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Abstract 
An important component of many, if not all, real-world 
retrieval tasks is the decision to terminate memory search. 
Despite its importance, systematic evaluations of the potential 
rules for terminating search are scarce. Recent work has 
focused on two variables: the total time spent in memory 
search before search is terminated and the exit latency (the 
time between the last retrieved item and the time of search 
termination). These variables have been shown to limit the 
number of plausible rules for terminating memory search. 
Here, we introduce an alternative stopping rule based on a 
rational moment-to-moment cost-benefit analysis. We show 
its ability to capture critical latency data and make testable 
predictions about the influence of changing the relative costs 
and benefits of memory search. Results from an experiment 
are presented that support the model’s predictions. We 
conclude that the decision to terminate memory search is 
based on moment-to-moment changes in subjective value. 
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Introduction 
One of the most influential developments in cognitive 
psychology and cognitive science is that of a detailed 
theoretical framework of memory processes. In the late 
1960s, Murdock (1967) summarized a view held by many 
theorists into the “modal model”, a model in which 
information (memoranda) transfers from sensory memory to 
short-term memory and then to long-term memory, with 
each subsequent system having greater memory persistence. 
The modal model was mainly a framework of memory 
encoding and the details of memory retrieval were left less-
specified. Later theories explicated the retrieval processes in 
more detail (Anderson, 1972; Metcalfe & Murdock, 1981; 
Raaijmakers & Shiffrin, 1980, 1981). A common aspect in 
these theories is the assumption that retrieval from memory 
can be seen as a search process (Yntema & Trask, 1963) 
which takes time to complete. Importantly, in order to 
characterize this search process, models of memory were 
endowed with stopping rules that prevent the models from 
continuing search indefinitely. Despite the fact that 
theoreticians have been quick to incorporate stopping rules 
into models of memory, research evaluating the class of 

stopping rules that might characterize people’s decision to 
terminate memory search is limited. 

The evaluation of stopping rules in models of recall is of 
both theoretical and practical interest. From a theoretical 
perspective, the goal of developing a comprehensive model 
of memory retrieval necessitates that we specify the control 
systems that operate on the memory representations 
(Newell, 1973). Any particular memory model might yield 
qualitatively different predictions depending on the 
specification of the control structures. This is particularly 
true for stopping rules, since the particular stopping rule 
employed will affect how long the model will persist in 
search, which can potentially affect the output of the model 
(number of items retrieved) and retrieval latencies. 

From a practical perspective, understanding stopping 
rules in the domain of memory retrieval can be informative 
for the development of artificial intelligence and decision 
support systems, as well as for cognitive models of 
diagnostic hypothesis generation and judgment (Thomas, 
Dougherty, Sprenger, & Harbison, 2008). Within these 
systems, different stopping rules may yield qualitatively 
different solutions to diagnostic problems, with optimal 
solutions requiring different stopping rules depending on the 
task requirements. 

In this paper, we extend the analytical work by Harbison 
et al., (2009) and implemented a stopping rule that is 
motivated by a rational analysis of memory (Anderson & 
Milson, 1989). The resulting rational model is tested against 
new data. 

Stopping rules 
Atkinson and Shiffrin (1968, page 121) suggested a number 
of stopping rules, which have been implemented in models 
by a number of authors. These different stopping rules are: 
an internal time limit (Davelaar, et al., 2005; Davelaar, 
2007; Diller, Nobel & Shiffrin, 2001; Farrell & 
Lewandowsky, 2002; Metcalfe & Murdock, 1981), a 
strength threshold (Anderson, et al. 1998; Diller, Nobel & 
Shiffrin, 2001), and an event-counter that would terminate 
search after a prespecified number of events (Raaijmakers & 
Shiffrin, 1980; Shiffrin, 1970).  

1458



Given the various stopping rules employed in the 
literature, it is clear that little heed has been paid to how a 
chosen stopping rule might affect the model’s retrieval 
dynamics. Furthermore, the empirical research on which to 
test candidate stopping rules has been missing. The presence 
of self-terminating stopping rules in models of memory is in 
recognition of the fact that human observers are often 
required to self-terminate retrieval. Yet, most empirical 
studies of free recall have masked the contribution of 
stopping rules by providing participants with a pre-set 
retrieval interval. The use of pre-set retrieval intervals 
eliminates the need for the participant to utilize a stopping 
rule and even if participants were to use such a rule there 
would be no method of measuring it.  

In order to address stopping rules in recall, one needs to 
allow participants to terminate their own retrieval episode. 
Consequently, the procedure of interest here is one in which 
the participant is given all the time they need for retrieval, 
but allowed to terminate retrieval whenever they wish 
(Dougherty & Harbison, 2007; Harbison, et al., 2009). This 
paradigm yields two temporal variables anticipated by 
models of memory that are important for understanding 
search termination, but which have received relatively little 
attention in the literature. The first of these reaction time 
measures is total time. Total time indexes the elapsed time 
between the onset of a retrieval cue (i.e., the initiation of the 
retrieval episode) and the decision to terminate retrieval 
(i.e., termination of the retrieval episode). The fact that 
models of memory incorporate stopping rules suggests that 
these models yield total time predictions. Obviously, 
different stopping rules will yield different total time 
predictions, but on an intuitive level one would expect total 
time to be monotonically related to total number of items 
retrieved: Total time should increase with the number of 
items retrieved. 

The second reaction time measure is what Dougherty and 
Harbison (2007) called the exit latency. Exit latencies index 
the amount of time between the final successful retrieval 
and the decision to terminate of search. In contrast to total 
time, there is no obvious, intuitive prediction regarding how 
long participants will persist in retrieval as a function of 
number of successful retrieval attempts. Thus, exit latencies 
provide a potentially diagnostic source of data for 
evaluating stopping rules, particularly when considered in 
conjunction with the total time measure. 

Few published studies report data on the two temporal 
variables relevant for measuring termination decisions 
(Dougherty & Harbison, 2007; Harbison, et. al., 2009; 
Unsworth, Brewer & Spiller, 2011). In the study by 
Dougherty and Harbison (2007), participants were visually 
presented with a cue word and 10 target words (A-X1, A-X2, 
…, A-X10). They were told to remember the target words 
that were presented with each cue word. Each list of 10 
target words had a unique cue word. Twelve such lists were 
presented in blocks of three. After each block of lists were 
presented, participants were given a cue word and had to 
report verbally as many words studied with that cue word 

(A-?) as they could. Responses were recorded and 
participants pressed the space-bar to indicate that they could 
not generate additional words. The total time participants 
spent in search was measured as the time between 
presentation onset of the cue for retrieval and the time of 
pressing the space-bar. The exit latency was measured as the 
time interval between the last retrieved item and the time of 
pressing the space-bar. 

The pattern of results regarding the stopping and exit 
latencies as a function of the number of words retrieved in 
that trial has been shown to be consistent across 
experimental manipulations (Harbison, et al., 2009). 
Typically, total time is an increasing function of the number 
of words retrieved in that trial, whereas exit latency is a 
negatively decelerating function of the number of words 
retrieved in that trial. 

 Evaluating Stopping Rules 
Harbison et al. (2009) conducted a simulation study to 
compare several of stopping rules suggested by Atkinson 
and Shiffrin (1968). They used the Search of Associative 
Memory (SAM; Raaijmakers & Shiffrin, 1981) and 
implemented the different stopping rules. The models were 
evaluated on their fit to data. Of the rules tested, only the 
total number of failures rule fitted the data both qualitatively 
and quantitatively. This is the rule that was used in the 
original SAM paper. The total number of failures rule is a 
special case of an iterative rule that is only concerned with 
the current sample from memory and the total accumulated 
number of failures. This lends itself to a rational analysis of 
the same rule which can make novel predictions. 

We see memory retrieval as a form of information 
sampling for which a cost is incurred with every sampling 
attempt and a benefit is obtained for successful retrievals. 
We define the memory value function in which the total net 
value during the retrieval phase is a function of the total 
number of items retrieved at the elapsed retrieval time. 

Elsewhere (Davelaar, Yu, Harbison, Hussey & 
Dougherty, submitted) we have derived a closed-form 
expression for the exit latency, where the decision to 
terminate search depends only on the information of the last 
time-step. We converged on the following rule (cf. 
Anderson & Milson, 1989): 

 
Terminate search when the additional cost of retrieving 

the next item starts to outweigh the relative or marginal 
benefit of having retrieved that item. 

 
We assume that a cost, a, is incurred with every sampling 
attempt, t, and a benefit, b, is obtained with every successful 
retrieval. We define the memory value function as: 

 
Vt = Q + bN(t) – at  (1) 

 
where b and a are the benefit and cost parameters. N(t) is the 
total number of items retrieved at time t. The net_value, Vt, 
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has a constant, Q, which is interpreted as the starting value 
that is related to factors such as motivation or time-pressure. 

This stopping rule is based on the additional cost of 
retrieving the next item compared to the relative benefit of 
having retrieved that item. In other words: 

 
cost(t + 1) – cost(t) > b/Vt  (2) 

 
This equation states that when the difference in cost at 

time t and time t + 1 is greater than the relative benefit, the 
memory search will be terminated.  

We implemented this rule in SAM, replacing the retrieval 
failures rule. Figure 1 (top panel) shows the latency 
functions for the original SAM model. The retrieval failures 
rule captures both the increase in total time with total 
number of words recalled and the convex exit latency 
function. The bottom panel of Figure 1 shows the latency 
functions of SAM with relative benefit stopping rule. This 
model also captures the typical data patterns. In addition, 
when the relative cost is increased, the model predicts that 
both latency functions are lowered. That is, increased cost 
decreases the total time spent in memory search and 
decreases the time spent after the last item before deciding 
that further retrieval is futile. Importantly, these changes are 
independent of the total number of items retrieved. 

 
Figure 1. Simulation results of SAM with a retrieval-

failures (top) and a relative-benefit stopping rule (bottom). 

To summarize, a SAM implementation in which the 
decision to stop memory search is based on a moment-to-
moment cost/benefit analysis predicts that when the cost 
increases (or benefit decreases) the search will terminate 
sooner. The next experiment tested these predictions. 

Experiment 

Methods 
Participants 
Forty-five college-aged participants were recruited from the 
University of Maryland subject pool and received 
performance-based compensation ($15 or $20) for 
participation in the study. Two participants were removed 
from analysis due to data collection errors. 
 
Design and materials 
The design used a delayed free recall paradigm whereby 
participants studied word lists, completed distractor math 
problems, and verbally recalled words from the most recent 
list using a PC-based microphone. The session was 
presented in two blocks. The first was a baseline block of 16 
trials with the same payoff structure across participants 
(+100 for a correct recall, -100 for each second spent and 
incorrect recall). In the second block, cost and reward were 
varied between participants: one group was given an 
increase in reward (+150) for a correct recall and a 
simultaneous decrease (-50) in each second spent and each 
incorrect recall; the other group was given the inverse (+50 
rewards, -150 cost). Retrieval protocol followed the self-
terminated search paradigm used by Dougherty and 
Harbison (2007): participants were instructed that they had 
unlimited time to recall words and could end the recall 
period at any time by pressing the spacebar. The 
experimenter monitored the participant's recall and updated 
the participant’s score in real-time, providing feedback to 
the participant on screen. Thirty-two lists of monosyllabic 
words were randomly created for each participant. List 
length was varied between 5, 7, 9, and 11 words and 
presentation order was randomized to prevent strategy use. 
 
Procedure 
Participants were informed they would complete a verbal 
recall task. The study words were sequentially presented in 
the center of the computer monitor for 2 s each. Following 
each study list, a distractor task was presented, which 
consisted of two simple, timed math problems. Problems 
contained three digits and two operands (e.g., 3 * 2 + 1 = ? ) 
and always resulted in a single-digit answer (digits 0-9). A 
question mark prompted the participant to enter an answer. 
Components of the math problem were presented 
sequentially for 1 s each. After two math problems, 
participants were prompted to begin verbally recalling 
words from the most recent study list and press the spacebar 
when they were finished retrieving. After the spacebar 
press, participants were prompted to press the spacebar 
again to begin the next study list when they were ready. 
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Figure 2. Total time and exit latency functions for the baseline block (both groups combined) and the second block 
(favorable and unfavorable condition). Error bars are standard errors of the mean. Only the last 8 trials of each block were 

used. Lines represent the best-fitting regression equation (Davelaar, et al., 2012). 
 

 
Coding 
Using PennTotalRecall audio-analysis software, verbal 
retrieval data were retrospectively analyzed with 
millisecond accuracy. Two coders independently coded: 1) 
all words that were produced by each participant on each 
trial, 2) the time stamps of the verbal onset of all generated 
words, and 3) the time stamps of retrieval termination (i.e., 
times associated with spacebar presses). From these data, 
number of items retrieved, number of intrusions including 
repetitions and intra- and extra-list false alarms, inter-
retrieval times, and exit latencies (i.e., time between end of 
final word retrieved and retrieval termination) were 
calculated. Each subject’s trials were averaged before 
summarizing across subjects. 

Results 
A 2x2 mixed design included an initial baseline control 
environment (+100 correct recall, -100 second spent or 
incorrect recall) and a second payoff environment varied 
between subjects (favorable: +150, -50; unfavorable: +50, -
150). Due to steep learning curves in each new environment, 
only the last 8 of the 16 trials in each block were included in 
the following repeated measures ANOVA analyses. 

The net points (rewards for correct recalls less the 
penalties for incorrect recalls and time spent) were updated 
in real-time for participants to use as feedback to monitor 
their own retrieval performance. As predicted, net points 
earned in each block increased over time [F(1,41) = 6.77, p 
< .013, ηp

2 = .14] and the participants for whom the rewards 

increased and costs decreased earned more points overall 
[F(1,41) = 15.23, p < .001, ηp

2 = .27]; while net points in the 
baseline block were equivalent across conditions (favorable: 
M = -23.21, SE = 41.04; unfavorable: M = -35.80, SE = 
40.10), performance splits drastically in the second block 
(favorable: M = 281.85, SE = 54.97; unfavorable: -161.08, 
SE = 53.71; condition x time: 38.80, p < .001, ηp

2 = .49), 
showing that the manipulation worked.  

Total number recalled, including intrusions and 
repetitions, did not vary due to time, payoff environment, or 
an interaction of the two [conditions: F(1,41) =1.61, ns, ηp

2 
= .04; time: F(1,41) = 3.36, ns, ηp

2 = .08; condition x time: 
F(1,41) = 3.84, ns, ηp

2 = .09]. Overall, the rate of intrusions 
was low (0.3 intrusions per list). 

Temporal measures were sensitive to learning across the 
experiment: total time and exit latency both improved 
significantly for all participants [total time: F(1, 41) = 22.19, 
p < .001, ηp

2 = .35; exit latency: F(1,41) = 12.95, p < .001, 
ηp

2 = .24]. This performance improvement came primarily 
from the participants for whom the rewards decreased and 
the costs increased: the interaction between time and payoff 
structure was significant for both measures [total time: 
F(1,41) = 29.01, p < .001, ηp

2 = .41; exit latency: F(1,41) = 
9.98, p < .003, ηp

2 = .20], but the main effects of condition 
were not significant [total time: F(1,41) = 1.14, ns, ηp

2 = .03; 
exit latency: F(1,41) = 2.54, ns, ηp

2 = .06]. 
Figure 2 shows the data on the retrieval latencies broken 

down by block and condition. Only those trials for which 
there were sufficient datapoints were included for the model 
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fit. The solid lines are the best-fitting regression equation 
derived in Davelaar et al. (2012). This regression model is 
based on the rational analysis and is a closed-form 
expression of the simulation rule in equation 2. The use of a 
closed-form expression facilitates identification of misfits 
that are due to theoretical misfits instead of sampling noise. 
The regression model also speeds up the simplex fitting 
procedure, which requires extremely large samples to fit the 
latencies at very low and very high total recall. The 
prediction was that increase in cost or decrease in benefit 
would lower the latencies. Compared to the baseline 
condition, making the test hard by increasing the cost and 
decreasing the benefit did indeed lower all retrieval 
latencies. Nevertheless, the opposite manipulation, 
decreasing the cost while simultaneously increasing the 
benefit, did not change the latencies compared to baseline. 
We address this asymmetry in the general discussion. 

General Discussion 
The purpose of this paper was to extend our earlier work on 
stopping rules by proposing a stopping mechanism that is 
motivated by a rational analysis of decisions made on a 
moment-to-moment basis. The resulting rational SAM 
model produces the typical latency functions that several 
commonly used stopping rules failed to capture. The model 
makes testable predictions about the influence of monetary 
payoff structure on retrieval latencies and the decision to 
stop memory search. 

The prediction was that making it harder to gain points 
would lower the retrieval latencies due to higher probability 
of stopping, whereas the reversed would be the case when it 
was easier to gain points. Interestingly, only the former 
prediction was borne out by the data and model fits. The 
results might be seen as an instance of loss aversion by 
suggesting what could be called an “it-ain’t-broke” 
hypothesis. Loosely put, when it is harder to obtain points, 
the cognitive system readjusts itself to avoid losing too 
much. However, when the environment changes to such an 
extent that it becomes easier to gain points, the system will 
not calibrate itself to then minimize the gains. Hence, if the 
cognitive system is not losing by what it does (i.e., it-ain’t-
broke) then there is no reason for adjusting the cognitive 
parameter (i.e., don’t-fix-it). 

Anderson and colleagues provided a rational analysis of 
the free recall task (Anderson & Milson, 1989; Anderson & 
Schooler, 1991), in which each item has a need probability 
associated with it. Only those items are retrieved whose 
need probability is larger than a certain criterion, which 
increases with the time spent inspecting an item before 
accepting or rejecting it. Anderson and Milson (1989) were 
able to capture a number of basic memory phenomena using 
their adaptive perspective. However, their analysis only 
provided the time of the last retrieved item and not of the 
exact time of terminating memory search. A possibility 
would be to use the criterion to estimate the termination 
time, but this would require knowing the functional form of 
how the criterion changes during item inspection. 

Nevertheless, the success of Anderson’s rational analysis 
and our current results warrants investigating how these can 
be combined and would allow analyzing the consequences 
of different retrieval processes on stopping rules. This also 
applies to research based on the animal foraging literature, 
such as problem solving (Payne & Duggan, 2011) and 
information foraging (Pirolli & Card, 199). We leave such 
an endeavor for the future. 

Our analysis suggests that stopping rules should play a 
more central role in the development and testing of models 
of memory. The choice of stopping rule has major impact 
on the overall model behavior. Obviously, one of the 
ultimate goals of memory theory is to characterize memory 
retrieval in general, both in and out of the lab. By focusing 
more on how people terminate memory search, we can bring 
our models more in line with the type of retrieval tasks that 
characterize retrieval tasks outside of the free-recall 
paradigm. 

Investigating stopping rules has important implications 
for understanding tasks other than free-recall. For example, 
within the medical decision making literature, it is clear that 
physicians entertain costs when determining when to 
terminate their retrieval of diagnostic hypotheses from 
memory (Weber et al., 1993). More recently, Dougherty and 
Hunter (2003a; 2003b) showed that the perceived 
probability of any particular event (a hypothesis) is partially 
dependent on the number of alternatives retrieved from 
memory, which was affected by time pressure. This 
suggests that the decision to terminate memory search will 
affect his or her perceived probability of a particular 
hypothesis. Within the frequency judgment literature, 
Brown and colleagues (Brown, 1995; 1997; Brown & 
Sinclair, 1999; Conrad, Brown, & Cashman, 1998) have 
shown that participants’ responses to survey questions often 
are a monotonically increasing function of total time spent 
searching memory. Thus, the magnitude of participants’ 
frequency judgments on behavioral survey questionnaires 
should be affected by when they terminate search of long-
term memory. Although the above tasks are all quite 
distinct, they serve to underscore the ubiquity of stopping 
rules in real-world retrieval tasks. Therefore, understanding 
how people terminate memory search, and the psychological 
variables that affect search termination, is paramount to the 
development of comprehensive models of memory retrieval 
and to understanding the dynamics of memory retrieval 
outside the lab. 

In summary, in this paper we obtained further evidence 
for the view that participants are making adaptive choices to 
search termination that are based on a cost-benefit analysis. 
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