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Abstract 

When people have to make predictions and diagnosis they 
make use of their causal knowledge. This knowledge refers to 
two constituting aspects of causality: sufficiency and 
necessity. In standard theories both aspects are considered as 
being independent from each other. The present research tests 
this assumption. In an experiment we examined how peoples 
confidence in one of both aspects is affected, if they receive 
negative evidence for the complementary aspect. The 
presented data show that peoples confidence related to the 
aspect that has not been challenged by negative evidence 
decreases under such conditions. This devaluation effect is 
not predicted by standard theories. 

Keywords: causal models; causal learning; reasoning under 
uncertainty; induction 

Introduction 
When people make a causal statement like: A causes B, they 
attribute a causal relation. This attribution can be based on 
various cues to causality (Einhorn and Hogarth, 1986) like 
spatial and temporal contiguity. However, in many 
situations people need more information than these. Being 
repeatedly confronted with a phenomenon, people (can) 
look for regularities as well. Psychological theories claim, 
that under such circumstances causal attributions rely on 
contingency information. Contingency information describe 
how the occurrence or absence of one event (i.e. event C) 
goes together with the occurrence or absence of another 
event (i.e. event E). Based on this information people can 
determine how likely an effect of interest will occur, given 
the presence or absence of a putative cause. According to 
standard psychological theories (e.g. Waldmann & Holyoak, 
1992; Waldmann & Hagmayer, 2001; Griffith & 
Tenenbaum, 2005) people integrate the information about 
the (co-)occurrence and (co-)absence to either infer a causal 
relation or estimate it' s strength, respectively. Therefore 
standard psychological theories claim that people base their 
judgments on all available data for contingency information. 
This is a reasonable assumption for situations where people 
do causal judgments. In contrast, in many real-world tasks 
people do not have to do such integrative judgments. They 
apply their knowledge to forecast events (i.e. E+ / E-) based 
on given data (i.e. C+ / C-). In probability calculus this is 
captured by conditional probabilities. The prediction of E+ 
for example can be made based on P(E+/C+) or P(E+/C-) 
(see Fig. 1) depending on whether C+ or C- is present. 
These conditional probabilities are independent of each 
other. Given these facts, standard theories do not predict 
effects of information integration over all contingency data. 

Hence, for a prediction of E given C, persons would not 
integrate over all the four possible pairings of the two events 
(i.e. C & E). However, we present experimental data that 
contradict this position. 

Sufficiency and Necessity 
Various so called rule-based models (see Allan, 1980) have 
been proposed in research literature (e.g. Jenkins & Ward, 
1965; Cheng & Novick, 1992; Cheng, 1997; White, 2003). 
They assume that persons rely on frequencies of (co-) 
occurrence and (co-) absence of two events (i.e. C & E). 
The four cells in the contingency table in Figure 1 represent 
their four possible pairings. With respect to these two 
events, every observation can be assigned to one pairing and 
as such, to one cell of the contingency table. Every 
observation gives either positive or negative evidence to one 
of both aspects of causality: sufficiency and necessity. 
Positive evidence can be understood as strengthening an 
aspect (either sufficiency or necessity). Comparably, 
negative evidence weakens an aspect. Sufficiency and 
necessity are complementary building blocks of causality 
(e.g. Mill, 1869). An event C is recognized as sufficient to 
produce another event E, if the latter always follows the 
occurrence of the former. The same event C is considered as 
necessary to bring forth the event E, if its absence of C is 
always accompanied by the absence of E. 

 
Figure 1. 2x2 contingency table (+ indicates presence, - 

indicates absence). 
 
Moreover, sufficiency and necessity are statistically 
independent of each other. Whereas the sufficiency of a 
putative cause for an effect depends on the frequencies in 
the cells a and b, the necessity is determined by the 
frequencies in the cells c and d (see Fig.1). Two different, 
statistically independent conditional probabilities capture 
these facts (see Fig.1): the probability of the presence of E 
given the presence of C, P(E+/C+), and the probability of 
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the presence of E given the absence of C, P(E+/C-). These 
probabilities are complementary in the sense of causality. 
People are willing to attribute a causal relation between two 
events if both aspects are met. This idea goes back to John 
Stuart Mill (1869) who claimed that causal knowledge does 
not arise from the repeated observation of the sequence of 
two events only. Instead people also acknowledge what 
happens if a putative cause fails to appear. From this 
perspective, causes can be characterized in terms of 
sufficiency and necessity and both of these aspects have to 
be satisfied. Every observation that belongs to the pairing of 
cell a gives positive evidence to the sufficiency of the 
putative cause C for E, the effect of interest. Just as all 
observations that belong to the pairing of cell d give 
evidence to the necessity of C for E.  

How do the described facts fall into the scope of standard 
theories of causal learning (see introduction)? These 
theories describe how people come up with a judgment, 
when they are requested to rate the strength of a causal 
relation in a causal attribution task. In such tasks people 
base their judgments on both aspects (sufficiency and 
necessity), which means that they consider all four 
frequencies that can be presented in contingency 
information (see Figure 1). Of course, people do integrative 
judgments in real-world tasks. But very often they have to 
make predictions based on given data. In turn, as soon as 
people can rely for example on the presence or absence of 
C, i.e. on C+ or C-, their prediction is related to only one of 
both aspects. For example, given the presence or absence of 
C (C+ or C-), people act differently as if they were asked to 
rate the strength of the relation between C and E. Let us 
assume people have seen numerous pairings where one 
event C precedes another event E (frequency in cell a). 
Based on these observations people will predict E+ 
(presence of E) given C+ (presence of C). In such a case, 
there is no need to integrate the information about C- 
(absence of C), which is captured by the frequencies in cells 
c and d. On the other hand, if C- (absence of C) precedes E-
(absence of E), which is represented by the frequency in cell 
d, people might use this information to predict that E will 
not occur given the absence of C. In that case information 
with respect to C+ (cells a and b) can be ignored. 
Consequently, given the independence of both aspects, 
neither positive nor negative evidence related to one of the 
aspects should affect inferences related to the 
complementary aspect. In contrast, we claim that such an 
effect exists. We tested this hypothesis based on the 
representation of causal knowledge, which is introduced in 
the next section. 

Mental Causal Models 
Several ways have been proposed to represent causal 
knowledge. For example Thüring and Jungermann (1992) 
suggest that people acquire mental models of causation in 
terms of conditional rules (e.g. If C+ then E+.). The 
conditional rules of a model reflect the characteristics of 
sufficiency and necessity of a causal relationship. This is in 

line with the conception of causes as sufficient and 
necessary conditions for their effects. As shown by Thüring, 
Drewitz and Urbas (2006) these conditional rules can be 
obtained by mere induction. In the case of the model of 
unique causation (see Table 1), which states that "C causes 
E", the event C is framed as a sufficient as well as a 
necessary condition for the event E. This is captured by the 
rules R1 and R2 in Table 1. When a situation calls for a 
causal inference, the available data (for instance C+ or C-) 
are matched with the rules (R1 and R2) and the required 
information is deduced.  
 

Table 1: Model of unique causation. 
Model statement: "C causes E" 

R1:     C+  E+ 
R2: C-   E- 

 
The importance of rules like R1 and R2 lies in the savings 
they provide. Rules save costs such as time, attention or 
memory capacity. However, to get all the benefit rules 
entail, they have to be linked into higher-order knowledge, 
like models. Let us have a look on both our rules R1 and 
R2. Neither R1 nor R2 tell us whether there is a causal 
relation between C and E, or not. Only when they are linked 
together one possesses this knowledge. We call the linking 
of rules the construction of a mental model. In this sense the 
statement "C causes E" is knowledge acquired by building 
the model, not by having the two rules R1 and R2 only. That 
also means that as soon as the rules are linked into a model, 
there is more than there was before. Or, in other words: The 
whole is more than the sum of its parts. Assuming that our 
considerations are right, we can ask the following question: 
If the whole - the mental model - is questioned because one 
of its parts fails, is there an effect on the other parts as well? 
In terms of the model of unique causation (see. Tab. 1): 
When people observe that one rule fails to predict the 
outcome, is there an effect on how they use the 
complementary other rule? 

Causal Inferences under Uncertainty 
Before we have a closer look on this question we want to 
make clear what known effects the failure of rule has. 
Depending on how successful the application of a rule was 
in the past, people will place more or less confidence into 
their predictions deduced from that rule. Let's think, for 
example, of a person that has rather limited causal 
knowledge as expressed by the model of unique causation. 
Whenever this person faces a situation where C+ is present, 
she will apply R1 and predict E+. Vice versa she will 
predict E- if C- is present, based on R2. As long as E+ goes 
always together with C+ all her predictions deduced from 
R1 are confirmed. Hence, her faith in R1 and therefore the 
confidence she places in her predictions should be high. The 
same holds for R2 and the related predictions as long as E- 
goes always together with C-. However, that will change as 
soon as it turns out that a rule is wrong. If people have build 
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up incomplete or incorrect rules they will come up with 
wrong inferences in the course of events. Let's assume that 
in truth C+ in conjunction with another event X+ may be 
sufficient for E+ instead of C+ alone. In such a case people 
will observe E- subsequent to C+ whenever X is absent (X-
). An observation like this will impair the sufficiency of C 
for E. Moreover, such an observation will discredit the rule 
R1. In general, every prediction that is not confirmed but 
contradicted by a subsequent observation discredits the rule 
it is derived from. Consequently, as long as a person cannot 
expand her model, she will loose confidence in the 
respective rule. All a person can do in such an uncertain 
situation is to reduce the confidence she places in her 
predictions based on that rule. Hence, the question we raised 
at the end of the last section remains unanswered. But now, 
we can reformulate and ask more specifically: Is the effect 
of the reduction of confidence always limited to the rule that 
was discredited?  

Discrediting and Devaluating Causal Rules  
To start with let us return to contingency information. 
Figure 1 shows a contingency table for the model of unique 
causation. A person’s observations that fall into cell a 
provide evidence for the reliability of rule R1, while 
observations that fall into cell ‘d’ provide evidence for the 
reliability of R2 (see Table 1). On the other hand, all 
observations made in cell b discredit R1, while all 
observations made in cell c discredit R2. Therefore, the first 
row of the table provides information about the sufficiency 
of the cause and the second row about its necessity. As 
depicted in Figure 1 a cause is only completely sufficient, if 
observations are made in cell a, but not in cell b, and it is 
only completely necessary, if observations are made in cell 
d, but not in cell c. Only in these cases, the conditional 
probabilities are at their optimum with respect to a causal 
relation between C and E. From this point of view, the 
optimum of P(E+/C+) equals one and equals zero for 
P(E+/C-). Additionally, an increase or decrease of P(E+/C+) 
does not affect P(E+/C-) and vice versa. What does this 
mean from a psychological perspective? The first 
implication is consistent with the mechanism of discrediting 
a rule. When the sufficiency or necessity is weakened, the 
certainty of inferences based on the respective rule should 
decrease. For instance, if an observation of C+ together with 
E- (see cell b in Fig.1) is made, the aspect of sufficiency of 
C for E is weakened. Subsequently, inferences based on R1 
go along with a reduced certainty. The second implication 
touches the central issue of this paper. It illustrates our 
assumption of devaluation. We assume that negative 
evidence for one aspect of causality will be reflected by 
increased uncertainty about the complementary aspect of 
causality. For instance, if R1 is discredited by negative 
evidence (observations that fall into cell b), confidence in 
R2 decreases as well. We call this the effect of devaluation. 
Table 2 shows which observation discredits and devaluates 
the rules of the model of unique causation.  

So far, we have described the consequences of positive 
evidence that strengthens a rule and the consequences of 
negative evidence that weakens a rule in terms of 
discrediting and devaluation. This leads to three hypotheses: 
1. Strengthening: Observations that fall into cell a and d 

of the contingency tables provide positive evidence for 
the respective rules of the models and should increase 
the confidence in inferences drawn from these rules. 

2. Discrediting: Observations that fall into cell b and cell 
c provide negative evidence and discredit the rules as 
shown in table 2. In all these cases, the confidence in 
inferences drawn from the rules should get reduced. 

3. Devaluation: Observations that fall into cell b and cell 
c should devaluate the complementary rules as shown 
in table 2. Again, the confidence in inferences from the 
affected rules should decrease. 

The following experiment serves to test these hypotheses. 
 

Table 2: Discrediting and devaluating causal rules. 
Rule Observation Discrediting 

of 
Devaluation 

of 
R1: C+E+  C+, E- R1 R2 
R2: C-  E-   C-,  E+ R2 R1 

Experiment 
In our study, participants had to acquire causal knowledge 
about a simulated technical system based on inductive 
learning. Over the course of the experiment, positive as well 
as negative evidence was presented to investigate the 
consequences of discrediting and devaluation. 

Method 
Participants. Sixty graduate and undergraduate students at 
the Berlin Institute of Technology were recruited for the 
experiment. All of them were paid for their participation. 

Material. Figure 2 shows the schematic screen layout of 
the simulated system that was presented to the participants. 
It was introduced as an electrical system of a power plant. 
The system was built up from four subsystems that were 
responsible for two output systems. Information about the 
state of these subsystems was displayed on four dials (for 
top boxes in Fig.2). Each dial represented the state of one 
subsystem, which was either DOWN (C+) or UP (C-), or 
unknown because its dial was switched off. Only one 
subsystem was causally relevant and served as cause C for 
the outcome of the relevant output system (either E+ or E-). 
The other three subsystems were irrelevant for the task. One 
of them was unused (the dial was switched off) while the 
other two were used as distractors to give the system a more 
diversified appearance. In the lower half of the screen, the 
displays for the output systems were shown. In some of the 
trials participants had to predict the outcome of only one of 
them and in the remaining trials they had to predict the 
outcome of both. If only the outcome of one system had to 
be predicted, the display of the other output system was not 
shown. Whereas one output system (E) was relevant for the 
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experiment the other was used to make the task more 
realistic. 

 
Figure 2. Screen layout (schematic) and sequence of one 

trial of the experiment.  
 

Below the display of each output system two buttons were 
shown for the prediction of the outcome. One button served 
the prediction of MALFUNCTION (E+) and the other one 
the prediction of working operation (OK) (E-). Clicking on 
one of them was necessary to make the prediction. Finally, 
below these buttons a slider was presented that could be 
adjusted to rate the confidence of the judgments. The lowest 
confidence (0%) was set in the middle of the slider. Subjects 
were instructed to place the slider on the very right to 
indicate full confidence (100%) that E- will occur, and on 
the very left to mark full confidence (100%) for E+. 

Procedure. The participants’ task was to predict the 
outcomes (E+ or E-) of the output system(s). To solve this 
task, they had to understand the underlying causal relation 
between the subsystems and the output systems. In each 
trial, they were shown the layout of the device as presented 
in Figure 2. First, subjects had to check the operation of the 
subsystems. Then, based on the information, which was 
shown on the dials, they were requested to predict the state 
of the output system(s) by clicking on the respective buttons 
(OK or MALFUNCTION). Finally, they rated their 
confidence for each prediction by adjusting the respective 
slider(s). After participants finished their prediction and 
confidence rating, they had to click on a 'send' button and 
subsequently received feedback that showed the actual 
outcome(s). The experiment consisted of thirty-three trials. 
These trials were split up in a reinforcement phase and a test 
phase. Figure 3 depicts the experimental procedure 
schematically. Note that the frequencies in the cells of the 
contingency tables in Figure 3 (b) are summed up for both 
phases. In the reinforcement phase, which consisted of 
twenty-six trials, participants received information that 
enabled them to acquire a model of unique causation with 
two rules (R1 & R2, see Table 2). This was accomplished 
by providing positive evidence for R1 (eight trials, see 
Fig.3) and R2 (eight trials, see Fig.3). Additionally, there 
were two distractor trials in which information about an 
irrelevant subsystem was shown only. In the remaining 
eight trials participants had to predict only the outcome of 
the second output system that was irrelevant for the test of 

the hypothesis. After the twenty-six trials of the 
reinforcement phase the test phase started that consisted of 
seven trials. In four of these seven trials, negative evidence 
for one of the two rules (R1 or R2) was presented. The 
negative evidence always opposed the rule reinforced in the 
last trial of the reinforcement phase. In these trials people 
had to predict the outcome of the relevant output system (E) 
only. Another two trials were used as distractor trials 
presenting information about one of the irrelevant 
subsystems. In the seventh and last trial of the test phase the 
post-measure for the relevant test was recorded. Therefore 
data were presented that matched the same rule as in the last 
trial of the reinforcement phase (see Fig.3). 

Independent and dependent variables. Since the model 
of unique causation consisted of two rules, both were used 
to investigate the issues of discrediting and devaluation. For 
this purpose, the sample of sixty participants was split into 
two groups of thirty participants each. One group received 
negative evidence about R1, the other half about R2.  

 
(a) Reinforcement phase. 

 
 
(b) Test of Devaluation Effect phase. 

 
Figure 3. Experimental procedure (schematic). Rein-

forcement phase and test phase were presented in sequence. 
Values are exemplary for one of the two experimental 

groups. Contingency table in (a) displays frequencies for 
reinforcement phase. The trial of the pre-measure also was 
the eighth presentation of (C-, E-), which is updated in (b). 
The contingency table in (b) displays summed frequencies 

for reinforcement phase and test phase. 
 

To investigate the strengthening of rules, the amount of 
positive evidence ranged from one to eight trials (see Fig. 
3a, positive evidence) for each rule (R1 & R2). To test the 
impact of discrediting, the amount of negative evidence 
ranged from one trial to four trials (see Fig.3b, negative 
evidence) for each rule (R1 & R2). The factor measurement 
with the factor levels pre and post served the investigation 
of devaluation as described in the procedure (see Fig.3). 
Throughout the experiment, confidence ratings of inferences 
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predicting the states of the relevant output system were used 
as dependent variable. 

Results 
For statistical analysis, we computed three ANOVAs with 
repeated measures, one for each effect. Additional to the 
significance of effects we report effect sizes after Cohen 
(1988). Cohen (1988) defines small effects from 0.10 < f < 
0.25, medium effects from 0.25 < f < 0.40 and large effects 
from f > 0.40. The effect of strengthening was analyzed 
with a one-factorial ANOVA with repeated measures for 
each rule. We used the number of occurrences of positive 
evidence (1-8) as independent variable. Strengthening 
greatly affected subjects confidence ratings for R1 
(F(7,413)=57.12, p<0.01, f=0.98) as well as R2, 
F(7,413)=46.83, p<0.01, f=0.89. Figure 4 shows the effects 
of strengthening on subjective confidence for both rules. As 
depicted, subjects’ confidence in their prediction of the state 
of the output system strongly increases over time. 
 

 
Figure 4. Effect of positive evidence on confidence 

ratings, depending on the number of trials. Error bars 
represent standard error. 

 
For discrediting rules 1 and 2 (R1 & R2), the four trials with 
negative evidence were run to weaken subjects’ confidence 
in their predictions. Since rule one was discredited for half 
the subjects and rule two was discredited for the other half, 
rule became a factor in the analysis. Therefore a 2x2 
ANOVA with repeated measurement was calculated in 
which the rules of the model (R1 and R2) served as between 
subjects factor and negative evidence (trials 1-4) was a 
within subjects factor. We found a significant large main 
effect of negative evidence (F(3,174)=18.19, p<0.01, 
f=0.56), but no effect of rules (F(1,58)=0.03, p=0.95, 
f=0.00) nor an interaction effect (F(3,174)=1.96, p=0.12, 
f=0.18). Figure 5 visualizes the results. To investigate the 
effect of devaluating a rule (Fig. 6), it seems necessary to 
highlight how we achieved the data for this computation. 
For all subjects rule 1 and rule 2 were strengthened. The last 
trial of the strengthening phase for each rule (trial 8) served 
as pre-measure. However, only for half of the subjects rule 1 
was discredited. If these subjects’ confidence for the 

prediction of rule two (post-measure) was lower after 
discrediting rule one, devaluation took place. Reversely, for 
the other half of the sample rule 2 was discredited. Hence, if 
subjects’ confidence for rule 1 (post-measurement) also 
decreases, devaluation worked as well. 

 

 
Figure 5: Effect of negative evidence on confidence 

ratings. Error bars represent standard error. 
 

 
Figure 6: Effect of devaluation on confidence ratings for 

both rules. Error bars represent standard error. 
 

A 2x2 ANOVA was calculated over the between subjects 
factor rule (either R1 or R2 was discredited) and the within 
subjects factor measurement (pre- and post-measure). This 
analysis revealed a medium main effect of rule 
(F(1,58)=4.47, p=0.03, f=0.28) and a large main effect of 
measurement (F(1,58)=42.66, p<0.01, f=0.85). 
Additionally, we observed a medium significant interaction, 
F(1,58)=5.58, p=0.02, f=0.31. Figure 6 visualizes these 
effects. 

Discussion 
In the present paper we tested three. First, we assumed that 
positive evidence strengthens subjects’ confidence for 
predictions they derived from a set of rules that was 
acquired in the course of an experiment. Empirical evidence 
supported that hypothesis. At the end of the strengthening 
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phase peoples’ confidence was close to 100%. Second, we 
expected a decrease in participants’ confidence in their 
causal inferences if negative evidence discredited the 
respective rules. This hypothesis was empirically confirmed 
as well. Finally, hypothesis three claimed, that negative 
evidence for one aspect of causality results in decreased 
confidence in the complementary aspect as well. Empirical 
findings clearly supported this assumption. This result 
opposes a normative view that would require people to base 
their predictions solely on the given facts. For example, 
given C- subjects should predict E- with high confidence. In 
contrast, despite their correct prediction of E- (in case of C-) 
participants confidence decreased with respect to the critical 
test in the post-measure. This effect emphasizes the idea that 
humans do not consider sufficiency and necessity as 
independent of each other. Instead, once people have 
acquired causal knowledge, they take evidence for both 
aspects into account. They do so, even if the predictions 
they make are solely based on one of them. Hence, we 
conclude that people mentally construct causal models that 
relate sufficiency and necessity. These models can be seen 
as a whole. If one part or aspect of such a model proofs to 
be wrong, subjects loose their confidence for the 
complementary part as well. Existing models of causal 
learning and reasoning aim to explain integrative judgments. 
Hence people are required to integrate information over all 
four cells of the contingency table. Thus, they always have 
to consider both aspects of causality. Therefore these 
models do not fit to the conditions of the experimental task. 
Nevertheless, assuming that subjects frame the task in our 
experiment as to judge the strength of the relation of C and 
E, the Power PC model (Cheng, 1997) would predict a 
confidence level of 66% for the post-measure. This is within 
the range of our results. Hence, if subjects are asked to make 
predictions in a causal learning paradigm, they reframe the 
task to judge the strength of a causal relation of two events. 
According to Griffith and Tennenbaum (2005) parts of the 
experimental task can be described as causal structure 
learning. From this point of view presenting negative 
evidence for one aspect would favor a different causal 
structure (compound causation or alternative causation 
respectively). Hence, it might be that peoples’ post-measure 
judgments reflect their preference for the new structure 
compared to the previous one. Alternatively the post-
measure judgments might reflect participants’ uncertainty 
regarding the new structure. Again, these alternative 
explanations require people to integrate over all contingency 
information. In contrast to these alternative explanations 
there are models of inductive causal learning that are based 
on cognitive architectures and that emphasize the role of 
declarative memory (Drewitz & Thüring, 2009; Drewitz & 
Brandenburg, 2012). These models account for peoples’ 
judgments and their confidence ratings given positive as 
well as negative evidence. They provide a possible 
explanation for peoples’ performance in inductive learning 
based on memory processes. Additionally they do not 
assume that people reframe the experimental task from 

prediction to integrative judgments. To discriminate 
between these explanations, future research should focus on 
the replication of the devaluation effect for more complex 
causal models and different dependent variables like 
reaction times and pupil dilation. If we can replicate the 
effect we also might be able to differentiate between 
possible alternative explanations. 
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