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Abstract 

In this paper, we present the AbsMatcher system for schema 
matching which uses a graph based approach.  The primary 
contribution of this paper is the development of new types of 
relationships for generating graph edges and the effectiveness 
of integrating schemas using those graphs. AbsMatcher 
creates a graph of related attributes within a schema, mines 
similarity between attributes in different schemas, and then 
combines all information using the ABSURDIST graph 
matching algorithm.  The attribute-to-attribute relationships 
this paper focuses on are semantic in nature and have few 
requirements for format or structure.  These relationships 
sources provide a baseline which can be improved upon with 
relationships specific to formats, such as XML or a relational 
database.  Simulations demonstrate how the use of 
automatically mined graphs of within-schema relationships, 
when combined with cross-schema pair-wise similarity, can 
result in matching accuracy not attainable by either source of 
information on its own. 

Keywords: Data integration; graph matching; ABSURDIST; 
semantic relatedness. 

 

Introduction 
Data integration has application to a wide variety of fields 
from e-commerce to bioinformatics.  One of data 
integration’s subtopics is the attribute matching problem 
which finds mappings between attributes in source and 
target data sets. This paper presents the AbsMatcher 
framework which concentrates on one-to-one attribute 
matches as an initial effort, leaving complex n-to-one 
matches to future work.  AbsMatcher finds matching results 
based on graphs of within-schema attribute relationships and 
cross-schema comparisons of attribute similarity.  The focus 
of in this paper is the process and relationships used to 
create a within-schema graph for each data set. 

The AbsMatcher framework has two distinct phases. 
 The first is a mining phase which produces a graph for each 
data set where edges relate within-schema attributes and an 
aggregated matrix of cross-schema attribute similarities 
measures.  We refer to these graphs as internal information, 
because a graph only contains information relating attributes 
within the same schema.  Information which is aggregated 
into the cross-schema matrix is referred to as external 
information because it involves a comparison between 

attributes in different schemas to determine how 
semantically similar they are. 

Secondly, AbsMatcher's matching phase uses the 
ABSURDIST (Feng, Goldstone, & Menkov, 2004; 
Goldstone & Rogosky, 2002) algorithm to combine mined 
information and determine match correspondences using an 
iteratively converging global optimization algorithm.  
ABSURDIST was originally developed to translate between 
conceptual systems in a psychologically plausible manner.  
Additionally, ABSURDIST has a weighting ratio to 
determine the balance of influence on the outcome of 
internal and external information.  Though we focus on 
specific sources of internal and external information in this 
paper both AbsMatcher and ABSURDIST were designed in 
a way so that additional sources could easily be added. 

In a graph based approach to schema matching the 
matching process uses graph matching to determine 
mappings between attributes/nodes based on the similarity 
of their sets of relationships/edges.  Edges of graphs are 
labeled with different relationship types, which represent 
different forms of information.  Relationship types can 
broadly be divided into structural relationships which are 
based on how attributes are organized in a data set and 
semantic relationships which are based on meaning of the 
information associated with an attribute. An example of a 
structural relationship is a parent/child relationship between 
nested attributes from an XML data set.  An example of a 
semantic relationship is a general/specific relationship for 
the concepts represented by two attributes.  These examples 
highlight that one of the challenges in how to create graphs 
is that what relationships can be used is tied to the format of 
a data set and the available (meta)data. 

Previous systems (Aumueller, Do, Massmann, & Rham, 
2005; Giunchiglia & Shvaiko, 2003; Melnik, Garcia-
Molina, & Rahm, 2002) address the problem of how to 
create graphs by only using metadata which can be 
intuitively translated to graph form.  As a result, the graphs 
created by these translations predominately represent the 
structural design of a data set.  Though structural 
relationships can be useful, their disadvantage is that factors 
such as missing metadata, differing metadata formats, or 
different database designers can remove these structural 
relationships’ usefulness. 
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This paper presents a set of relationships which can be 
used as general practice but more importantly are still 
applicable when metadata is limited or datasets with 
differing formats are being integrated.  Of particular 
contribution are Yahoo semantic relatedness relationships 
which leverage Yahoo query results to measure the semantic 
relatedness of attributes' names.  Yahoo relationships are an 
improvement over the use of tools like Wordnet because of 
their ability to handle attribute names that have 
abbreviations, words unique to a domain, and/or multi-term 
phrases.  All three of these factors commonly occur in data 
sets. Together, Yahoo relationships and the other 
relationships we present offer tools to use when structural 
metadata is absent or of no benefit. 

We use the terms AbsMatcher and ABSURDIST 
throughout this work.  AbsMatcher is the overall system 
which formulates graphs after mining internal information 
and aggregates mined sources of external similarity.  
ABSURDIST refers specifically to the matching phase 
which iteratively combines internal and external information 
to determine a set of correspondences. 

ABSURDIST Background 
ABSURDIST was developed to solve the general problem 
of translating between two conceptual systems.  We adapt 
this approach to data integration by treating attributes as 
concepts to be matched.  A complete discussion of 
ABSURDIST and how information factors into the iterative 
process can be found in Goldstone and Rogosky (2002).  
Information in ABSURDIST is classified as internal 
(within-schema) or external (cross-schema).  External 
information provides the ability to input cross-schema 
similarity into the ABSURDIST algorithm.  Different 
external sources are aggregated into an NxM matrix of 
values between 0 and 1, where N and M are the sizes of the 
schemas to be matched.  The dividing line between internal 
and external is that internal information is relationships 
between attributes in the same schema, whereas external 
similarity is a comparison between attributes in two separate 
schemas.   

ABSURDIST iteratively updates correspondences using 
internal and external information until reaching a stable 
point, terminates, and selects the final matches.  
ABSURDIST as an error minimization algorithm selects the 
set of matches that result in the least total link error.  This 
section discusses the conceptual motivations of 
ABSURDIST and leaves specific examples of internal and 
external information for later sections. 

Internal Information as Graphs 
Internal information in ABSURDIST represents intra-
system information about how nodes in each conceptual 
system relate to other nodes in the same system.  Internal 
information for a system is independent of the system with 
which it is being aligned.  For each schema, ABSURDIST 
takes internal information as input in the form of; 
information on relationship types, node types, node 

information, and a graph of relationships.  Internal 
information factors into the R and I terms of Equation 1.  A 
node in a conceptual system must have a unique identifier 
and a categorical type.  If only one type exists then the 
effects of node types become irrelevant.  Relationships in 
ABSURDIST represent a conceptual association between 
intra-system nodes creating a generalized interpretation of 
structure.  A relationship type has a categorical label and is 
defined as being either directed or undirected.  Relationships 
are instantiated as edges, which collectively form a graph of 
continuously valued weighted edges.  If the same weight is 
used for every edge, these weights become irrelevant.   

Iterative Algorithm 
ABSURDIST is an iterative algorithm which updates an 
NxM matrix of correspondences where N and M refer to the 
number of attributes in the source schema, A, and target 
schema, B, respectively.  Each cell in the correspondence 
matrix, Ct(Aq,Br), represents how strong a match is at 
iteration step t for attribute q in schema A and attribute r in 
schema B.  The algorithm terminates when the matrix has 
converged or a maximum number of iterations is reached.  
For each iteration, ABSURDIST updates each Ct(Aq,Br) by 
a net input defined by 

( ) ( ) ( ) ( )rqrqrqrq BAIBARBAEBAN ,,,, χβα −+=  

Equation 1.  Correspondence Update Equation 

Equation 1 shows how internal (R and I) and external (E) 
information combine to update the correspondence from 
attribute q in schema A to attribute r in schema B.  The E 
term represents similarity based on external information, the 
R term represents similarity based on internal information, 
and the I term uses internal information to inhibit incorrect 
correspondences.  As a global optimization algorithm, both 
R and I take into account the state of the system at each 
iteration t.   α, β, and χ are weights that control the influence 
of forms of information, where α and β are set as a ratio to 
each other and χ is set independently of the others.  For 
example, when α is one and β is zero only external 
information is used to find correspondences. 

Related Research 
A number of surveys have been done which cover the 
different aspects of the schema matching problem (Shvaiko 
& Euzenat, 2005).  One of the established approaches to 
schema matching is to use candidate matchers to generate 
candidate matches which are aggregated into a final set.  
Graph-based systems, including AbsMatcher, have multiple 
modules to generate edges in the graph, multiple modules to 
generate the equivalent of external information, and then use 
a graph matching algorithm to generate correspondences 
based on graphs.  It is possible that correspondences 
generated using a graph matching algorithm could be used 
as a candidate matcher in a system.  Cupid (Madhavan, 
Bernstein, & Rahm, 2001), and Similarity Flooding 
(Melnik, Garcia-Molina, & Rahm, 2002) systems all use 
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graph matching to accomplish schema matching.  COMA++ 
(Aumueller et al., 2005) is a generalized framework for 
schema matching which was used in the Similarity Flooding 
system to combine the results from graph matching with 
non-graph-oriented candidate matchers.  The difference 
between AbsMatcher and these previous systems is the 
generality of AbsMatcher and generating graphs based on 
semantics instead of data model metadata.   

Previous graph-based schema matchers construct graphs 
based on the metadata for the data model.  These systems 
have modules specifically built for translating different data 
models -- such as relational databases, XML, ontologies, or 
conceptual hierarchies -- into a graph form.  This approach 
makes the graphs generated dependent on the thoroughness 
of the data set creator, and completely different graphs will 
be generated even when the same data set is stored in 
different data models.  The advantage of these systems is 
that they leverage the effort of data set creators.  For 
example considerable effort is generally put into the design 
phase of a relational database.  Examples of using metadata 
would be creating a relationship between parent and child 
XML attributes or the fact that an attribute is a primary key 
in a relational database.  The disadvantage of basing graphs 
on metadata is that derived relationships often have more to 
do with how data is stored and less about semantic 
relationships.  The goal of the information sources we 
present in this paper is that they can be used regardless the 
data model and still generate semantic relationships. 

The Semantic Matching (Giunchiglia & Shvaiko, 2003) 
system provides the closest comparison to AbsMatcher.  It 
creates a graph based on metadata and a limited number of 
semantic relationships.  Semantic Matching uses electronic 
thesauri in order to create overlap, mismatch, and 
general/specific relationships.  The one issue with electronic 
thesauri is that they only work with words in their index and 
are unable to handle abbreviations or phrases which are 
often used to name attributes.  AbsMatcher shares the same 
motivation as Semantic Matching, but uses the web to create 
semantic relatedness relationships and mines the data sets 
for statistical relatedness relationships.   Additionally, 
ABSURDIST was designed with a general idea of 
relationships, which makes adding new forms of internal 
relationships a simple process. 

We mine semantic relatedness using Yahoo query results 
(Bollegala et al., 2007) and Information Dependencies 
(Dalkilic & Robertson, 2000), however, neither has been 
used for schema matching.   

Mining ABSURDIST Graphs 
The focus of this paper is on the process and relationships 
types used to create within-schema graphs.  The unifying 
characteristic for all of the relationships we present is that 
they are not specific to a data model nor represent structural 
information.  We present two categories of relationships; 
ones which use the entropy of the data and the second which 
uses Yahoo query results based on attribute names to 
measure semantic relatedness.   

Mining an ABSURDIST graph is a two-stage process.  
The first is mining edges of the desired relationship type and 
the second is filtering out noisy edges.  Filtering is done by 
using thresholds to eliminate mined edges whose values are 
not statistically significant enough to represent something 
beyond noise. For brevity’s sake we limit the discussion of 
filtering to describing what the threshold checks for each 
relationship type.   

Entropy Relations 
Entropy-based relationships use an information theoretic 
approach to look at the information content of attributes 
based on their data.  The goal is to look for patterns which 
defy statistical trends and therefore are more likely to 
represent user intended relationships.  We use the 
Information Dependency (InD) measure (Dalkilic & 
Robertson, 2000), which is based on Shannon’s Entropy, to 
look at the information content of attributes.  Entropy 
relationships require at least a sample of the data.  The 
discussion of Entropy relationships includes approximate 
attribute entropy relationships, data set key relationships, 
and approximate functional dependencies. 

Attribute entropy relationships measure the degree to 
which attributes resemble keys, which have a different value 
in each record in the data set for the attribute, or constants, 
which have the same value in each record in the data set for 
the attribute.  An attribute being close to a key or constant is 
a unique statistical property which is a result of how data is 
created, e.g. an ISBN is purposefully defined as a key.  
Attributes in other data sets that are semantically similar are 
likely to also have similar statistical properties, so when 
keys or constants occur they are strong indicators of a likely 
match.  In Table 1, PersonName is an example of a key and 
Gender is an example of an attribute that is almost a 
constant.  Attribute Entropy relationships are filtered based 
on their entropy values and only kept when those values are 
either above (approximate key) or below (approximate 
constant) defined thresholds. 

Data set keys are sets of attributes that together have a 
unique set of values for the data set and therefore form a 
key.  Data set key relationships are created between pairs of 
attributes that together are close to forming, or do form, a 
data set key, but neither attribute is a key on its own.  An 
example from Table 1 is that by combining Address and 
Gender a unique set of values exists for every row.  The 
above example would result in an edge PairKey(Address, 
Gender) to be created in the graph.  A data set key 
relationship creates undirected edges between attributes and 
uses the entropy value as the weight.  Data set approximate 
key relationships are filtered using a threshold which 
defines how close to a primary key the attribute set must be. 

The last Entropy relationship type uses Approximate 
Functional Dependencies (AFDs).  AFDs are probabilistic 
rules, XèY, which measure the ability of values for a left 
hand side (LHS) attribute set to determine values of the 
right hand side (RHS) attribute set. The closer an AFD’s 
measured value is to 1 the better the LHS is at predicting the 
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RHS.  AbsMatcher’s use of AFDs as an information source 
for schema matching presents a novel application for AFDs. 
We use AFDs which have a single attribute LHS and a 
single attribute RHS in creating dependency relationships.  
By only using single attributes on each side the search space 
is reduced from 2N+M to NxM.  Though Functional 
Dependencies (FDs), which AFDs extend, have been used 
in schema matching, this is to our knowledge the first use of 
AFDs.  Filtering dependency relationships uses a threshold 
which parameterizes the number of standard deviations that 
an AFD’s value must be away from the average value of all 
AFDs with the same LHS or RHS. 

 
Table 1. A sample data set of people 

PersonName Address Gender 
Santa Claus 100 North Pole Male 
Mrs. Claus 100 North Pole Female 
Jeremy Engle 215 Lindley Hall Male 
Rob Goldstone 338 Psychology Male 

Semantic Relationships 
The premise behind using semantic relatedness is to create a 
relationship between attributes that are thematically related.  
A trivial example of this would be attributes for the first and 
last name of a person.  If the respective attribute labels are 
“first” and “last” then a graph edge is created between these 
attributes based on the thematic association of these labels. 

WebJaccard P,Q( ) =
0, H P!Q( ) < c

H P!Q( )
H P( )+H Q( )"H P!Q( )

, H P!Q( ) # c

$

%
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Equation 2.  WebJaccard Using Yahoo! Query Hits 
 
One of the common tools for mining semantic relatedness 

is using WordNet (Fellbaum, 1998).  Semantic relationships 
are found for two words according to their common 
membership in sets of synonyms, or synsets.  Though 
WordNet has a large dictionary, the tools that rely on it fail 
when one of the two words is not in the dictionary.  There 
are two common scenarios which increase the likelihood of 
WordNet failing.  The first is that data sets commonly have 
domain specific terms that are less likely to be in a general 
dictionary like WordNet.  The second problem is that data 
sets commonly have attribute names that are multiple words 
and/or use abbreviations.  The tools making use of WordNet 
are not capable of handling either of these cases.  In order to 
overcome these issues, we use tools that query the World 
Wide Web instead of WordNet. 

We use the WWW as a source of information and adapt 
existing information retrieval measures to use the number of 
results from queries to compute similarity.  Our semantic 
relatedness relationships are based on work by Bollegala et 
al. (2007) which queried Google and used the number of 
query results in computing existing similarity measures, 
however they only tested its use on single words.   

The first step in mining semantic relatedness relationships 
is to tokenize attribute names.  Attribute names are 
tokenized on occurrences of underscores and capital letters 
to create a multi-term query.  Though not sophisticated 
these simple rules provide a best effort for creating multi-
term queries.  The relatedness of two attributes is then found 
using the WebJaccard measure as expressed in Equation 2, 
where P and Q are the multi-term queries for each attribute 
name.  When available we also include the data set name as 
a query term to provide sense disambiguation.  We use 
Yahoo as a source for querying because of the open 
availability of their search API.  Yahoo semantic relatedness 
relationships are filtered to include edges only when the 
WebJaccard value is above a threshold. 

Mining the External Similarity Matrix 
We use existing sources of external information, and 
therefore only discuss them briefly.  External information 
directly compares attributes in the source and target 
schemas to look for similar attributes.  While mining 
external similarity both attribute names and values from the 
data are used.  We tested basic sources of external 
information to investigate the effects of combining internal 
and external information.  Two sources of external 
similarity were prototyped and tested. 

The first source of external similarity is string edit 
distance, which is a lexical comparison of attribute names.  
String edit distance represents a method for finding matches 
that are “low hanging fruit.”  We use the jSimlib 
(https://jsimlib.dev.java.net/) library that normalizes string 
edit distance by the sum of the length of the two strings. 

The second source of external similarity is cosine 
similarity, which is commonly used to compare the 
similarity of two free text documents.  The similarity of the 
two documents is computed as the cosine value between the 
term frequency vectors for each document.  For attribute-to-
attribute schema matching, when the attributes contain text 
we treat them as documents and create term frequency 
vectors.  The Lucene (http://lucene.apache.org/java/docs/index.html) 
framework was used to calculate the cosine similarity. 

We tested three groups of data sets that vary in domain 
and size which come from the Illinois Semantic Integration 
Archive (ISIA) at http://pages.cs.wisc.edu/~anhai/wisc-si-
archive/.  The Courses data sets have listings of classes from 
four different universities, data sets sizes range from twelve 
to sixteen attributes.  The second group of data sets is the 
Real Estate I (REI) data sets, which includes the 
homeseekers, nky, windermere, and yahoo data sets.  Three 
of the data sets have sizes in the mid-thirties and the final 
one is in the sixties.  The third group of data sets is the Real 
Estate Core (REC) data sets.  REC data sets are the same as 
the REI data sets, but only include attributes that have a 
match in one of the other data sets.  This reduced the 
number of attributes in the data sets to the low twenties, 
except one having twenty-eight attributes.  The REC group 
is used to test the effects on matching performance when 
attributes with no matches are removed. 
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Validation Experiments 
The goals in evaluating AbsMatcher are to look at the 
performance of internal information by itself and whether 
the combination of internal and external information 
provides better cumulative performance.  WebJaccard and 
Entropy internal relationships are meant to provide a 
baseline ability for schema matching so performance is 
judged first by whether consistent evidence of an ability to 
find matches, and second by looking for evidence that 
combining internal and external information is better than 
only external information.  Finding evidence of these two 
points would indicate matches being found which internal 
information can uniquely contribute to finding.  
Performance is measured using recall.  Many schema 
matching systems provide statistical matches, as opposed to 
absolute matching, so we present recall for correct matches 
made and for the correct match being one of the top 3 best 
matches.  This more liberal scoring criterion provides 
information on whether AbsMatcher has partial information 
that could be leveraged by future improvements to the 
algorithm or information sources.  Precision is not included 
because currently AbsMatcher returns a match for each 
attribute in the smaller of the two schemas.  This means that 
the number of matches returned for a pair of schemas will 
remain constant no matter what other parameters change.  
This point is discussed further in future work. 

For the initial tests, we first explored schema matching 
using only the previously described internal relationships, in 
three combinations.  The Entropy combination includes 
attribute entropy, data set key, and dependency 
relationships.  The WebJaccard results consist of semantic 
relatedness relationships based on Yahoo results.  Finally, 
the “All” combination includes both Entropy and 
WebJaccard relationships. 

We first look at the extent to which schemas can be 
matched using only the mined graphs for the two data sets.  
When using only this limited source of information a high 
level of performance cannot be expected.  However, this 
limitation is useful in making an initial judgment of whether 
mined graphs contain useful information.  For each group of 
data sets we select the best performing parameters and 
present the results in Figure 1 for all three combinations of 
internal relationships and all three groups of data sets.  

 
Figure 1.  Data sets by types of internal relationships 

The first result to examine is AbsMatcher’s ability to find 
correct matches.  Though the results in Figure 1 are 
relatively low in the context of overall performance of 
schema matching systems, the more appropriate context is 
as a source of matches which would be used in a broader 
system.  In this context WebJaccard and Entropy 
relationships do show consistent ability to find at least some 
matches.  The performance of the top 3 correspondences 
improves over just correct matches indicating that 
AbsMatcher can provide supporting evidence which would 
affirm or discredit correspondences from other candidate 
matchers.  As seen in Figure 1 the top 3 correspondences 
can provide useful results on a third to half of all matches.  
The top 3 matches can be useful when considering that the 
weights of correspondences in the top 3 can often be very 
close. 

The second result to examine is what sources or 
combinations of sources of internal relationships are the 
most effective.  Neither the Entropy nor WebJaccard 
relationships were consistently the best between the 
different data set groups.  Though neither was consistently 
the best, the positive result is that when combined in All, 
performance improved or matched the performance of the 
best performing source of internal relationships.  The fact 
that adding sources of internal relationships does not 
degrade performance strengthens the potential that when 
other existing forms of internal relationships are added, 
performance could be improved. 

For the second set of tests, we combined both internal and 
external sources of information. For some matches the 
information which best indicates the correct match is 
derived by comparing an attribute from each data set.  In 
ABSURDIST this means the use of external information 
that is combined with internal information using Equation 1.  
In Equation 1 there are two weighting coefficients, α and β, 
which determine the balance between external and internal 
information.  The α:β ratio represents the comparative 
weights of external:internal information.  We tested 
AbsMatcher with different ratios, where each represented a 
different balance between external and internal information.  
Figure 2 presents results for a representative three of those 
ratios.  The 0:1 data point represents using only internal 
information, which corresponds with the results in Figure 1.  
The 1:0 data point represents only using external 
information.  The 3:1 data point tested the effort to combine 
the use of internal and external information.  The goal in 
this evaluation is to determine whether combining internal 
and external information has a benefit over just using 
external similarity. 

Figure 2 provides evidence that combining internal and 
external information can for some data sets provide better 
results than either one in isolation.  Though the 
improvement for Courses and REC data sets is small the 
fact that it occurs for both supports the claim that internal 
structure can improve matching performance.  It must be 
remembered that the results for Courses and REC represent 
the average performance across twelve different pairs of 
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data sets matched.  The ability of internal structure to find 
correct matches and the additional beneficial effect that it 
can have when combined with external similarity indicates 
that internal structure is to some extent finding both unique 
and useful information for schema matching. 

 

Figure 2.  Data Sets by Ext:Int Ratio 
 

The REI data sets do not benefit from internal 
information.  This could in part be due to the fact that REI 
alignments leave more attributes unmatched.  The REC data 
sets are versions of the REI data sets where attributes with 
no matches removed.  They average 15.5 correct matches 
between a pair of data sets, meaning that on average half of 
the attributes in a data set for REI are not being matched, 
yet information is still mined for them.  Courses and REC 
have a different scale yet both show similar trends in the 
ability to find correct matches.  The only difference between 
REC and REI data sets is the existence of unmatched 
attributes, so the difference in performance can be 
unambiguously attributed to this.  This indicates that 
information which indicates invalid matches could be an 
important feature to add to AbsMatcher. 

Conclusions 
The goal in developing AbsMatcher was to create a 

schema matching system that used a graph based approach, 
but was not reliant on a specific data model as a source of 
information.  To this end, we propose Entropy and 
WebJaccard relationships which can be used even when 
more descriptive metadata, such as XML or metadata from a 
relational database, is unavailable.  Additionally, these 
relationships emphasize non-structural relationships in an 
effort to create graphs which are more conceptual in nature.  
We then tested these graphs using the ABSURDIST graph 
matching system.  ABSURDIST is ideally suited because of 
its ability to accept graphs with a wide variety of forms 
(weighted, unweighted, directed, undirected, labeled, and 
unlabeled) and ABSURDIST was designed specifically with 
the idea of combining internal and external information 
together.    

The goals in testing AbsMatcher were to look at whether 
Entropy and WebJaccard relationships are useful for schema 
matching on their own and whether they have benefits when 

combined with external similarity.  Experiments 
demonstrated that to varying extents the tested relationships 
are able to accomplish both of the goals.  The results 
presented in this paper where aggregated over multiple 
individual experiments.  The additive benefit of our sources 
of internal structure is important because it argues that 
internal structure holds unique information for finding 
correspondences. 

These results were based on aggregating results from a 
number of matching pairs.  It is important to note that there 
were outliers on both the positive and negative side.  This is 
a common problem in schema matching, where sources of 
information perform well in certain scenarios and poorly in 
others.  It is this point which motivated the approach of 
aggregating many disparate measures of similarity.  This 
leads to the idea that by adding new information sources 
into AbsMatcher we can improve even beyond the baselines 
presented in this work. 
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