Mining Relatedness Graphs for Data Integration

Jeremy T. Engle
(jtengle@indiana.edu)

Ying Feng
(yingfeng@indiana.edu)
Robert L. Goldstone
(rgoldsto@indiana.edu)
Indiana University
Bloomington, IN. 47405 USA

Abstract

In this paper, we present the AbsMatcher system for schema
matching which uses a graph based approach. The primary
contribution of this paper is the development of new types of
relationships for generating graph edges and the effectiveness
of integrating schemas using those graphs. AbsMatcher
creates a graph of related attributes within a schema, mines
similarity between attributes in different schemas, and then
combines all information using the ABSURDIST graph
matching algorithm. The attribute-to-attribute relationships
this paper focuses on are semantic in nature and have few
requirements for format or structure. These relationships
sources provide a baseline which can be improved upon with
relationships specific to formats, such as XML or a relational
database. Simulations demonstrate how the use of
automatically mined graphs of within-schema relationships,
when combined with cross-schema pair-wise similarity, can
result in matching accuracy not attainable by either source of
information on its own.

Keywords: Data integration; graph matching; ABSURDIST;
semantic relatedness.

Introduction

Data integration has application to a wide variety of fields
from e-commerce to bioinformatics. One of data
integration’s subtopics is the attribute matching problem
which finds mappings between attributes in source and
target data sets. This paper presents the AbsMatcher
framework which concentrates on one-to-one attribute
matches as an initial effort, leaving complex n-to-one
matches to future work. AbsMatcher finds matching results
based on graphs of within-schema attribute relationships and
cross-schema comparisons of attribute similarity. The focus
of in this paper is the process and relationships used to
create a within-schema graph for each data set.

The AbsMatcher framework has two distinct phases.
The first is a mining phase which produces a graph for each
data set where edges relate within-schema attributes and an
aggregated matrix of cross-schema attribute similarities
measures. We refer to these graphs as internal information,
because a graph only contains information relating attributes
within the same schema. Information which is aggregated
into the cross-schema matrix is referred to as external
information because it involves a comparison between

attributes in different schemas to determine how
semantically similar they are.

Secondly, AbsMatcher's matching phase uses the
ABSURDIST (Feng, Goldstone, & Menkov, 2004;
Goldstone & Rogosky, 2002) algorithm to combine mined
information and determine match correspondences using an
iteratively converging global optimization algorithm.
ABSURDIST was originally developed to translate between
conceptual systems in a psychologically plausible manner.
Additionally, ABSURDIST has a weighting ratio to
determine the balance of influence on the outcome of
internal and external information. Though we focus on
specific sources of internal and external information in this
paper both AbsMatcher and ABSURDIST were designed in
a way so that additional sources could easily be added.

In a graph based approach to schema matching the
matching process uses graph matching to determine
mappings between attributes/nodes based on the similarity
of their sets of relationships/edges. Edges of graphs are
labeled with different relationship types, which represent
different forms of information. Relationship types can
broadly be divided into structural relationships which are
based on how attributes are organized in a data set and
semantic relationships which are based on meaning of the
information associated with an attribute. An example of a
structural relationship is a parent/child relationship between
nested attributes from an XML data set. An example of a
semantic relationship is a general/specific relationship for
the concepts represented by two attributes. These examples
highlight that one of the challenges in how to create graphs
is that what relationships can be used is tied to the format of
a data set and the available (meta)data.

Previous systems (Aumueller, Do, Massmann, & Rham,
2005; Giunchiglia & Shvaiko, 2003; Melnik, Garcia-
Molina, & Rahm, 2002) address the problem of how to
create graphs by only using metadata which can be
intuitively translated to graph form. As a result, the graphs
created by these translations predominately represent the
structural design of a data set. Though structural
relationships can be useful, their disadvantage is that factors
such as missing metadata, differing metadata formats, or
different database designers can remove these structural
relationships’ usefulness.

1524

This paper presents a set of relationships which can be
used as general practice but more importantly are still
applicable when metadata is limited or datasets with
differing formats are being integrated. Of particular
contribution are Yahoo semantic relatedness relationships
which leverage Yahoo query results to measure the semantic
relatedness of attributes' names. Yahoo relationships are an
improvement over the use of tools like Wordnet because of
their ability to handle attribute names that have
abbreviations, words unique to a domain, and/or multi-term
phrases. All three of these factors commonly occur in data
sets. Together, Yahoo relationships and the other
relationships we present offer tools to use when structural
metadata is absent or of no benefit.

We use the terms AbsMatcher and ABSURDIST
throughout this work. AbsMatcher is the overall system
which formulates graphs after mining internal information
and aggregates mined sources of external similarity.
ABSURDIST refers specifically to the matching phase
which iteratively combines internal and external information
to determine a set of correspondences.

ABSURDIST Background

ABSURDIST was developed to solve the general problem
of translating between two conceptual systems. We adapt
this approach to data integration by treating attributes as
concepts to be matched. A complete discussion of
ABSURDIST and how information factors into the iterative
process can be found in Goldstone and Rogosky (2002).
Information in ABSURDIST is classified as internal
(within-schema) or external (cross-schema). External
information provides the ability to input cross-schema
similarity into the ABSURDIST algorithm. Different
external sources are aggregated into an NXxM matrix of
values between 0 and 1, where N and M are the sizes of the
schemas to be matched. The dividing line between internal
and external is that internal information is relationships
between attributes in the same schema, whereas external
similarity is a comparison between attributes in two separate
schemas.

ABSURDIST iteratively updates correspondences using
internal and external information until reaching a stable
point, terminates, and selects the final matches.
ABSURDIST as an error minimization algorithm selects the
set of matches that result in the least total link error. This
section discusses the conceptual motivations of
ABSURDIST and leaves specific examples of internal and
external information for later sections.

Internal Information as Graphs

Internal information in ABSURDIST represents intra-
system information about how nodes in each conceptual
system relate to other nodes in the same system. Internal
information for a system is independent of the system with
which it is being aligned. For each schema, ABSURDIST
takes internal information as input in the form of;
information on relationship types, node types, node

information, and a graph of relationships. Internal
information factors into the R and 7 terms of Equation 1. A
node in a conceptual system must have a unique identifier
and a categorical type. If only one type exists then the
effects of node types become irrelevant. Relationships in
ABSURDIST represent a conceptual association between
intra-system nodes creating a generalized interpretation of
structure. A relationship type has a categorical label and is
defined as being either directed or undirected. Relationships
are instantiated as edges, which collectively form a graph of
continuously valued weighted edges. If the same weight is
used for every edge, these weights become irrelevant.

Iterative Algorithm

ABSURDIST is an iterative algorithm which updates an
NxM matrix of correspondences where N and M refer to the
number of attributes in the source schema, A4, and target
schema, B, respectively. Each cell in the correspondence
matrix, Cy(Ag,B;), represents how strong a match is at
iteration step ¢ for attribute ¢ in schema 4 and attribute » in
schema B. The algorithm terminates when the matrix has
converged or a maximum number of iterations is reached.
For each iteration, ABSURDIST updates each C(A4,B;) by
a net input defined by

N(4,,B,)=aE(4,,B,)+ pR(4,,B,)- 4(4,,B,)
Equation 1. Correspondence Update Equation

Equation 1 shows how internal (R and /) and external (E)
information combine to update the correspondence from
attribute ¢ in schema A to attribute » in schema B. The E
term represents similarity based on external information, the
R term represents similarity based on internal information,
and the 7 term uses internal information to inhibit incorrect
correspondences. As a global optimization algorithm, both
R and [take into account the state of the system at each
iteration t. a, B, and y are weights that control the influence
of forms of information, where a and [are set as a ratio to
each other and y is set independently of the others. For
example, when o is one and B is zero only external
information is used to find correspondences.

Related Research

A number of surveys have been done which cover the
different aspects of the schema matching problem (Shvaiko
& Euzenat, 2005). One of the established approaches to
schema matching is to use candidate matchers to generate
candidate matches which are aggregated into a final set.
Graph-based systems, including AbsMatcher, have multiple
modules to generate edges in the graph, multiple modules to
generate the equivalent of external information, and then use
a graph matching algorithm to generate correspondences
based on graphs. It is possible that correspondences
generated using a graph matching algorithm could be used
as a candidate matcher in a system. Cupid (Madhavan,
Bernstein, & Rahm, 2001), and Similarity Flooding
(Melnik, Garcia-Molina, & Rahm, 2002) systems all use

1525

graph matching to accomplish schema matching. COMA++
(Aumueller et al., 2005) is a generalized framework for
schema matching which was used in the Similarity Flooding
system to combine the results from graph matching with
non-graph-oriented candidate matchers. The difference
between AbsMatcher and these previous systems is the
generality of AbsMatcher and generating graphs based on
semantics instead of data model metadata.

Previous graph-based schema matchers construct graphs
based on the metadata for the data model. These systems
have modules specifically built for translating different data
models -- such as relational databases, XML, ontologies, or
conceptual hierarchies -- into a graph form. This approach
makes the graphs generated dependent on the thoroughness
of the data set creator, and completely different graphs will
be generated even when the same data set is stored in
different data models. The advantage of these systems is
that they leverage the effort of data set creators. For
example considerable effort is generally put into the design
phase of a relational database. Examples of using metadata
would be creating a relationship between parent and child
XML attributes or the fact that an attribute is a primary key
in a relational database. The disadvantage of basing graphs
on metadata is that derived relationships often have more to
do with how data is stored and less about semantic
relationships. The goal of the information sources we
present in this paper is that they can be used regardless the
data model and still generate semantic relationships.

The Semantic Matching (Giunchiglia & Shvaiko, 2003)
system provides the closest comparison to AbsMatcher. It
creates a graph based on metadata and a limited number of
semantic relationships. Semantic Matching uses electronic
thesauri in order to create overlap, mismatch, and
general/specific relationships. The one issue with electronic
thesauri is that they only work with words in their index and
are unable to handle abbreviations or phrases which are
often used to name attributes. AbsMatcher shares the same
motivation as Semantic Matching, but uses the web to create
semantic relatedness relationships and mines the data sets
for statistical relatedness relationships. Additionally,
ABSURDIST was designed with a general idea of
relationships, which makes adding new forms of internal
relationships a simple process.

We mine semantic relatedness using Yahoo query results
(Bollegala et al., 2007) and Information Dependencies
(Dalkilic & Robertson, 2000), however, neither has been
used for schema matching.

Mining ABSURDIST Graphs

The focus of this paper is on the process and relationships
types used to create within-schema graphs. The unifying
characteristic for all of the relationships we present is that
they are not specific to a data model nor represent structural
information. We present two categories of relationships;
ones which use the entropy of the data and the second which
uses Yahoo query results based on attribute names to
measure semantic relatedness.

Mining an ABSURDIST graph is a two-stage process.
The first is mining edges of the desired relationship type and
the second is filtering out noisy edges. Filtering is done by
using thresholds to eliminate mined edges whose values are
not statistically significant enough to represent something
beyond noise. For brevity’s sake we limit the discussion of
filtering to describing what the threshold checks for each
relationship type.

Entropy Relations

Entropy-based relationships use an information theoretic
approach to look at the information content of attributes
based on their data. The goal is to look for patterns which
defy statistical trends and therefore are more likely to
represent user intended relationships. We use the
Information Dependency (InD) measure (Dalkilic &
Robertson, 2000), which is based on Shannon’s Entropy, to
look at the information content of attributes. Entropy
relationships require at least a sample of the data. The
discussion of Entropy relationships includes approximate
attribute entropy relationships, data set key relationships,
and approximate functional dependencies.

Attribute entropy relationships measure the degree to
which attributes resemble keys, which have a different value
in each record in the data set for the attribute, or constants,
which have the same value in each record in the data set for
the attribute. An attribute being close to a key or constant is
a unique statistical property which is a result of how data is
created, e.g. an ISBN is purposefully defined as a key.
Attributes in other data sets that are semantically similar are
likely to also have similar statistical properties, so when
keys or constants occur they are strong indicators of a likely
match. In Table 1, PersonName is an example of a key and
Gender is an example of an attribute that is almost a
constant. Attribute Entropy relationships are filtered based
on their entropy values and only kept when those values are
either above (approximate key) or below (approximate
constant) defined thresholds.

Data set keys are sets of attributes that together have a
unique set of values for the data set and therefore form a
key. Data set key relationships are created between pairs of
attributes that together are close to forming, or do form, a
data set key, but neither attribute is a key on its own. An
example from Table 1 is that by combining Address and
Gender a unique set of values exists for every row. The
above example would result in an edge PairKey(Address,
Gender) to be created in the graph. A data set key
relationship creates undirected edges between attributes and
uses the entropy value as the weight. Data set approximate
key relationships are filtered using a threshold which
defines how close to a primary key the attribute set must be.

The last Entropy relationship type uses Approximate
Functional Dependencies (AFDs). AFDs are probabilistic
rules, XY, which measure the ability of values for a left
hand side (LHS) attribute set to determine values of the
right hand side (RHS) attribute set. The closer an AFD’s
measured value is to 1 the better the LHS is at predicting the

1526

RHS. AbsMatcher’s use of AFDs as an information source
for schema matching presents a novel application for AFDs.
We use AFDs which have a single attribute LHS and a
single attribute RHS in creating dependency relationships.
By only using single attributes on each side the search space
is reduced from 2™ to NxM. Though Functional
Dependencies (FDs), which AFDs extend, have been used
in schema matching, this is to our knowledge the first use of
AFDs. Filtering dependency relationships uses a threshold
which parameterizes the number of standard deviations that
an AFD’s value must be away from the average value of all
AFDs with the same LHS or RHS.

Table 1. A sample data set of people

PersonName Address Gender
Santa Claus 100 North Pole Male
Mrs. Claus 100 North Pole Female
Jeremy Engle 215 Lindley Hall Male
Rob Goldstone 338 Psychology Male

Semantic Relationships

The premise behind using semantic relatedness is to create a
relationship between attributes that are thematically related.
A trivial example of this would be attributes for the first and
last name of a person. If the respective attribute labels are
“first” and “last” then a graph edge is created between these
attributes based on the thematic association of these labels.

0, H(PNQ)<c
H(PNQ)
H(P)+H(Q)-H(PNQ)’

WebJaccard (P,Q) =

H(PNQ)=c

Equation 2. WebJaccard Using Yahoo! Query Hits

One of the common tools for mining semantic relatedness
is using WordNet (Fellbaum, 1998). Semantic relationships
are found for two words according to their common
membership in sets of synonyms, or synsets. Though
WordNet has a large dictionary, the tools that rely on it fail
when one of the two words is not in the dictionary. There
are two common scenarios which increase the likelihood of
WordNet failing. The first is that data sets commonly have
domain specific terms that are less likely to be in a general
dictionary like WordNet. The second problem is that data
sets commonly have attribute names that are multiple words
and/or use abbreviations. The tools making use of WordNet
are not capable of handling either of these cases. In order to
overcome these issues, we use tools that query the World
Wide Web instead of WordNet.

We use the WWW as a source of information and adapt
existing information retrieval measures to use the number of
results from queries to compute similarity. Our semantic
relatedness relationships are based on work by Bollegala et
al. (2007) which queried Google and used the number of
query results in computing existing similarity measures,
however they only tested its use on single words.

The first step in mining semantic relatedness relationships
is to tokenize attribute names. Attribute names are
tokenized on occurrences of underscores and capital letters
to create a multi-term query. Though not sophisticated
these simple rules provide a best effort for creating multi-
term queries. The relatedness of two attributes is then found
using the WebJaccard measure as expressed in Equation 2,
where P and Q are the multi-term queries for each attribute
name. When available we also include the data set name as
a query term to provide sense disambiguation. We use
Yahoo as a source for querying because of the open
availability of their search API. Yahoo semantic relatedness
relationships are filtered to include edges only when the
WeblJaccard value is above a threshold.

Mining the External Similarity Matrix

We use existing sources of external information, and
therefore only discuss them briefly. External information
directly compares attributes in the source and target
schemas to look for similar attributes. ~While mining
external similarity both attribute names and values from the
data are used. We tested basic sources of external
information to investigate the effects of combining internal
and external information. @ Two sources of external
similarity were prototyped and tested.

The first source of external similarity is string edit
distance, which is a lexical comparison of attribute names.
String edit distance represents a method for finding matches
that are “low hanging fruit.” We wuse the jSimlib
(https://jsimlib.dev.java.net/) library that normalizes string
edit distance by the sum of the length of the two strings.

The second source of external similarity is cosine
similarity, which is commonly used to compare the
similarity of two free text documents. The similarity of the
two documents is computed as the cosine value between the
term frequency vectors for each document. For attribute-to-
attribute schema matching, when the attributes contain text
we treat them as documents and create term frequency
vectors. The Lucene (http://lucene.apache.org/java/docs/index.html)
framework was used to calculate the cosine similarity.

We tested three groups of data sets that vary in domain
and size which come from the Illinois Semantic Integration
Archive (ISIA) at http:/pages.cs.wisc.edu/~anhai/wisc-si-
archive/. The Courses data sets have listings of classes from
four different universities, data sets sizes range from twelve
to sixteen attributes. The second group of data sets is the
Real Estate I (REI) data sets, which includes the
homeseekers, nky, windermere, and yahoo data sets. Three
of the data sets have sizes in the mid-thirties and the final
one is in the sixties. The third group of data sets is the Real
Estate Core (REC) data sets. REC data sets are the same as
the REI data sets, but only include attributes that have a
match in one of the other data sets. This reduced the
number of attributes in the data sets to the low twenties,
except one having twenty-eight attributes. The REC group
is used to test the effects on matching performance when
attributes with no matches are removed.

1527

Validation Experiments

The goals in evaluating AbsMatcher are to look at the
performance of internal information by itself and whether
the combination of internal and external information
provides better cumulative performance. WebJaccard and
Entropy internal relationships are meant to provide a
baseline ability for schema matching so performance is
judged first by whether consistent evidence of an ability to
find matches, and second by looking for evidence that
combining internal and external information is better than
only external information. Finding evidence of these two
points would indicate matches being found which internal
information can uniquely contribute to finding.
Performance is measured using recall. ~Many schema
matching systems provide statistical matches, as opposed to
absolute matching, so we present recall for correct matches
made and for the correct match being one of the top 3 best
matches. This more liberal scoring criterion provides
information on whether AbsMatcher has partial information
that could be leveraged by future improvements to the
algorithm or information sources. Precision is not included
because currently AbsMatcher returns a match for each
attribute in the smaller of the two schemas. This means that
the number of matches returned for a pair of schemas will
remain constant no matter what other parameters change.
This point is discussed further in future work.

For the initial tests, we first explored schema matching
using only the previously described internal relationships, in
three combinations. The Entropy combination includes
attribute entropy, data set key, and dependency
relationships. The WeblJaccard results consist of semantic
relatedness relationships based on Yahoo results. Finally,
the “All” combination includes both Entropy and
WeblJaccard relationships.

We first look at the extent to which schemas can be
matched using only the mined graphs for the two data sets.
When using only this limited source of information a high
level of performance cannot be expected. However, this
limitation is useful in making an initial judgment of whether
mined graphs contain useful information. For each group of
data sets we select the best performing parameters and
present the results in Figure 1 for all three combinations of
internal relationships and all three groups of data sets.

0%

p0% -

; 1 Top3 Recall
H0% -] chall

B0% -

0%

0%

All
Entropy
All

All
WeblJaccard

Entropy

WeblJaccard
Entropy

Weblaccard

Courses REC REI
Figure 1. Data sets by types of internal relationships

The first result to examine is AbsMatcher’s ability to find
correct matches. Though the results in Figure 1 are
relatively low in the context of overall performance of
schema matching systems, the more appropriate context is
as a source of matches which would be used in a broader
system. In this context WebJaccard and Entropy
relationships do show consistent ability to find at least some
matches. The performance of the top 3 correspondences
improves over just correct matches indicating that
AbsMatcher can provide supporting evidence which would
affirm or discredit correspondences from other candidate
matchers. As seen in Figure 1 the top 3 correspondences
can provide useful results on a third to half of all matches.
The top 3 matches can be useful when considering that the
weights of correspondences in the top 3 can often be very
close.

The second result to examine is what sources or
combinations of sources of internal relationships are the
most effective. Neither the Entropy nor WebJaccard
relationships were consistently the best between the
different data set groups. Though neither was consistently
the best, the positive result is that when combined in A/,
performance improved or matched the performance of the
best performing source of internal relationships. The fact
that adding sources of internal relationships does not
degrade performance strengthens the potential that when
other existing forms of internal relationships are added,
performance could be improved.

For the second set of tests, we combined both internal and
external sources of information. For some matches the
information which best indicates the correct match is
derived by comparing an attribute from each data set. In
ABSURDIST this means the use of external information
that is combined with internal information using Equation 1.
In Equation 1 there are two weighting coefficients, o and ,
which determine the balance between external and internal
information. The a:f ratio represents the comparative
weights of external:internal information. =~ We tested
AbsMatcher with different ratios, where each represented a
different balance between external and internal information.
Figure 2 presents results for a representative three of those
ratios. The 0:1 data point represents using only internal
information, which corresponds with the results in Figure 1.
The 1:0 data point represents only using external
information. The 3:1 data point tested the effort to combine
the use of internal and external information. The goal in
this evaluation is to determine whether combining internal
and external information has a benefit over just using
external similarity.

Figure 2 provides evidence that combining internal and
external information can for some data sets provide better
results than either one in isolation. Though the
improvement for Courses and REC data sets is small the
fact that it occurs for both supports the claim that internal
structure can improve matching performance. It must be
remembered that the results for Courses and REC represent
the average performance across twelve different pairs of

1528

data sets matched. The ability of internal structure to find
correct matches and the additional beneficial effect that it
can have when combined with external similarity indicates
that internal structure is to some extent finding both unique

and useful information for schema matching.
100%
90%
80% -
70%
60%
50%
40%
30%
20%
10%
0%

[Top3 Recall
Il Recall

2
-

2 =
- =

— — —
< on < on (=l]

Courses REC REI

Figure 2. Data Sets by Ext:Int Ratio

The REI data sets do not benefit from internal
information. This could in part be due to the fact that REI
alignments leave more attributes unmatched. The REC data
sets are versions of the REI data sets where attributes with
no matches removed. They average 15.5 correct matches
between a pair of data sets, meaning that on average half of
the attributes in a data set for REI are not being matched,
yet information is still mined for them. Courses and REC
have a different scale yet both show similar trends in the
ability to find correct matches. The only difference between
REC and REI data sets is the existence of unmatched
attributes, so the difference in performance can be
unambiguously attributed to this. This indicates that
information which indicates invalid matches could be an
important feature to add to AbsMatcher.

Conclusions

The goal in developing AbsMatcher was to create a
schema matching system that used a graph based approach,
but was not reliant on a specific data model as a source of
information. To this end, we propose Entropy and
WeblJaccard relationships which can be used even when
more descriptive metadata, such as XML or metadata from a
relational database, is unavailable. Additionally, these
relationships emphasize non-structural relationships in an
effort to create graphs which are more conceptual in nature.
We then tested these graphs using the ABSURDIST graph
matching system. ABSURDIST is ideally suited because of
its ability to accept graphs with a wide variety of forms
(weighted, unweighted, directed, undirected, labeled, and
unlabeled) and ABSURDIST was designed specifically with
the idea of combining internal and external information
together.

The goals in testing AbsMatcher were to look at whether
Entropy and WeblJaccard relationships are useful for schema
matching on their own and whether they have benefits when

combined with external similarity. Experiments
demonstrated that to varying extents the tested relationships
are able to accomplish both of the goals. The results
presented in this paper where aggregated over multiple
individual experiments. The additive benefit of our sources
of internal structure is important because it argues that
internal structure holds unique information for finding
correspondences.

These results were based on aggregating results from a
number of matching pairs. It is important to note that there
were outliers on both the positive and negative side. This is
a common problem in schema matching, where sources of
information perform well in certain scenarios and poorly in
others. It is this point which motivated the approach of
aggregating many disparate measures of similarity. This
leads to the idea that by adding new information sources
into AbsMatcher we can improve even beyond the baselines
presented in this work.

Acknowledgments

This research was supported by National Science
Foundation REESE grant 0910218, Lockheed Martin, and
DARPA.

References

Aumueller, D., Do, H.-H., Massmann, S. and Rahm, E. (2005).
Schema and ontology matching with COMA++ Proceedings
of the ACM SIGMOD international conference on
Management of data, ACM, Baltimore, Maryland.

Bollegala, D., Matsuo, Y. and Ishizuka, M. (2007). Measuring
semantic similarity between words using web search engines
Proceedings of the 16th international conference on World
Wide Web, ACM, Banff, Alberta, Canada.

Dalkilic, M.M. and Roberston, E.L. (2000). Information
dependencies Proceedings of the 19th ACM SIGMOD-
SIGACT-SIGART symposium on Principles of database
systems, ACM, Dallas, Texas, United States.

Fellbaum, C. (1998). Wordnet: An Electronic Lexical Database.
Bradford Books.

Feng, Y., Goldstone, R.L. and Menkov, V. (2004). ABSURDIST
II: A Graph Matching Algorithm and its Application to
Conceptual System Translation Proceedings of the 17th
International Florida Artificial Intelligence Research
Symposium Conference (FLAIRS), AAAI Press, Miami
Beach, Fla., USA, 640-645.

Giunchiglia, F. and Shvaiko, P. Semantic Matching (2003).
Knowedge Engingeering Review, 18 (3). 265-280.

Goldstone, R.L. and Rogosky, B.J. (2002). Using Relations within
Conceptual Systems to Translate across Conceptual Systems,
Cognition, 295-320.

Madhavan, J., Bernstein, P.A. and Rahm, E. (2001). Generic
Schema Matching with Cupid VLDB.

Melnik, S., Garcia-Molina, H. and Rahm, E. (2002). Similarity
Flooding: A Versatile Graph Matching Algorithm and its
Application to Schema Matching /CDE.

Shvaiko, P. and Euzenat, J. (2005). A Survey of Schema-Based
Matching Approaches Journal on Data Semantics 1V, 3730.
146-171.

1529

