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Abstract

When people have to make predictions and diagnosis they
make use of their causal knowledge. This knowledge refers to
two constituting aspects of causality: sufficiency and
necessity. In standard theories both aspects are considered as
being independent from each other. The present research tests
this assumption. In an experiment we examined how peoples
confidence in one of both aspects is affected, if they receive
negative evidence for the complementary aspect. The
presented data show that peoples confidence related to the
aspect that has not been challenged by negative evidence
decreases under such conditions. This devaluation effect is
not predicted by standard theories.
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Introduction

When people make a causal statement like: 4 causes B, they
attribute a causal relation. This attribution can be based on
various cues to causality (Einhorn and Hogarth, 1986) like
spatial and temporal contiguity. However, in many
situations people need more information than these. Being
repeatedly confronted with a phenomenon, people (can)
look for regularities as well. Psychological theories claim,
that under such circumstances causal attributions rely on
contingency information. Contingency information describe
how the occurrence or absence of one event (i.e. event C)
goes together with the occurrence or absence of another
event (i.e. event E). Based on this information people can
determine how likely an effect of interest will occur, given
the presence or absence of a putative cause. According to
standard psychological theories (e.g. Waldmann & Holyoak,
1992; Waldmann & Hagmayer, 2001; Griffith &
Tenenbaum, 2005) people integrate the information about
the (co-)occurrence and (co-)absence to either infer a causal
relation or estimate it' s strength, respectively. Therefore
standard psychological theories claim that people base their
judgments on all available data for contingency information.
This is a reasonable assumption for situations where people
do causal judgments. In contrast, in many real-world tasks
people do not have to do such integrative judgments. They
apply their knowledge to forecast events (i.e. E+ / E-) based
on given data (i.e. C+ / C-). In probability calculus this is
captured by conditional probabilities. The prediction of E+
for example can be made based on P(E+/C+) or P(E+/C-)
(see Fig. 1) depending on whether C+ or C- is present.
These conditional probabilities are independent of each
other. Given these facts, standard theories do not predict
effects of information integration over all contingency data.

Hence, for a prediction of E given C, persons would not
integrate over all the four possible pairings of the two events
(i.e. C & E). However, we present experimental data that
contradict this position.

Sufficiency and Necessity

Various so called rule-based models (see Allan, 1980) have
been proposed in research literature (e.g. Jenkins & Ward,
1965; Cheng & Novick, 1992; Cheng, 1997; White, 2003).
They assume that persons rely on frequencies of (co-)
occurrence and (co-) absence of two events (i.e. C & E).
The four cells in the contingency table in Figure 1 represent
their four possible pairings. With respect to these two
events, every observation can be assigned to one pairing and
as such, to one cell of the contingency table. Every
observation gives either positive or negative evidence to one
of both aspects of causality: sufficiency and necessity.
Positive evidence can be understood as strengthening an
aspect (either sufficiency or necessity). Comparably,
negative evidence weakens an aspect. Sufficiency and
necessity are complementary building blocks of causality
(e.g. Mill, 1869). An event C is recognized as sufficient to
produce another event E, if the latter always follows the
occurrence of the former. The same event C is considered as
necessary to bring forth the event E, if its absence of C is
always accompanied by the absence of E.
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Figure 1. 2x2 contingency table (+ indicates presence, -
indicates absence).

Moreover, sufficiency and necessity are statistically
independent of each other. Whereas the sufficiency of a
putative cause for an effect depends on the frequencies in
the cells a and b, the necessity is determined by the
frequencies in the cells ¢ and d (see Fig.1). Two different,
statistically independent conditional probabilities capture
these facts (see Fig.1): the probability of the presence of E
given the presence of C, P(E+/C+), and the probability of
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the presence of E given the absence of C, P(E+/C-). These
probabilities are complementary in the sense of causality.
People are willing to attribute a causal relation between two
events if both aspects are met. This idea goes back to John
Stuart Mill (1869) who claimed that causal knowledge does
not arise from the repeated observation of the sequence of
two events only. Instead people also acknowledge what
happens if a putative cause fails to appear. From this
perspective, causes can be characterized in terms of
sufficiency and necessity and both of these aspects have to
be satisfied. Every observation that belongs to the pairing of
cell a gives positive evidence to the sufficiency of the
putative cause C for E, the effect of interest. Just as all
observations that belong to the pairing of cell d give
evidence to the necessity of C for E.

How do the described facts fall into the scope of standard
theories of causal learning (see introduction)? These
theories describe how people come up with a judgment,
when they are requested to rate the strength of a causal
relation in a causal attribution task. In such tasks people
base their judgments on both aspects (sufficiency and
necessity), which means that they consider all four
frequencies that can be presented in contingency
information (see Figure 1). Of course, people do integrative
judgments in real-world tasks. But very often they have to
make predictions based on given data. In turn, as soon as
people can rely for example on the presence or absence of
C, i.e. on C+ or C-, their prediction is related to only one of
both aspects. For example, given the presence or absence of
C (C+ or C-), people act differently as if they were asked to
rate the strength of the relation between C and E. Let us
assume people have seen numerous pairings where one
event C precedes another event E (frequency in cell a).
Based on these observations people will predict E+
(presence of E) given C+ (presence of C). In such a case,
there is no need to integrate the information about C-
(absence of C), which is captured by the frequencies in cells
¢ and d. On the other hand, if C- (absence of C) precedes E-
(absence of E), which is represented by the frequency in cell
d, people might use this information to predict that £ will
not occur given the absence of C. In that case information
with respect to C+ (cells a and b) can be ignored.
Consequently, given the independence of both aspects,
neither positive nor negative evidence related to one of the
aspects should affect inferences related to the
complementary aspect. In contrast, we claim that such an
effect exists. We tested this hypothesis based on the
representation of causal knowledge, which is introduced in
the next section.

Mental Causal Models

Several ways have been proposed to represent causal
knowledge. For example Thiiring and Jungermann (1992)
suggest that people acquire mental models of causation in
terms of conditional rules (e.g. If C+ then E+.). The
conditional rules of a model reflect the characteristics of
sufficiency and necessity of a causal relationship. This is in

line with the conception of causes as sufficient and
necessary conditions for their effects. As shown by Thiiring,
Drewitz and Urbas (2006) these conditional rules can be
obtained by mere induction. In the case of the model of
unique causation (see Table 1), which states that "C causes
E", the event C is framed as a sufficient as well as a
necessary condition for the event E. This is captured by the
rules R1 and R2 in Table 1. When a situation calls for a
causal inference, the available data (for instance C+ or C-)
are matched with the rules (R1 and R2) and the required
information is deduced.

Table 1: Model of unique causation.

Model statement: "C causes E"

R1: C+> E+
R2: C- > E-

The importance of rules like R1 and R2 lies in the savings
they provide. Rules save costs such as time, attention or
memory capacity. However, to get all the benefit rules
entail, they have to be linked into higher-order knowledge,
like models. Let us have a look on both our rules R1 and
R2. Neither R1 nor R2 tell us whether there is a causal
relation between C and E, or not. Only when they are linked
together one possesses this knowledge. We call the linking
of rules the construction of a mental model. In this sense the
statement "C causes E" is knowledge acquired by building
the model, not by having the two rules R1 and R2 only. That
also means that as soon as the rules are linked into a model,
there is more than there was before. Or, in other words: The
whole is more than the sum of its parts. Assuming that our
considerations are right, we can ask the following question:
If the whole - the mental model - is questioned because one
of its parts fails, is there an effect on the other parts as well?
In terms of the model of unique causation (see. Tab. 1):
When people observe that one rule fails to predict the
outcome, is there an effect on how they use the
complementary other rule?

Causal Inferences under Uncertainty

Before we have a closer look on this question we want to
make clear what known effects the failure of rule has.
Depending on how successful the application of a rule was
in the past, people will place more or less confidence into
their predictions deduced from that rule. Let's think, for
example, of a person that has rather limited causal
knowledge as expressed by the model of unique causation.
Whenever this person faces a situation where C+ is present,
she will apply R1 and predict E+. Vice versa she will
predict E- if C- is present, based on R2. As long as E+ goes
always together with C+ all her predictions deduced from
R1 are confirmed. Hence, her faith in R1 and therefore the
confidence she places in her predictions should be high. The
same holds for R2 and the related predictions as long as E-
goes always together with C-. However, that will change as
soon as it turns out that a rule is wrong. If people have build
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up incomplete or incorrect rules they will come up with
wrong inferences in the course of events. Let's assume that
in truth C+ in conjunction with another event X+ may be
sufficient for E+ instead of C+ alone. In such a case people
will observe E- subsequent to C+ whenever X is absent (X-
). An observation like this will impair the sufficiency of C
for E. Moreover, such an observation will discredit the rule
R1. In general, every prediction that is not confirmed but
contradicted by a subsequent observation discredits the rule
it is derived from. Consequently, as long as a person cannot
expand her model, she will loose confidence in the
respective rule. All a person can do in such an uncertain
situation is to reduce the confidence she places in her
predictions based on that rule. Hence, the question we raised
at the end of the last section remains unanswered. But now,
we can reformulate and ask more specifically: Is the effect
of the reduction of confidence always limited to the rule that
was discredited?

Discrediting and Devaluating Causal Rules

To start with let us return to contingency information.
Figure 1 shows a contingency table for the model of unique
causation. A person’s observations that fall into cell a
provide evidence for the reliability of rule R1, while
observations that fall into cell ‘d’ provide evidence for the
reliability of R2 (see Table 1). On the other hand, all
observations made in cell b discredit R1, while all
observations made in cell ¢ discredit R2. Therefore, the first
row of the table provides information about the sufficiency
of the cause and the second row about its necessity. As
depicted in Figure 1 a cause is only completely sufficient, if
observations are made in cell a, but not in cell b, and it is
only completely necessary, if observations are made in cell
d, but not in cell c. Only in these cases, the conditional
probabilities are at their optimum with respect to a causal
relation between C and E. From this point of view, the
optimum of P(E+/C+) equals one and equals zero for
P(E+/C-). Additionally, an increase or decrease of P(E+/C+)
does not affect P(E+/C-) and vice versa. What does this
mean from a psychological perspective? The first
implication is consistent with the mechanism of discrediting
a rule. When the sufficiency or necessity is weakened, the
certainty of inferences based on the respective rule should
decrease. For instance, if an observation of C+ together with
E- (see cell b in Fig.1) is made, the aspect of sufficiency of
C for E is weakened. Subsequently, inferences based on R1
go along with a reduced certainty. The second implication
touches the central issue of this paper. It illustrates our
assumption of devaluation. We assume that negative
evidence for one aspect of causality will be reflected by
increased uncertainty about the complementary aspect of
causality. For instance, if R1 is discredited by negative
evidence (observations that fall into cell b), confidence in
R2 decreases as well. We call this the effect of devaluation.
Table 2 shows which observation discredits and devaluates
the rules of the model of unique causation.

So far, we have described the consequences of positive
evidence that strengthens a rule and the consequences of
negative evidence that weakens a rule in terms of
discrediting and devaluation. This leads to three hypotheses:

1. Strengthening: Observations that fall into cell a and d
of the contingency tables provide positive evidence for
the respective rules of the models and should increase
the confidence in inferences drawn from these rules.

2. Discrediting: Observations that fall into cell b and cell
¢ provide negative evidence and discredit the rules as
shown in table 2. In all these cases, the confidence in
inferences drawn from the rules should get reduced.

3. Devaluation: Observations that fall into cell b and cell
¢ should devaluate the complementary rules as shown
in table 2. Again, the confidence in inferences from the
affected rules should decrease.

The following experiment serves to test these hypotheses.

Table 2: Discrediting and devaluating causal rules.

Rule Observation Discrediting Devaluation
of of
R1: C+>E+ C+, E- R1 R2
R2: C- > E- C-, E+ R2 RI
Experiment

In our study, participants had to acquire causal knowledge
about a simulated technical system based on inductive
learning. Over the course of the experiment, positive as well
as negative evidence was presented to investigate the
consequences of discrediting and devaluation.

Method

Participants. Sixty graduate and undergraduate students at
the Berlin Institute of Technology were recruited for the
experiment. All of them were paid for their participation.
Material. Figure 2 shows the schematic screen layout of
the simulated system that was presented to the participants.
It was introduced as an electrical system of a power plant.
The system was built up from four subsystems that were
responsible for two output systems. Information about the
state of these subsystems was displayed on four dials (for
top boxes in Fig.2). Each dial represented the state of one
subsystem, which was either DOWN (C+) or UP (C-), or
unknown because its dial was switched off. Only one
subsystem was causally relevant and served as cause C for
the outcome of the relevant output system (either E+ or E-).
The other three subsystems were irrelevant for the task. One
of them was unused (the dial was switched off) while the
other two were used as distractors to give the system a more
diversified appearance. In the lower half of the screen, the
displays for the output systems were shown. In some of the
trials participants had to predict the outcome of only one of
them and in the remaining trials they had to predict the
outcome of both. If only the outcome of one system had to
be predicted, the display of the other output system was not
shown. Whereas one output system (E) was relevant for the
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experiment the other was used to make the task more

realistic.

L ]
| dials of the subsystems
’ 7 B Lmn} } displays of the output systems
(e J(E]
- —_— -
prediction
N ]

time

feedback

Figure 2. Screen layout (schematic) and sequence of one
trial of the experiment.

Below the display of each output system two buttons were
shown for the prediction of the outcome. One button served
the prediction of MALFUNCTION (E+) and the other one
the prediction of working operation (OK) (E-). Clicking on
one of them was necessary to make the prediction. Finally,
below these buttons a slider was presented that could be
adjusted to rate the confidence of the judgments. The lowest
confidence (0%) was set in the middle of the slider. Subjects
were instructed to place the slider on the very right to
indicate full confidence (100%) that E- will occur, and on
the very left to mark full confidence (100%) for E+.
Procedure. The participants’ task was to predict the
outcomes (E+ or E-) of the output system(s). To solve this
task, they had to understand the underlying causal relation
between the subsystems and the output systems. In each
trial, they were shown the layout of the device as presented
in Figure 2. First, subjects had to check the operation of the
subsystems. Then, based on the information, which was
shown on the dials, they were requested to predict the state
of the output system(s) by clicking on the respective buttons
(OK or MALFUNCTION). Finally, they rated their
confidence for each prediction by adjusting the respective
slider(s). After participants finished their prediction and
confidence rating, they had to click on a 'send' button and
subsequently received feedback that showed the actual
outcome(s). The experiment consisted of thirty-three trials.
These trials were split up in a reinforcement phase and a test
phase. Figure 3 depicts the experimental procedure
schematically. Note that the frequencies in the cells of the
contingency tables in Figure 3 (b) are summed up for both
phases. In the reinforcement phase, which consisted of
twenty-six trials, participants received information that
enabled them to acquire a model of unique causation with
two rules (R1 & R2, see Table 2). This was accomplished
by providing positive evidence for R1 (eight trials, see
Fig.3) and R2 (eight trials, see Fig.3). Additionally, there
were two distractor trials in which information about an
irrelevant subsystem was shown only. In the remaining
eight trials participants had to predict only the outcome of
the second output system that was irrelevant for the test of

the hypothesis. After the twenty-six trials of the
reinforcement phase the test phase started that consisted of
seven trials. In four of these seven trials, negative evidence
for one of the two rules (R1 or R2) was presented. The
negative evidence always opposed the rule reinforced in the
last trial of the reinforcement phase. In these trials people
had to predict the outcome of the relevant output system (E)
only. Another two trials were used as distractor trials
presenting information about one of the irrelevant
subsystems. In the seventh and last trial of the test phase the
post-measure for the relevant test was recorded. Therefore
data were presented that matched the same rule as in the last
trial of the reinforcement phase (see Fig.3).

Independent and dependent variables. Since the model
of unique causation consisted of two rules, both were used
to investigate the issues of discrediting and devaluation. For
this purpose, the sample of sixty participants was split into
two groups of thirty participants each. One group received
negative evidence about R1, the other half about R2.

(a) Reinforcement phase.

E+ E-
measure of confidence
C+| 8 0 for prediction
based on:
C-
0|7 C-

time

positive evidence pre-measure

(b) Test of Devaluation Effect phase.

E+ E-
measure of confidence
C+| 8 4 for prediction
based on:
C-
0 8 C-
°® S

. : time
negative evidence

Figure 3. Experimental procedure (schematic). Rein-
forcement phase and test phase were presented in sequence.
Values are exemplary for one of the two experimental
groups. Contingency table in (a) displays frequencies for
reinforcement phase. The trial of the pre-measure also was
the eighth presentation of (C-, E-), which is updated in (b).
The contingency table in (b) displays summed frequencies
for reinforcement phase and test phase.

post-measure

To investigate the strengthening of rules, the amount of
positive evidence ranged from one to eight trials (see Fig.
3a, positive evidence) for each rule (R1 & R2). To test the
impact of discrediting, the amount of negative evidence
ranged from one trial to four trials (see Fig.3b, negative
evidence) for each rule (R1 & R2). The factor measurement
with the factor levels pre and post served the investigation
of devaluation as described in the procedure (see Fig.3).
Throughout the experiment, confidence ratings of inferences
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predicting the states of the relevant output system were used
as dependent variable.

Results

For statistical analysis, we computed three ANOVAs with
repeated measures, one for each effect. Additional to the
significance of effects we report effect sizes after Cohen
(1988). Cohen (1988) defines small effects from 0.10 < f <
0.25, medium effects from 0.25 < f < 0.40 and large effects
from f > 0.40. The effect of strengthening was analyzed
with a one-factorial ANOVA with repeated measures for
each rule. We used the number of occurrences of positive
evidence (1-8) as independent variable. Strengthening
greatly affected subjects confidence ratings for RI
(F(7,413)=57.12, p<0.01, f=0.98) as well as R2,
F(7,413)=46.83, p<0.01, £=0.89. Figure 4 shows the effects
of strengthening on subjective confidence for both rules. As
depicted, subjects’ confidence in their prediction of the state
of the output system strongly increases over time.

100 17
90 A
80 1
70 A
60 1

—R1
- =-R2

confidence in %

50 A

40 A

30 1

20

trials

Figure 4. Effect of positive evidence on confidence
ratings, depending on the number of trials. Error bars
represent standard error.

For discrediting rules 1 and 2 (R1 & R2), the four trials with
negative evidence were run to weaken subjects’ confidence
in their predictions. Since rule one was discredited for half
the subjects and rule two was discredited for the other half,
rule became a factor in the analysis. Therefore a 2x2
ANOVA with repeated measurement was calculated in
which the rules of the model (R1 and R2) served as between
subjects factor and negative evidence (trials 1-4) was a
within subjects factor. We found a significant large main
effect of negative evidence (F(3,174)=18.19, p<0.01,
f=0.56), but no effect of rules (F(1,58)=0.03, p=0.95,
f=0.00) nor an interaction effect (F(3,174)=1.96, p=0.12,
£=0.18). Figure 5 visualizes the results. To investigate the
effect of devaluating a rule (Fig. 6), it seems necessary to
highlight how we achieved the data for this computation.
For all subjects rule 1 and rule 2 were strengthened. The last
trial of the strengthening phase for each rule (trial 8) served
as pre-measure. However, only for half of the subjects rule 1
was discredited. If these subjects’ confidence for the

prediction of rule two (post-measure) was lower after
discrediting rule one, devaluation took place. Reversely, for
the other half of the sample rule 2 was discredited. Hence, if
subjects’ confidence for rule 1 (post-measurement) also
decreases, devaluation worked as well.
100 17
90 1

80

70 1

confidence in %

60 1

50 A

40

trials

Figure 5: Effect of negative evidence on confidence
ratings. Error bars represent standard error.
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Figure 6: Effect of devaluation on confidence ratings for
both rules. Error bars represent standard error.

A 2x2 ANOVA was calculated over the between subjects
factor rule (either R1 or R2 was discredited) and the within
subjects factor measurement (pre- and post-measure). This
analysis revealed a medium main effect of rule
(F(1,58)=4.47, p=0.03, f=0.28) and a large main effect of
measurement (F(1,58)=42.66, p<0.01, =0.85).
Additionally, we observed a medium significant interaction,
F(1,58)=5.58, p=0.02, f=0.31. Figure 6 visualizes these
effects.

Discussion

In the present paper we tested three. First, we assumed that
positive evidence strengthens subjects’ confidence for
predictions they derived from a set of rules that was
acquired in the course of an experiment. Empirical evidence
supported that hypothesis. At the end of the strengthening
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phase peoples’ confidence was close to 100%. Second, we
expected a decrease in participants’ confidence in their
causal inferences if negative evidence discredited the
respective rules. This hypothesis was empirically confirmed
as well. Finally, hypothesis three claimed, that negative
evidence for one aspect of causality results in decreased
confidence in the complementary aspect as well. Empirical
findings clearly supported this assumption. This result
opposes a normative view that would require people to base
their predictions solely on the given facts. For example,
given C- subjects should predict E- with high confidence. In
contrast, despite their correct prediction of E- (in case of C-)
participants confidence decreased with respect to the critical
test in the post-measure. This effect emphasizes the idea that
humans do not consider sufficiency and necessity as
independent of each other. Instead, once people have
acquired causal knowledge, they take evidence for both
aspects into account. They do so, even if the predictions
they make are solely based on one of them. Hence, we
conclude that people mentally construct causal models that
relate sufficiency and necessity. These models can be seen
as a whole. If one part or aspect of such a model proofs to
be wrong, subjects loose their confidence for the
complementary part as well. Existing models of causal
learning and reasoning aim to explain integrative judgments.
Hence people are required to integrate information over all
four cells of the contingency table. Thus, they always have
to consider both aspects of causality. Therefore these
models do not fit to the conditions of the experimental task.
Nevertheless, assuming that subjects frame the task in our
experiment as to judge the strength of the relation of C and
E, the Power PC model (Cheng, 1997) would predict a
confidence level of 66% for the post-measure. This is within
the range of our results. Hence, if subjects are asked to make
predictions in a causal learning paradigm, they reframe the
task to judge the strength of a causal relation of two events.
According to Griffith and Tennenbaum (2005) parts of the
experimental task can be described as causal structure
learning. From this point of view presenting negative
evidence for one aspect would favor a different causal
structure (compound causation or alternative causation
respectively). Hence, it might be that peoples’ post-measure
judgments reflect their preference for the new structure
compared to the previous one. Alternatively the post-
measure judgments might reflect participants’ uncertainty
regarding the new structure. Again, these alternative
explanations require people to integrate over all contingency
information. In contrast to these alternative explanations
there are models of inductive causal learning that are based
on cognitive architectures and that emphasize the role of
declarative memory (Drewitz & Thiiring, 2009; Drewitz &
Brandenburg, 2012). These models account for peoples’
judgments and their confidence ratings given positive as
well as negative evidence. They provide a possible
explanation for peoples’ performance in inductive learning
based on memory processes. Additionally they do not
assume that people reframe the experimental task from

prediction to integrative judgments. To discriminate
between these explanations, future research should focus on
the replication of the devaluation effect for more complex
causal models and different dependent variables like
reaction times and pupil dilation. If we can replicate the
effect we also might be able to differentiate between
possible alternative explanations.
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