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Abstract that research into similarity has focused almost excligive
on similarities between only the most related items.
Research into word meaning and similarity structure tylica From a methodological point of view, this is not surprising:
focus on hlghly related entities likeaTs andMmICE. However, if asked to rate how similarAlL andTEACHER are to each

most items in the world are only weakly related. Does our rep-
resentation of the world encode any information about these other, most people would struggle to know how to answer.

weak relationships? Using a three-alternative forcedegho Y€t this struggle does not necessarily imply that no under-
similarity task, we investigate to what extent people agnee lying representation of similarity exists. As Goodman (297
the relationships underlying words that are only weakly re- and others have pointed out, it is always possible to find some
lated. These experiments show systematic preferences abou pggis for saying thatAiL andTEACHERare similar. The real
which items are perceived as most similar. A similarity mea- tion is which of th b f t of h tal
sure based on semantic network graphs gives a good account dUESUON IS Which ot tnese bases form part of human menta
for human ratings of weak similarity. representations, and whether there exist any systemgtie re
Keywords: similarity; semantic networks; word associations.  larities in how people spontaneously assess these weak rela

tionships. The goal in this paper is to investigate (a) waeth

Although similarity is a fundamental concept in cognitive these regularities exist, and (b) whether they can be accom-
science, it is still not yet well understood. Any two enti- modated by existing theories of semantic representation.

ties have a potentially infinite number of features or predi- Viewed as a problem of rating the stimuli between two en-
cates in common, making it always possible to conspost  lities that are only weakly related, the challenge seems in-
hocexplanations for why any items are similar to each othefractable. Intuitively it feels like the the similarity beeen
(Goodman, 1972; Medin, Goldstone, & Gentner, 1993). Ever!AlL and TEACHER is zero, and there is little underlying
if similarity is logically vacuous, of course, it is not nesar- structure to be four_1d. However, suppose the task were framed
ily psychologically vacuous: there may indeed be a small o@S @ three-alternative forced-choice problem (e.g., Nevar
at least finite number of sharegpresentegredicates (Medin L€, 2002). Which of the following three concepts is the odd
& Ortony, 1989). However, while shared representations maPne Out: CUP, TEACHER and HAIL? Framed in this fash-
well explain why people share clear intuitions about theisim 10N, the problem seems less intractable, and many people
larity of strongly related items likeATS andmICE, the notion ~ Nave very strong intuitions about what the answer should be.
of shared representations may not apply when the items areometimes the intuition can be so strong that it may.be diffi-
only weakly related. After all, the only predicates that lgpp cult to see why the answer to the question is not obvious.
to such disparate items &,INBOW and TUNAFISH are so As an illustration, in our discussions of this specific ®ipl
vague and generic that appealing to them to explain sirtyilari one author strongly felt that ACHER was obviously the odd
begins to make it nearly as underconstrained psycholdgical one out because teachers are people and the other two are not
as Goodman first showed it was in a logical sense. (an “animate vs inanimate” distinction). Another stronfgit
Despite the questions that weak similarity raises about théhatHAIL is the odd one out because it is a mass noun and the
nature of our underlying mental representations, it is atmo other two are count nouns (a “things vs stuff” distinction).
entirely unstudied. Almost all investigations into stimsil  In both cases the choice also invokes quite abstract ontolog
similarity have focused on items that tend to be quite simi-cal categories, and relies on very broad general knowledge
lar to one another — we ask people to compare the similarit@bout the world. Obviously the decision to rely on a partic-
of CATS to MICE, or of MICE andMEN. Rarely if ever do ular category to guide the decision making is the result of
we ask people questions about weak similarities. We can géen the fly” reasoning about the items. Although nobody felt
a sense of how extreme this bias is by examining the empirthat CuP was the odd one out, it is interesting that for both
ical data for a set of 372 concepts belonging to 15 naturafuthors the intuitions were quite strong, so much so that the
categories (e.g., fruit, tools, sports), as in Ruts et 404).  Were somewhat surprised to discover that the supposediy “ob
We used numerical methods to calculate theoretical valuegous” choice was not, in fact, so obvious.
for the similarities between all pairs of words in a database This leaves us with an open question: how deep does the
of 12,000 word associations. Comparing the two, we foundstructure in our mental representations go? One posgibilit
that theweakessimilarities for which we have empirical data is that there is significant agreement and constraint in our
werestrongerthan 97% of the similarities that were predicted mental representations only when considering the relation
according to the word association data base. This suggesship between entities that are strongly related to eactr.othe
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In other words, the Medin and Ortony (1989) argument about R

shared predicates may only apply between items that are al-

ready highly related. If this is the case, then one might ekpe

Goodman’s problem to arise when we try to measure weak

similarities, causing each person’s judgment to be esdbnti

arbitrary and there to be few stable preferences acrossegeop

The other possibility is that there is enough shared stractu

in our mental representations that there is a strong agmeteme hail

ﬁ\;eu? ;%rdiléihcitéalqnzgnedF:?)Irémgs REINBOW andTUNARISH, Figure 1: Example triple stimulus used in Experiment 1. The
In the first half of this papér we present two experimentsblaCk circles indicate the controls used to select a pain wit
exploring weak similarity structure in humans. We show thatin€ mouse.
similarity ratings of weakly related items are neverthelms- . . .
prisingly regular across people, and moreover that siitjlar ticipants two example triples: in the first onedLp - HOT
judgments can be manipulated in sensible ways. In the sec-SQUARE) the first two words are related, and in the second
ond half, we investigate the nature of the underlying repre®n€ MOIST - COLD - cool) the last two are. Participants
sentations that might give rise to these similarity judgteen Were asked to do their best even if the task seemed difficult,
Computational modelling demonstrates that weak simigewit and not to dwell too long on a single trial but to complete the
like those found in our experiments can be at least partiallfaSk in & spontaneous manner. The task was presented as a
captured by semantic network models constructed from wordVeb questionnaire during a collective testing session.

association data.

teacher

Results

Experiment 1 Our key question was to what extent people tended to se-
],ect the same pairs. If weak similarities do not exist or are
not reliably shared by different people, we would expect all
three possible pairs from every triple to be selected eguall
frequently. We test this in two different ways.

The first test of inter-rater reliability is to measure how of
ten the most frequent pair from every triple is chosen. Since
there are three possible pairs in any given triple, chance re
M ethod sponding is 0.33. However, the median value was 0.67 — well
above what one might expect by chance. Moreover, as Fig-
ure 2 illustrates, for 97 of the 100 triples the most commonly
chosen response was selected significantly more frequently
Stimuli and Materials The stimuli were 300 nouns taken than would be expected by charfce.
from a set of 12,000 Dutch words used as cues in the word Instead of just looking at the most frequent pair of any
association task described in De Deyne and Storms (2008tiple, we can also measure how much people’s weak similar-
and De Deyne, Voorspoels, Verheyen, Navarro, and Stormity judgments agree with one another in a more conventional
(2011)! These items were used to produce triples, whichway. We therefore rag? goodness-of-fit tests comparing the
were sampled at random given two constraints. Each itenebserved frequencies across the three responses to a faull hy
in a triple was required to have approximately the sameothesis that all three responses are equally likely foheac
frequency and imageability rating, in order to ensure thatriple separately. Taking this approach, the frequendi&90
participant responses reflected underlying semanticedat out of the 100 triples were significantly different from thain
ness rather than superficial similarities in concreteness dchypothesisx?(2), p < 0.05.
familiarity. Word frequency was calculated based on the The results so far suggest that people encode weak regu-
log-transformed lemma frequencies taken from the CELEXarities from the environment and do this in a systematic and
database (Baayen, Piepenbrock, & van Rijn, 1993), while immeasurable way. How robust is this finding? We consider this
ageability was derived from judgments on a seven-poingscalquestion in the next experiment.
found in De Deyne and Storms (2008a). Within any triple, the
maximum standard deviation w&Dmax = 0.52 for lemma Experiment 2

frequency anDmax= 0.84 for imageability. The goal of this experiment is to investigate how robust the

Procedure On each trial three words were presented at thdesults from the first experiment are. If weak similarities a
corners of a triangle, as shown in Figure 1. Participantewer0t “hard coded” in some way, then they must be derived or
instructed to click on the circle corresponding to the sifle o constructed somehow. Perhaps people are deriving them by
the triangle that connected the most related pairs. Wesstdes S€arching a semantic network for the proximity of the two
in these instructions th_at we were |n.tergst.ed n the mearfing 2Note that the hypothesis tests here were conducted using a nu
words rather than their orthographic similarity or phorplo  merically simulated null distribution, since the samplaistribution
ical relatedness. To illustrate what we meant, we gave palsf the maximum frequency is an extreme-value statistic anbt
correctly described by a binomial distribution; it is, hawee trivial

1The complete list of stimuli including English translatiois to simulate numerically. Using this sampling distributidime criti-
available attt p: // ppw. kul euven. be/ concat / si non/ cal value was 0.39, corresponding to the cutoff shown infeigu

Our main goal in this experiment was to investigate whethe
people reliably agree in their similarity judgments even be
tween weakly related entities. In order to avoid the difficul
ties inherent in asking for similarity ratings between tvasy
different items, we had participants choose which pair dut o
three possibles pairs in a triple was the most similar one.

Participants Sixty-nine native Dutch speaking psychology
students participated in exchange for course credit.
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Figure 2: Distribution of the most frequently chosen pairs i Figure 3: Distribution of the most frequently chosen pairs i
Experiment 1. The vertical line indicates the 95% confidencé&xperiment 2. The vertical line indicates the 95% confidence
boundary for the frequency one would expect if pairs wereboundary for the frequency one would expect if pairs were
chosen randomly. Participants agreed with each other in se&hosen randomly. As before, participants agreed with each
lecting the pairs for almost all of the stimuli in the expeeint.  other in selecting the pairs for most of the stimuli in theexp
iment. However, agreement was somewhat lower, suggesting
items to each other, or constructing them on the fly basethat the time pressure made them unable to fully access their
on some other underlying representation. In either case, wsemantic representations, adding noise to their responses
would expect that time pressure would cause less accurate es
timations and more disagreement between individualsltresu
ing in more uniform choice probabilities than were found in
Experiment 1. We therefore repeated the experiment, with th
variation that this time we put participants under time pres
sure by asking them to decide which pair is more related a
quickly as possible.

average, as well as reaction times faster than 300ms. The
average reaction time was 3771n8D(= 2131). A log-
transformation was used to reduce the skew in the reaction
gmes. Next, for each participants the reaction times were
ransformed ta-scores, resulting in a Spearman-Brown split
reliability (zZRT) of 0.83. Since we did not record reaction
Method times in the first experiment, it is not certain that the par-
ticipants actually payed attention to the instructions ead
sponding faster, as asked. We investigated if this was the
case by running 18 new participants in Experiment 1, this
Stimuli and Materials The stimuli and materials were tme measuring their reaction times registered by keyboard
identical to those presented in Experiment 1. response. The resulting reaction times had a mean of 4705ms
(SD= 2864), about one full second slower than the speeded
Procedure The procedure was based on Experiment 1, bufudgments in Experiment 2.
a few changes were made to allow for the accurate measure-We can now explore the answer to our central question:
ment of reaction times. Instead of using the mouse, particiwhat effect did time pressure have on the reliability of weak
pants were asked to use the keyboard, and to decide as quickdimilarity judgments? As before, we can measure how often
as possible which pair of words was related. At the beginthe most frequent pair from every triple was chosen. Remem-
ning of each trial, the triple triangle was presented withou bering that chance responding would be reflected in a value
the words until the participant pressed the space bar, whichf 0.33, we find a median value of 0.57. As predicted, this
displayed the words at each corner. Unlike in Experiment 1js lower than the 0.67 of Experiment 1, but higher than what
the black circles in Figure 1 were now labeled with eitder one would find if responses were random. We also found
K, or L, and participants indicated which pair was most re-that for the vast majority of triples (93 out of 100), the most
lated by pressing the correspondifid< or L key. common response was selected significantly more often than
In order to make sure participants understood the task andrould be expected by chance. Figure 3 shows the distribu-
were answering as quickly as possible, the main test was préion of responses. It is evident that, while putting people
ceded by 20 practice items that had the wostsdl, word2  under time pressure increases the uniformity of the distrib
andword3as labels at randomized locations. The participantgion of responses, there is still substantial agreements Th
were asked to click on the letter connecting word1 and word2ntuition is supported by thg? goodness-of-fit tests done for
as quickly as possible. During this time a warning was showreach triple, which finds that the frequencies within 89 out of
when reaction times were slower than 3600ms, and particithe 100 triplets were significantly different from a null hy-

Participants Thirty native Dutch speaking students partic-
ipated in exchange for course credits.

pants were asked to try to make a faster response. pothesis under which all three pairs would be equally likely
(x3(2), p< 0.05).
Results The results of these two experiments demonstrate that there

Before evaluating what effect the time pressure manipmrati is consistent and reliable agreement on similarity judgsien
had, we first needed to clean up the reaction time data. Faven when the entities involved are only weakly relatea lik
each individual we therefore removed any responses with resupP and TEACHER. On some level, this agreement is sur-
action times higher than three standard deviations ab@¥e th prising, because such items only share features if so many
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features are represented that we begin to run afoul of Goodrodes (words) is very low. This is less of a problem when
man’s problem. Even then, it is unclear that the items ordealing with very similar concepts, because they are likely
which there is agreement are the items with more shared feahare some edges despite the overall sparsity of the network
tures. A more likely explanation of this finding may be that However, sparsity is a serious problem for other concepts.
people show strong agreement because they share the kindfie same problem arises for non-network-based represen-
semantic representation that is at least partially cagthyea  tations like feature overlap, because the number of festure
semantic network. In the next section, we explore this posshared by weakly related items is very low, if not zero.

sibility by modelling the similarities from the two previeu Given the problems imposed by sparsity, how can we mea-

experiments based on semantic graphs. sure similarity in a semantic network in a sensible way? We
o consider two different approaches here. The firstis thelwide
Graph based modelsfor weak similarity used cosine measure of similarity (e.g., Landauer & Dumais,

%1997; Steyvers, Shiffrin, & Nelson, 2004), which measures

In this section we investigate the hypothesis that at leas . ; ;
some of the agreement between people about weak simila he extent to which two nodes in the graph share the same im-

ities arises due to shared semantic network represensl;atiormedIate neighbors. Two nodes that share no neighbors have a

Network-based models for similarity have been proposed ir?imilarity of 0, and n_od_es Fhat are linked to t.he exactsarne se
related domains (e theeTscAL model by Hutchinson of neighbors have similarity 1. Formally, it is defined as fol
g y - éows. LetA denote a weighted adjacency matrix, whigsth
(1998)), but the most similar models in psychology are theelementa” contains a count O.f .the number of times ward
given as an associate of warth a word association task.

spreading activation models which accounted for a numbe'éach row inA is therefore a vector containing the associate
of interesting semantic effects (e.g. Quillian, 1968). ! : ; g Ih€ assocl:
Why might we expect semantic networks to capture som requencies for word. The cosine measure of similarity is
he angle between these vectors, calculated as follows: be-
ause some words can have more associates than others, we

of the representation with which weak similarities are gen-
? i ;

erated? Such networks probably reflect something about th ormalize each row so that all of these vectors are of length 1
duis gives us a new matri, wheregi; = a;; /(3 &;?)Y/?,

way words are combined and used in the real world. For in-
stance, the average American is exposed to about 100,SJ ; N A S
words every day (Bohn & Short, 2009). The numerous ways"md the matrix of all pairwise similarities is now

that this vast amount of information can be combined may s=GGT (1)
lead to an immense amount of mostly weak contingencies be-
tween items. Indeed, in recent years, the increasing dikila
ity of co-occurrence information to researchers has leti¢got . - ! ; ;
development of models that derive representations of meaf@rities between two words is assessed by looking onlyat th

ing from that co-occurrence. These models, which include 1a"VOrds to which they are immediately linked. .

tent semantic analysis (LSA, Landauer & Dumais, 1997) and ©ur sécond approach to similarity aims to take into ac-
topic models (Griffiths, Steyvers, & Tenenbaum, 2007), usecount the overall structure of the entlre_netwprk graph, and
statistical methods to extract the regularities undeiipipthe (U to reflect a broader view of the relationship between two
co-occurrence data. They thereby produce structured, meafl0d€s. This measure, similar to Leicht, Holme, and Newman

ingful representations that can be used to capture andiexpla(2006), is an example of a “random walk” approach to as-
human behavior and performance. sessing similarity (see Kemeny & Snell, 1976; Van Dongen,

The goal behind network models is similar, though the2000; Griffiths, Steyvers, & Firl, 2007, for related meas)re

approach is different. The network itself is derived from [N 9eneral terms, the idea is quite similar to the classical n

word associations which presumably reflect the patterns dfon of spreading activation (e.g. Quillian, 1968). Simila
co-occurrence in the world. We can then use the network agﬁ/ is thought to be related to the the number and length of
the core representation from which similarity measurementt€ Paths through the network that connect two nodes. If

are derived. We theorize that although associations betwedne"® arefa lot of dshort p?kthﬁ thathc%nnect t;]NO nodes, then
individual entities may be too sparse to account for peeple"t Is easy for a random walk through the graph to start at one
judgments about triples lik€UP-TEACHERHAIL, the net- node and end at the other; these nodes are therefore more

work may capture broader relationships thanaccount for ~ Similar. Formally, the measure is specified by beginningwit
such judgments. If broad ontological distinctions like-ani the Wel_ghted adjacency matrix. This time, however, we .
macy or the count/mass noun distinction are reflected in thgprmallz_e the rows so that each one expresses a probability
structure of the semantic network, we might expect a syitabl distribution over words. That is, we use the maffixvhere
chosen measure of network-based similarity o be able to cagi = &i/ X &j. and then calculate

ture, at least in part, the manner in which humans resolve the S=(1—aP? )

weak similarity questions that we asked in our experiments. . . . . .
How, though, can we measure similarity within a network?Where! is a diagonal identity matrix and the parameter
We address this problem in the next section. governs the extent to which similarity scores are dominated

by short paths or by longer paths. A path of lengtis as-
Similarity in semantic networks signed a weight ofi", so whena < 1, longer paths get less

) _ weight than shorter onésNote that under this approach the
Large-scale semantic models are typically extremely gpars

In the case of networks derived based on word associations, 3as noted by Minkov (2008), this kind of mechanism can help
this means that the number of edges connecting any twavoid one of the major criticisms of the spreading activatizech-

The key thing to recognize about the cosine measure is that
it depends solely on thlecal structure of the graph: the sim-
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similarities can be asymmetric (i.e; = sji). Since our ex- Table 1: Spearman rank order correlatiop} lfetween the
perimental design forces the empirical similarities toyy®s  graph-derived similarities and the empirical similastieom
metric we use the average 8fand ST in our evaluations. poth experiments. All correlations are significanpat .001,
Interestingly, our approach is very similar to the PageRankndicated by the double stars. The more global measure of
measureX = (I —aP~=)1. For PageRank itis standard prac- gimjjarity (random walk) consistently outperforms the mor

tice to seftn to a fixed value of 0.85 (Page, Brin, Motwani, & : ;
Winograd, 1998), whera is bounded between 0 and 1. Ourigf?rl];ng:;s;? rggt)vsvlgrtla(),(iaer;ds;hat e conelaions aregton

choice ofa was 0.6 and represents a reasonable trade-off b

tween some degree of decay and a a non-trivial contribution Cosine Random walk

of longer path$. Graph| Expl Exp2| Expl Exp2
For both measures the similarity indices for each triplet ar A1 9% 22%% | A48%*  49**

normalized to sum to 1. This allows the model predictions to As 38rx  Q7kx | Gokk 7wk

be directly comparable to the empirical choice probabtiti

which also sum to 1. For Experiment 2, we can extend the analysis to see if the

network measures can account for decision latencies as well
Evaluating the similarity measures In general, one would expect that more difficult pairs should
result in longer decision latencies. For each pair, we ealcu
&ted the absolute similarity of the strongest pair and com-
ared it with the decision latency of that pair. Restrictiuy
results to the random walk measure of similarity, we found
k! significant correlation between network-based simiésit
?nd decision latenciep (= —.22 for the A1 network, and

In order to assess whether the semantic network based m
sures of similarity are capable of capturing the pattern o
weak similarities we observed in our experiments, it is first
necessary to construct a semantic network. In other word
we must determine the weighted adjacency marirom
which our measures are derived. We constructed this ne
work from a large dataset of word associations consisting o
12,571 cues and over 3 million responses. The data co
from a task in which participants were given a short list of
cue words and asked to generate three different responses
each single cue (see De Deyne & Storms, 2008b; De Deyne Discussion
et al., 2011). From this data set we constructed two differ- S ) )
ent We|ghted directed adjacency matrices. The gm:pbrﬂy The work in this paper demonstrates that there is substantia
counts thdirst response given by the participant, wherdéas —agreement between. peoplg about the similarity structure of
counts all three responses. The graph based pis the evenweakly related items, likealL andTEACHEROI’RAIN—
more conventional approach, and its sparsity is comparablBOW andTUNAFISH. Moreover, at least some of this agree-
with previous word association studies (Nelson, McEvoy, &ment can be accpu_nted for by semantic networks constructed
Schreiber, 2004). Because it is based on more respénses from word association data.
is somewhat denser, but in both cases the graphs were quiteThe most striking thing about this finding is that there is
sparse. The graph; included 11,969 nodes and only 0.416% any agreement about weak similarity at all. In the abstract,
of the possible links, whereass included 12,420 nodes and there appears to be very little in common between any three
1.176% of possible links. items that are randomly thrown together, and it is not an ob-
To evaluate how well the weak similarities from our exper-Vvious conclusion that people would agree on how they are
iments can be captured using the semantic network modelg¢lated. In practice, many people have strong intuitioraiab
we calculated the Spearman rank order correlations betweey given triplet, just as two of the authors of this paper had
the network-derived similarities and the empirical dathe T Strong intuitions abouCUP, TEACHER, andHAIL. Two as-
results, summarized in Table 1, demonstrate that both me&ects of this are most intriguing. First, there isn’t always
sures of similarity are significantly correlated with thepgrn ~ @greement about these intuitions (just as one author tough
ical data. As one might expect, the more global measure ofEACHER was the obvious odd one out, and one thought it
similarity (the random walk measure) performs considgrabl should beHAIL). Second, as the data from our two experi-
better than the local cosine measure; and the richer networkents show, there is nevertheless substantial agreenent (n
(A3) tended to produce higher correlations than the networleody thoughtup should be the odd one out).
based on less data. Taken together, the general findingtis tha The main question we are left with ighy people should
the more data one uses to define the network, and the moggree on something like this. There is almost certainly no
that the similarity measure takes account of the structure i€xternal pressure in the environment to do so; it is difficult

that network, the better one is able to capture human intuto think of any situations in which random unrelated things
itions about weak semantic similary. are thrown together or used, and people must agree with each
other about them without communicating explicitly. Rather

= —.24 for theAz network, p < .05 in both cases). This
s again consistent with the hypothesis that the semantic ne
ork encodes at least some information used to derive weak
s[iénilarity.

anism, namely the fact that the entire network is quicklyvated

(e.%. Ratcliff & McKoon, 1994). ) . separately for these two subsets of the data. The resulimtliiffer
Other values ofr were tried as well, but did not substantially in any substantive way from those reported in Table 1. lstargly,
change the pattern of results of our experiments 27 out of the 28 strongest pairs from these zero-overlafetspvere
SWithin the human data from Experiment 1, there are 28 triplet agreed upon by the human observers more than one would expect
that did not share a single first association in our semaetiwork, by chance. This amount of agreement was similar in Expetirden
and 72 that did. Because we were concerned that these nesglts  in which 25 of the strongest pairs from 28 triplets were adnggon
simply be capturing this difference, we re-calculated threaedations  more than chance would predict.
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such agreement probably stems from commonalities in th&ohn, R. E., & Short, J. E. (2009How much information? 2009.
shared representations underlying the concepts. But what a Report on American ConsumgfEech. Rep.). Global Information

those shared representations, and why should they exist Btérgj:%g (S:f‘rgegtgm’;réi_ty(%ggg)‘cf’wg;dszgs%gggbnS: NEtwo

all? ltis clea( \_/vhy it would be useful to represent similigst and Semantic propertieBehavior Research Methodé0, 213-
between entities that commonly co-occur, or that are often 231,

thought about together — but what benefit is there to buildingPe Deyne, S., & Storms, G. (2008b). Word associations: Norms
a representation that will probably never be used, and why do for 1,424 Dutch words in a continuous tasRehavior Research

. . Methods 40, 198-205.
7 il
people seem to build similar ones? De Deyne, S., Voorspoels, W., Verheyen, S., Navarro, D., &8s,

Part of the answer to these questions may come from our G_ (2011). Graded structure in adjéctive categories. Indrlsdn,
analyses showing that semantic networks built from word as- C. Hélscher, & T. F. Shipley (Eds.Proceedings of the 33rd An-
sociations can account for at least some of the agreement be-g\UlaI _Co$;?r%nce of th% Qogniti\ée Science Sodjety1834-1839).
tW_een people. Th'$ suggests th"%t p_erhaps the she?red r&presgoolzjsrgg’n, N. (10997n2|§|.vgr0(t:)lleerr]§§ar?(;:lszrt())/jects. In N. Goodmar),(Ed
tations measured in our weak similarity task don’t occur be-","437.447). New York: Bobbs-Merrill.
cause they offer some benefit, but rather occur as a by-produGriffiths, T. L., Steyvers, M., & Firl, A. (2007). Google antet
of the fact that the mind represents other things. In thiscas _Mind. Psychological Sciencd8, 1069-1076.

it is interesting that networks formed from word associagio Gréfgmihﬂ'c IF'e’pSrées)Qﬁ;iol\lgé ;fé ngg‘a?c%ﬁ“gg’vféﬁifg%)-Z'EF"”
capture some of those other things. We can be somewhat 3Sutchinson, J. (1989). NETSCAL: A network ,’Sca”'ng aIgomhtlfor

sured that the agreement accounted for by the networks is not nonsymmetric proximity dataPsychometrikas4, 25-51.
the result of trivial or superficial similarities, since demnet-  Kemeny, J., & Snell, J. (1976)Finite markov chains Springer-
works did better and things like frequency and imageability Vverlag.

; andauer, T. K., & Dumais, S. T. (1997). A solution to Plato’s
of the words was controlled for. Rather, it may be that thesé Problem: The latent semantic analysis theory of acquisiti-

networks capture, at least to some extent, the kind of deep on qyction and representation of knowledg@sychological Review
tological similarities and abstract relationships thatvérour 104, 211-240.

intuitions about triples likecuP, TEACHER, andHAIL. Leicht, E., Holme, P., & Newman, M. (2006). Vertex similgrih

; ; ihili networks.Psychical Review E73, 026120.
Inlggtf)lt Qf ;[hls thSSI?IIIty’ trere _ar? ? numbelz osz\i/Lglas thatl\/ledin, D. L., Goldstone, R. L., & Gentner, D. (1993). Respdot
wou € Interesting 1o explore In Iuture work. e our similarity. Psychological Revieml00, 254-278.

networks did account for a significant amount of the varianceviedin, D."L., & Ortony, A. (1989). Psychological essentati.
in people’s weak similarity ratings, a substantial amo@atr  In S. Vosniadou & A. Ortony (Eds.)Similarity and analogical
mains without explanation. One possibility for this is that _reasoning(p. 179-195). New York: Cambridge University Press.

- : Miller, K. T., Griffiths, T. L., & Jordan, M. I. (2009). Nonpametric
our networks, despite being constructed from 12,000 aSSdVI latent feature models for link prediction. Advances in Neural

ciatiqns, are still almost certainly mu_ch sparser and under |niormation Processing Systeif\l. 22, p. 1276-1284).
specified than people’s actual semantic networks. Indeed, WMinkov, E. (2008). Adaptive graph walk based similarity mea-
found that the denser network constructed from more associ- sures in entity-relation graph&Jnpublished doctoral dissertation,

ations accounted for the data better. How much improvement School of Computer Science Carnegie Melon University.sPit
. . . ; . urgh, .
is possible with increasingly dense networks and more item avar%o, D. J. & Lee, M. D. (2002). Commonalities and distin

and associations? That is, to what extent is a large part of tions in featural stimulus representations. In W. Gray & h®n
the variance in weak similarity ratings due to the same thing (Eds.),Proceedings of the 24th Annual Conference of the Cogni-

underlying the associations people make in word assoniatio tive Science Sociefyol. 24, p. 685-690). Mahwah, NJ: Lawrence

tasks? How would this compare to networks constructed irNe'fsrobr?“En'L McEvoy, C. L. & Schreiber, T. A. (2004). The

other ways, like co-occurrence in language? How would this " niversity of South Florida free association, rhyme, anddvo
change if the networks were constructed in a more robust fragment norms.Behavior Research Methods, Instruments, and
way, for instance, addressing the sparsity problem by-infer Computers36, 402—-407. .

ring missing links, as in Miller, Griffiths, and Jordan (2009 Page, L., Brin, S., Motwani, R., & Winograd, T. (1998)he pager-

Is performance better or worse for different kinds of words, %%I?ncsa?g?gcriaerrl]lggg[:)elszr;rr;g:g%torscig]ftgréhgnagg?;h. Rep.).

like abstract vs concrete? Work on all of these questionis wilQuillian, M. (1968). Semantic information processing. InMin-
help us to address the fundamental issue of what kind of se- sky (Ed.), (p. 227-270). Cambridge, MA: MIT Press. _
mantic representation humans have — and how that represeiRatcliff, R., & McKoon, G. (1994). Retrieving information

. : , i : P from memory: Spreading-activation theories versus comgeu
tation underlies people’s ability to estimate weak sinitjar cue theoriesPsychological Reviewl 01, 177-184.

Ruts, W., De Deyne, S., Ameel, E., Vanpaemel, W., Verbeerfen,
Acknowledgments & Storms, G. (2004). Dutch norm data for 13 semantic categori

. and 338 exemplarsBehaviour Research Methods, Instruments,
This work was supported by a research grant funded by theaRese and Computer,%G, 506-515.

Foundation - Flanders (FWO) to the first author and by thedige  Sjoman, S. A., & Rips, L. J. (1998). Similarity as an explamgat
ciplinary research project IDO/07/002 awarded to Dirk Spe, construct.Cognition 65, 87-101. .
Dirk Geeraerts, and Gert Storms. Special thanks to Diniss@dik ~ Steyvers, M., Shiffrin, R. M., & Nelson, D. L. (2004). Experen-

tal Cognitive Psychology and its Applications. In A. HealBd(),
and Steven Verheyen for helpful comments. (chap. Word association Spaces for Predicting Semantidasim

ity Effects in Episodic Memory.). Washington, DC: American
References Psychological Association.
Baayen, R. H., Piepenbrock, R., & van Rijn, H. (1998he CELEX Van Dongen, S. (2000)Graph clustering by flow simulatiorln-
lexical database [CD-ROM] Philadelphia: University of Penn-  published doctoral dissertation, University of Utrecht.
sylvania, Linguistic Data Consortium. Philadelphia: Usniity
of Pennsylvania, Linguistic Data Consortium.

1469



