and quadratic factors), word position in sentence (linear and
quadratic), word length, log of word frequency, and log of
forward transitional probability (i.e., the word’s probability
given the previous word). Also, all significant two-way inter-
actions were included,2 as were all significant random slopes
of main effects.3

The effect size of surprisal is defined as the decrease in
regression model deviance when surprisal is included as an

1The least probable structures were ignored to make this compu-
tation feasible.

2These were determined by first including all two-way interac-
tions and then removing the least significant ones until all|t|> 2.

3These were a by-item slope of sentence order and by-subject
slopes of all factors except forward probability and quadratic sen-
tence order.
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Figure 1: Effect of surprisal (as estimated by either RNN of
PSG) on gaze durations as a function of linguistic accuracy
(average logP(wt+1|w1...t)). Plotted are the estimatedχ2-
statistics (where negative values denote effects in the negative
direction) and best fitting second-degree polynomials. The
dashed lines atχ2 = ±3.84 denote the level beyond which
p < .05.

additional predictor. This quantity is theχ2-statistic of a log-
likelihood test for the significance of surprisal. Effect size
can be contrasted with ‘linguistic accuracy’: the extent to
which the model has learned the statistical patterns of the
language. Linguistic accuracy is quantified as the average of
logP(wt+1|w1...t) estimated over the experimental sentences,
weighted by the number of timeswt+1 occurs in the analysis.

Surprisal effect Figure 1 plots the size and direction of the
surprisal effect as a function of linguistic accuracy. As ex-
pected, all the statistically significant effects are in thepos-
itive direction: More surprising words take longer to read.
Moreover, models that capture the statistics of the language
more accurately also account for more variance in reading
time.

Surprisal as estimated by the RNN model (after sufficient
training) shows stronger effects than does PSG-based sur-
prisal. We compared the RNN and PSG that showed the
strongest effects by testing whether one set of surprisal es-
timates had an effect over and above the other. The RNN’s
surprisals did have an additional effect over the PSG’s (χ2 =
7.6;p < .01) but the reverse was not the case (χ2 = 1.93;p >

.15). That is, the grammar does not yield surprisal values that
explain any unique variance in reading times.

Pupil size

Analysis As the eyes move across the screen, the angle be-
tween the eye gaze and camera changes, affecting the ob-
served pupil size. This was corrected for by fitting a second-
degree polynomial to the measured pupil sizes during sac-
cades as a function of the horizontal gaze direction. Correc-
tion was performed for each presentation block (i.e., between
recalibrations), participant, and individual eye (left orright).

1556



The fitted values then served as a baseline of pupil size at
each horizontal location on the display. If both eyes were suc-
cessfully tracked, pupil size was averaged over the two. For
each subject and sentence separately, pupil sizes were then
rescaled to a percentage of the average over the sentence.

The effect of word surprisal on pupil size was analyzed at
every 2 ms sample (i.e., the sampling rate of the eye-tracker),
from 500 ms before the first fixation on a word, up to 1000 ms
after that fixation. If any pupil size during that 1500 ms time
window was below 70% or above 130%, the data for those
1500 ms were discarded.

When we analyzed reading times, a baseline regression
model was fitted to the gaze durations. In the case of pupil
sizes, however, it is not possible to fit just one baseline model
because the values of the dependent variable differ across
samples. Alternatively, a different model could be fitted to
each sample but that would make it impossible to track the
surprisal effect over time. Therefore, the same, simplified
baseline model is used for all samples. It contained the main
effects from the reading-time analysis, except that the factor
‘word position’ was replaced by the fixated letter’s position
in the sentence (both linear and quadratic factors). Letterpo-
sition allows us to take into account differences in luminosity
across the display, which can affect pupil dilation. In addi-
tion, because samples of pupil dilation are taken up to 500 ms
before fixation on the current word, the length, log frequency
and log forward probability of theprevious word are also in-
cluded. As before, the effect size of surprisal was defined
as the decrease in regression model deviance due to surprisal.
Surprisal estimates were taken from the RNN and PSG model
that explain the most variance in gaze duration.

Surprisal effect Figure 2 shows how strongly a word’s sur-
prisal affects pupil size, time-locked to the moment of first
fixation on that word. There is a positive relation between
surprisal and pupil size, which arises very early, even before
fixation (i.e., parafoveally).

Considering that the effect of a word’s surprisal arises be-
fore fixation on that word, it makes sense to discard cases in
which the previous word was not fixated. Specifically, it is
unlikely that enough information about a word can be ob-
tained if it is still more than one word ahead. Indeed, as
shown in Figure 3, the effect of surprisal remains as strong
even when we only take into account cases in which there is
a fixation on the previous word (in spite of a 30.3% reduction
in the amount of data).

Entropy effect Alternatively, the early effect of surprisal
could be due to readers’ uncertainty about the upcoming
word.4 If uncertainty aboutwt+1 correlates positively with its
surprisal, and being in a state of increased uncertainty causes
the pupils to dilate, then the apparent effect of surprisal may
actually be an effect of uncertainty. Such an effect can appear
during processing ofwt , without any information about the

4We would like to thank an anonymous reviewer for this sugges-
tion.

upcoming wordwt+1.
We investigated this possibility by estimating how much

uncertainty aboutwt+1 a reader may experience after process-
ing w1...t . In information theory, uncertainty about the value
of a random variable is quantified by itsentropy. In the con-
text of incremental sentence comprehension, the uncertainty
aboutwt+1 is defined as:

H(wt+1) =− ∑
wt+1

P(wt+1|w1...t) logP(wt+1|w1...t).

The entropyH(wt+1) is based on the probability distribu-
tion P(wt+1|w1...t), which is exactly the output of the RNN
model. Note that, unlike the word’s surprisal, the entropy
overwt+1 does not require knowledge of the actual upcoming
word wt+1. Crucially, H(wt+1) equals the expected value of
surprisal(wt+1) so the two values correlate positively (r = .38
in our data set). A positive effect on pupil dilation of un-
certainty aboutwt+1 could therfore be misinterpreted as an
effect of the surprisal ofwt+1. However, as Figure 4 shows,
the relation between entropy (as estimated by the RNN) and
pupil size is (if anything) negative. Consequently, the effect
of surprisal in Figure 3 is not an entropy effect in disguise.

Discussion
Our reading-time results corroborate earlier findings: More
surprising words take longer to read; this effect grows
stronger as surprisal values are estimated by linguistically
more accurate models; and RNN-based surprisals account
for more variance than do grammar-based estimates. Like
Frank and Bod (2011), we found no additional effect of
the grammar-based surprisals. However, applying the same
surprisal estimates to data from a self-paced reading study,
Fernandez Monsalve et al. (2012) did find an additional ef-
fect of the PSG’s surprisals, possibly because their data set
was almost ten times larger than our current set.

Importantly, predictions by computational models of lan-
guage have never before been applied to the analysis of pupil-
lometric data. Hence, the effect of word surprisal on pupil
size had not yet been demonstrated. This effect confirms that
surprisal is indeed a cognitively relevant measure of process-
ing load, and not merely of processingtime.

Two explanations have been proposed for the relation be-
tween word surprisal and cognitive load: According to Levy
(2008), integrating a new word into the interpretation of the
sentence so far comes down to updating a probability distribu-
tion over all possible sentence interpretations. He provesthat
the extent of this update, expressed as the Kullback-Leibler
divergence from the old distribution to the new, equals the
word’s surprisal. Alternatively, Smith and Levy (2008) ar-
gue that the surprisal effect is due to the reader’s processing
system being more prepared for more expected words. Un-
der that account, we may expect surprisal effects to occur
sooner than if they result from integration of the new word
with the current sentence interpretation. Therefore, the very
early, pre-fixation effect we found here seems most compati-
ble with Smith and Levy’s preparation account.
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Figure 2: Effect of surprisal on pupil size over time.
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Figure 3: Effect of surprisal on pupil size over time, takingonly cases where the previous word was fixated.
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Figure 4: Effect of entropy (uncertainty about the upcomingword) on pupil size over time.
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The early occurrence of a surprisal effect may also ex-
plain why only the RNN predicted pupil size. Presumably,
RNNs simulate early, predictive processing whereas applying
a PSG (i.e., parsing) generates syntactic structure and there-
fore models later ‘integrative’ processing. Hence, an early
effect on pupil size that does not depend on integrative pro-
cessing would only be predicted by RNNs and not by PSGs.

Conclusion
A word’s surprisal has a very early effect on pupil size during
reading: At about 250 msbefore the word is fixated, its sur-
prisal is a significant predictor of the reader’s pupil size.This
suggests that surprisal effects are due to preparation (Smith
& Levy, 2008) rather than integration (Levy, 2008). More-
over, it may explain why surprisal estimates by RNNs have
a stronger effect than those from PSGs. Perhaps more im-
portantly, however, we have established that pupillometryis
a viable paradigm for studying the fine-grained time course
of reading processes.

Acknowledgments
The research presented here was funded by the European
Union Seventh Framework Programme (FP7/2007-2013) un-
der grant number 253803, and by a grant from the Economic
and Social Resesarch Council of Great Britain (RES-620-28-
6001) awarded to the Deafness Cognition and Language Re-
search Centre. We are grateful to Naima Ansari for her assis-
tance with data collection.

References
Boston, M. F., Hale, J., Patil, U., Kliegl, R., & Vasishth, S.

(2008). Parsing costs as predictors of reading difficulty: An
evaluation using the Potsdam Sentence Corpus.Journal of
Eye Movement Research, 2, 1–12.

Brouwer, H., Fitz, H., & Hoeks, J. (2010). Modeling the noun
phrase versus sentence coordination ambiguity in Dutch:
Evidence from surprisal theory. InProceedings of the 2010
Workshop on Cognitive Modeling and Computational Lin-
guistics (pp. 72–80). Uppsala, Sweden: Association for
Computational Linguistics.

Demberg, V., & Keller, F. (2008). Data from eye-tracking cor-
pora as evidence for theories of syntactic processing com-
plexity. Cognition, 109, 193–210.

Elman, J. L. (1990). Finding structure in time.Cognitive
Science, 14, 179–211.

Engelhardt, P. E., Ferreira, F., & Patsenko, E. G. (2010).
Pupillometry reveals processing load during spoken lan-
guage comprehension.The Quarterly Journal of Experi-
mental Psychology, 63, 639–645.

Fernandez Monsalve, I., Frank, S. L., & Vigliocco, G. (2012).
Lexical surprisal as a general predictor of reading time. In
Proceedings of the 13th Conference of the European Chap-
ter of the Association for Computational Linguistics (pp.
398–408). Avignon, France: Association for Computa-
tional Linguistics.

Frank, S. L. (2012). Uncertainty reduction as a measure
of cognitive processing load in sentence comprehension.
Manuscript submitted for publication.

Frank, S. L., & Bod, R. (2011). Insensitivity of the human
sentence-processing system to hierarchical structure.Psy-
chological Science, 22, 829–834.

Hakes, D. T., Evans, J. S., & Brannon, L. L. (1976). Under-
standing sentences with relative clauses.Memory & Cog-
nition, 4, 283–290.

Hale, J. T. (2001). A probabilistic Early parser as a psycholin-
guistic model. InProceedings of the 2nd Conference of the
North American Chapter of the Association for Computa-
tional Linguistics (Vol. 2, pp. 159–166). Pittsburgh, PA:
Association for Computational Linguistics.

Just, M. A., & Carpenter, P. A. (1993). The intensity dimen-
sion of thought: pupillometric indices of sentence process-
ing. Canadian Journal of Experimental Psychology, 47,
310–339.

Just, M. A., Carpenter, P. A., & Woolley, J. D. (1982).
Paradigms and processes in reading comprehension.Jour-
nal of Experimental Psychology: General, 111, 228–238.

Klein, D., & Manning, C. D. (2003). Accurate unlexicalized
parsing. InProceedings of the 41st Meeting of the Associ-
ation for Computational Linguistics (pp. 423–430).

Laeng, B., Sirois, S., & Gredebäck, G. (2012). Pupillometry:
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