Rational Search of Associative Memory

Eddy J. Davelaar (eddy.davelaar@gmail.com)
Department of Psychological Sciences, Birkbeck University of London
Malet Street, WC1E 7HX, London, UK

J. Isaiah Harbison (isaiah.harbison@gmail.com)
Erica C. Yu (ericayu@umd.edu)

Erika K. Hussey (erikahussey@gmail.com)
Michael R. Dougherty (mdougher@umd.edu)
Department of Psychology, University of Maryland at College Park
College Park, MD 20742 USA

Abstract

An important component of many, if not all, real-world
retrieval tasks is the decision to terminate memory search.
Despite its importance, systematic evaluations of the potential
rules for terminating search are scarce. Recent work has
focused on two variables: the total time spent in memory
search before search is terminated and the exit latency (the
time between the last retrieved item and the time of search
termination). These variables have been shown to limit the
number of plausible rules for terminating memory search.
Here, we introduce an alternative stopping rule based on a
rational moment-to-moment cost-benefit analysis. We show
its ability to capture critical latency data and make testable
predictions about the influence of changing the relative costs
and benefits of memory search. Results from an experiment
are presented that support the model’s predictions. We
conclude that the decision to terminate memory search is
based on moment-to-moment changes in subjective value.
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Introduction

One of the most influential developments in cognitive
psychology and cognitive science is that of a detailed
theoretical framework of memory processes. In the late
1960s, Murdock (1967) summarized a view held by many
theorists into the “modal model”, a model in which
information (memoranda) transfers from sensory memory to
short-term memory and then to long-term memory, with
each subsequent system having greater memory persistence.
The modal model was mainly a framework of memory
encoding and the details of memory retrieval were left less-
specified. Later theories explicated the retrieval processes in
more detail (Anderson, 1972; Metcalfe & Murdock, 1981;
Raaijmakers & Shiffrin, 1980, 1981). A common aspect in
these theories is the assumption that retrieval from memory
can be seen as a search process (Yntema & Trask, 1963)
which takes time to complete. Importantly, in order to
characterize this search process, models of memory were
endowed with stopping rules that prevent the models from
continuing search indefinitely. Despite the fact that
theoreticians have been quick to incorporate stopping rules
into models of memory, research evaluating the class of

stopping rules that might characterize people’s decision to
terminate memory search is limited.

The evaluation of stopping rules in models of recall is of
both theoretical and practical interest. From a theoretical
perspective, the goal of developing a comprehensive model
of memory retrieval necessitates that we specify the control
systems that operate on the memory representations
(Newell, 1973). Any particular memory model might yield
qualitatively different predictions depending on the
specification of the control structures. This is particularly
true for stopping rules, since the particular stopping rule
employed will affect how long the model will persist in
search, which can potentially affect the output of the model
(number of items retrieved) and retrieval latencies.

From a practical perspective, understanding stopping
rules in the domain of memory retrieval can be informative
for the development of artificial intelligence and decision
support systems, as well as for cognitive models of
diagnostic hypothesis generation and judgment (Thomas,
Dougherty, Sprenger, & Harbison, 2008). Within these
systems, different stopping rules may yield qualitatively
different solutions to diagnostic problems, with optimal
solutions requiring different stopping rules depending on the
task requirements.

In this paper, we extend the analytical work by Harbison
et al., (2009) and implemented a stopping rule that is
motivated by a rational analysis of memory (Anderson &
Milson, 1989). The resulting rational model is tested against
new data.

Stopping rules

Atkinson and Shiffrin (1968, page 121) suggested a number
of stopping rules, which have been implemented in models
by a number of authors. These different stopping rules are:
an internal time limit (Davelaar, et al., 2005; Davelaar,
2007; Diller, Nobel & Shiffrin, 2001; Farrell &
Lewandowsky, 2002; Metcalfe & Murdock, 1981), a
strength threshold (Anderson, et al. 1998; Diller, Nobel &
Shiffrin, 2001), and an event-counter that would terminate
search after a prespecified number of events (Raaijmakers &
Shiffrin, 1980; Shiffrin, 1970).
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Given the various stopping rules employed in the
literature, it is clear that little heed has been paid to how a
chosen stopping rule might affect the model’s retrieval
dynamics. Furthermore, the empirical research on which to
test candidate stopping rules has been missing. The presence
of self-terminating stopping rules in models of memory is in
recognition of the fact that human observers are often
required to self-terminate retrieval. Yet, most empirical
studies of free recall have masked the contribution of
stopping rules by providing participants with a pre-set
retrieval interval. The use of pre-set retrieval intervals
eliminates the need for the participant to utilize a stopping
rule and even if participants were to use such a rule there
would be no method of measuring it.

In order to address stopping rules in recall, one needs to
allow participants to terminate their own retrieval episode.
Consequently, the procedure of interest here is one in which
the participant is given all the time they need for retrieval,
but allowed to terminate retrieval whenever they wish
(Dougherty & Harbison, 2007; Harbison, et al., 2009). This
paradigm yields two temporal variables anticipated by
models of memory that are important for understanding
search termination, but which have received relatively little
attention in the literature. The first of these reaction time
measures is total time. Total time indexes the elapsed time
between the onset of a retrieval cue (i.e., the initiation of the
retrieval episode) and the decision to terminate retrieval
(i.e., termination of the retrieval episode). The fact that
models of memory incorporate stopping rules suggests that
these models yield total time predictions. Obviously,
different stopping rules will yield different total time
predictions, but on an intuitive level one would expect total
time to be monotonically related to total number of items
retrieved: Total time should increase with the number of
items retrieved.

The second reaction time measure is what Dougherty and
Harbison (2007) called the exit latency. Exit latencies index
the amount of time between the final successful retrieval
and the decision to terminate of search. In contrast to total
time, there is no obvious, intuitive prediction regarding how
long participants will persist in retrieval as a function of
number of successful retrieval attempts. Thus, exit latencies
provide a potentially diagnostic source of data for
evaluating stopping rules, particularly when considered in
conjunction with the total time measure.

Few published studies report data on the two temporal
variables relevant for measuring termination decisions
(Dougherty & Harbison, 2007; Harbison, et. al., 2009;
Unsworth, Brewer & Spiller, 2011). In the study by
Dougherty and Harbison (2007), participants were visually
presented with a cue word and 10 target words (A-X;, A-X,,
..., A-Xjp). They were told to remember the target words
that were presented with each cue word. Each list of 10
target words had a unique cue word. Twelve such lists were
presented in blocks of three. After each block of lists were
presented, participants were given a cue word and had to
report verbally as many words studied with that cue word

(A-?) as they could. Responses were recorded and
participants pressed the space-bar to indicate that they could
not generate additional words. The total time participants
spent in search was measured as the time between
presentation onset of the cue for retrieval and the time of
pressing the space-bar. The exit latency was measured as the
time interval between the last retrieved item and the time of
pressing the space-bar.

The pattern of results regarding the stopping and exit
latencies as a function of the number of words retrieved in
that trial has been shown to be consistent across
experimental manipulations (Harbison, et al., 2009).
Typically, total time is an increasing function of the number
of words retrieved in that trial, whereas exit latency is a
negatively decelerating function of the number of words
retrieved in that trial.

Evaluating Stopping Rules

Harbison et al. (2009) conducted a simulation study to
compare several of stopping rules suggested by Atkinson
and Shiffrin (1968). They used the Search of Associative
Memory (SAM; Raaijmakers & Shiffrin, 1981) and
implemented the different stopping rules. The models were
evaluated on their fit to data. Of the rules tested, only the
total number of failures rule fitted the data both qualitatively
and quantitatively. This is the rule that was used in the
original SAM paper. The total number of failures rule is a
special case of an iterative rule that is only concerned with
the current sample from memory and the total accumulated
number of failures. This lends itself to a rational analysis of
the same rule which can make novel predictions.

We see memory retrieval as a form of information
sampling for which a cost is incurred with every sampling
attempt and a benefit is obtained for successful retrievals.
We define the memory value function in which the total net
value during the retrieval phase is a function of the total
number of items retrieved at the elapsed retrieval time.

Elsewhere (Davelaar, Yu, Harbison, Hussey &
Dougherty, submitted) we have derived a closed-form
expression for the exit latency, where the decision to
terminate search depends only on the information of the last
time-step. We converged on the following rule (cf.
Anderson & Milson, 1989):

Terminate search when the additional cost of retrieving
the next item starts to outweigh the relative or marginal
benefit of having retrieved that item.

We assume that a cost, a, is incurred with every sampling
attempt, t, and a benefit, b, is obtained with every successful
retrieval. We define the memory value function as:

V,=Q +bN(t) - at (1)

where b and a are the benefit and cost parameters. N(t) is the
total number of items retrieved at time t. The net value, Vi,
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has a constant, Q, which is interpreted as the starting value
that is related to factors such as motivation or time-pressure.

This stopping rule is based on the additional cost of
retrieving the next item compared to the relative benefit of
having retrieved that item. In other words:

cost(t + 1) — cost(t) > b/V, 2)

This equation states that when the difference in cost at
time t and time t + 1 is greater than the relative benefit, the
memory search will be terminated.

We implemented this rule in SAM, replacing the retrieval
failures rule. Figure 1 (top panel) shows the latency
functions for the original SAM model. The retrieval failures
rule captures both the increase in total time with total
number of words recalled and the convex exit latency
function. The bottom panel of Figure 1 shows the latency
functions of SAM with relative benefit stopping rule. This
model also captures the typical data patterns. In addition,
when the relative cost is increased, the model predicts that
both latency functions are lowered. That is, increased cost
decreases the total time spent in memory search and
decreases the time spent after the last item before deciding
that further retrieval is futile. Importantly, these changes are
independent of the total number of items retrieved.
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Figure 1. Simulation results of SAM with a retrieval-
failures (top) and a relative-benefit stopping rule (bottom).
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To summarize, a SAM implementation in which the
decision to stop memory search is based on a moment-to-
moment cost/benefit analysis predicts that when the cost
increases (or benefit decreases) the search will terminate
sooner. The next experiment tested these predictions.

Experiment

Methods

Participants

Forty-five college-aged participants were recruited from the
University of Maryland subject pool and received
performance-based compensation ($15 or $20) for
participation in the study. Two participants were removed
from analysis due to data collection errors.

Design and materials

The design used a delayed free recall paradigm whereby
participants studied word lists, completed distractor math
problems, and verbally recalled words from the most recent
list using a PC-based microphone. The session was
presented in two blocks. The first was a baseline block of 16
trials with the same payoff structure across participants
(+100 for a correct recall, -100 for each second spent and
incorrect recall). In the second block, cost and reward were
varied between participants: one group was given an
increase in reward (+150) for a correct recall and a
simultaneous decrease (-50) in each second spent and each
incorrect recall; the other group was given the inverse (+50
rewards, -150 cost). Retrieval protocol followed the self-
terminated search paradigm used by Dougherty and
Harbison (2007): participants were instructed that they had
unlimited time to recall words and could end the recall
period at any time by pressing the spacebar. The
experimenter monitored the participant's recall and updated
the participant’s score in real-time, providing feedback to
the participant on screen. Thirty-two lists of monosyllabic
words were randomly created for each participant. List
length was varied between 5, 7, 9, and 11 words and
presentation order was randomized to prevent strategy use.

Procedure

Participants were informed they would complete a verbal
recall task. The study words were sequentially presented in
the center of the computer monitor for 2 s each. Following
each study list, a distractor task was presented, which
consisted of two simple, timed math problems. Problems
contained three digits and two operands (e.g.,3 *2+1=7?)
and always resulted in a single-digit answer (digits 0-9). A
question mark prompted the participant to enter an answer.
Components of the math problem were presented
sequentially for 1 s each. After two math problems,
participants were prompted to begin verbally recalling
words from the most recent study list and press the spacebar
when they were finished retrieving. After the spacebar
press, participants were prompted to press the spacebar
again to begin the next study list when they were ready.
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Figure 2. Total time and exit latency functions for the baseline block (both groups combined) and the second block
(favorable and unfavorable condition). Error bars are standard errors of the mean. Only the last 8 trials of each block were
used. Lines represent the best-fitting regression equation (Davelaar, et al., 2012).

Coding

Using PennTotalRecall audio-analysis software, verbal
retrieval data were retrospectively analyzed with
millisecond accuracy. Two coders independently coded: 1)
all words that were produced by each participant on each
trial, 2) the time stamps of the verbal onset of all generated
words, and 3) the time stamps of retrieval termination (i.e.,
times associated with spacebar presses). From these data,
number of items retrieved, number of intrusions including
repetitions and intra- and extra-list false alarms, inter-
retrieval times, and exit latencies (i.e., time between end of
final word retrieved and retrieval termination) were
calculated. Each subject’s trials were averaged before
summarizing across subjects.

Results

A 2x2 mixed design included an initial baseline control
environment (+100 correct recall, -100 second spent or
incorrect recall) and a second payoff environment varied
between subjects (favorable: +150, -50; unfavorable: +50, -
150). Due to steep learning curves in each new environment,
only the last 8 of the 16 trials in each block were included in
the following repeated measures ANOVA analyses.

The net points (rewards for correct recalls less the
penalties for incorrect recalls and time spent) were updated
in real-time for participants to use as feedback to monitor
their own retrieval performance. As predicted, net points
earned in each block increased over time [F(1,41) = 6.77, p
<.013, np2 = .14] and the participants for whom the rewards

increased and costs decreased earned more points overall
[F(1,41)=15.23,p <.001, np2 = .27]; while net points in the
baseline block were equivalent across conditions (favorable:
M = -23.21, SE = 41.04; unfavorable: M = -35.80, SE =
40.10), performance splits drastically in the second block
(favorable: M = 281.85, SE = 54.97; unfavorable: -161.08,
SE = 53.71; condition x time: 38.80, p < .001, np2 = .49),
showing that the manipulation worked.

Total number recalled, including intrusions and
repetitions, did not vary due to time, payoff environment, or
an interaction of the two [conditions: F(1,41) =1.61, ns, np2
=.04; time: F(1,41) = 3.36, ns, nP2 = .08; condition X time:
F(1,41) = 3.84, ns, npz =.09]. Overall, the rate of intrusions
was low (0.3 intrusions per list).

Temporal measures were sensitive to learning across the
experiment: total time and exit latency both improved
significantly for all participants [total time: F(1, 41) =22.19,
p <.001, np2 = .35; exit latency: F(1,41) = 12.95, p <.001,
np2 = .24]. This performance improvement came primarily
from the participants for whom the rewards decreased and
the costs increased: the interaction between time and payoff
structure was significant for both measures [total time:
F(1,41) =29.01, p <.001, np2 = .41; exit latency: F(1,41) =
9.98, p < .003, np2 =.20], but the main effects of condition
were not significant [total time: F(1,41) = 1.14, ns, np2 =.03;
exit latency: F(1,41) = 2.54, ns, n,° = .06].

Figure 2 shows the data on the retrieval latencies broken
down by block and condition. Only those trials for which
there were sufficient datapoints were included for the model
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fit. The solid lines are the best-fitting regression equation
derived in Davelaar et al. (2012). This regression model is
based on the rational analysis and is a closed-form
expression of the simulation rule in equation 2. The use of a
closed-form expression facilitates identification of misfits
that are due to theoretical misfits instead of sampling noise.
The regression model also speeds up the simplex fitting
procedure, which requires extremely large samples to fit the
latencies at very low and very high total recall. The
prediction was that increase in cost or decrease in benefit
would lower the latencies. Compared to the baseline
condition, making the test hard by increasing the cost and
decreasing the benefit did indeed lower all retrieval
latencies. Nevertheless, the opposite manipulation,
decreasing the cost while simultaneously increasing the
benefit, did not change the latencies compared to baseline.
We address this asymmetry in the general discussion.

General Discussion

The purpose of this paper was to extend our earlier work on
stopping rules by proposing a stopping mechanism that is
motivated by a rational analysis of decisions made on a
moment-to-moment basis. The resulting rational SAM
model produces the typical latency functions that several
commonly used stopping rules failed to capture. The model
makes testable predictions about the influence of monetary
payoff structure on retrieval latencies and the decision to
stop memory search.

The prediction was that making it harder to gain points
would lower the retrieval latencies due to higher probability
of stopping, whereas the reversed would be the case when it
was easier to gain points. Interestingly, only the former
prediction was borne out by the data and model fits. The
results might be seen as an instance of loss aversion by
suggesting what could be called an “it-ain’t-broke”
hypothesis. Loosely put, when it is harder to obtain points,
the cognitive system readjusts itself to avoid losing too
much. However, when the environment changes to such an
extent that it becomes easier to gain points, the system will
not calibrate itself to then minimize the gains. Hence, if the
cognitive system is not losing by what it does (i.e., it-ain’t-
broke) then there is no reason for adjusting the cognitive
parameter (i.e., don’t-fix-it).

Anderson and colleagues provided a rational analysis of
the free recall task (Anderson & Milson, 1989; Anderson &
Schooler, 1991), in which each item has a need probability
associated with it. Only those items are retrieved whose
need probability is larger than a certain criterion, which
increases with the time spent inspecting an item before
accepting or rejecting it. Anderson and Milson (1989) were
able to capture a number of basic memory phenomena using
their adaptive perspective. However, their analysis only
provided the time of the last retrieved item and not of the
exact time of terminating memory search. A possibility
would be to use the criterion to estimate the termination
time, but this would require knowing the functional form of
how the criterion changes during item inspection.

Nevertheless, the success of Anderson’s rational analysis
and our current results warrants investigating how these can
be combined and would allow analyzing the consequences
of different retrieval processes on stopping rules. This also
applies to research based on the animal foraging literature,
such as problem solving (Payne & Duggan, 2011) and
information foraging (Pirolli & Card, 199). We leave such
an endeavor for the future.

Our analysis suggests that stopping rules should play a
more central role in the development and testing of models
of memory. The choice of stopping rule has major impact
on the overall model behavior. Obviously, one of the
ultimate goals of memory theory is to characterize memory
retrieval in general, both in and out of the lab. By focusing
more on how people terminate memory search, we can bring
our models more in line with the type of retrieval tasks that
characterize retrieval tasks outside of the free-recall
paradigm.

Investigating stopping rules has important implications
for understanding tasks other than free-recall. For example,
within the medical decision making literature, it is clear that
physicians entertain costs when determining when to
terminate their retrieval of diagnostic hypotheses from
memory (Weber et al., 1993). More recently, Dougherty and
Hunter (2003a; 2003b) showed that the perceived
probability of any particular event (a hypothesis) is partially
dependent on the number of alternatives retrieved from
memory, which was affected by time pressure. This
suggests that the decision to terminate memory search will
affect his or her perceived probability of a particular
hypothesis. Within the frequency judgment literature,
Brown and colleagues (Brown, 1995; 1997; Brown &
Sinclair, 1999; Conrad, Brown, & Cashman, 1998) have
shown that participants’ responses to survey questions often
are a monotonically increasing function of total time spent
searching memory. Thus, the magnitude of participants’
frequency judgments on behavioral survey questionnaires
should be affected by when they terminate search of long-
term memory. Although the above tasks are all quite
distinct, they serve to underscore the ubiquity of stopping
rules in real-world retrieval tasks. Therefore, understanding
how people terminate memory search, and the psychological
variables that affect search termination, is paramount to the
development of comprehensive models of memory retrieval
and to understanding the dynamics of memory retrieval
outside the lab.

In summary, in this paper we obtained further evidence
for the view that participants are making adaptive choices to
search termination that are based on a cost-benefit analysis.
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