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Abstract 

Flexible and robust biological navigation are role models for 
robots. Biological odometry data from experiments with 
human subjects are explained by our novel mathematical 
model of biological path integration. We show the 
equivalence of neural representations of Polar and Cartesian 
egocentric path integration. 
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1 Introduction 
Navigation can be defined as a process that answers the 

following questions (a) “where am I?” (b) “where are other 
places with respect to me?” (c) “how do I get to other places 
with respect to me?” (Levitt and Lawton, 1990).  Navigation 
is different from other forms of spatial behavior such as 
exploration, or foraging, in that there is an explicit reference 
to a goal location (Franz & Mallot, 2000). While many 
animals normally use landmarks or familiar positions to 
navigate, arthropods, many mammals and humans can reach 
their goal relying solely on their own locomotion signals. 
This type of navigation is known as path integration in 
biology or odometry in robotics. 

 Path integration has been studied extensively in desert 
arthropods and mammals (Weber et al., 1997; Séguinot et 
al., 1998; Etienne & Jeffery, 2004; Merkle, 2007). For 
humans, path integration is normally studied through 
triangle completion experiments (e.g. Riecke et al.). Wiener 
and Mallot (2006) studied visual path integration on human 
subjects using more complex paths with a greater number of 
segments and turning angles.  
In robotics, sensory inputs are used to build and update a 
global representation of the environment. Thereafter, motor 
actions are derived by an inference procedure from this 
representation (McKerrow, 1991). The flexibility and 
navigation performance of biological organisms (e.g. 
migrating birds, arthropods) has motivated robotics 
researchers to adopt biologically-inspired approaches in 
order to achieve more accurate and robust navigation. 
Viewed in the opposite direction, such robots can help us to 
understand the behavior and biomechanics of biological 
systems. For instance, Möller et al. (1998) used an 
autonomous agent to study path integration in a type of 
desert ant. Lambrinos et al. (1997) studied the encoded 
signals of robot’s wheels to estimate the moved distance. 
Polarized light was used as an allothetic signal. The 
navigation ability of a mobile robot using only visual 

sensory input was investigated by Chahl and Srinivasan 
(1996). Weber et al. (1997) studied image motion 
information to estimate the travelled distance by the robot.In 
this paper, we address the problem of odometry through the 
mathematical modeling of a path integration system which 
matches the results from experiments conducted on human 
subjects (Riecke et al., 2002). In this way, we investigate 
what is happening at the neuronal level during the execution 
of the task which can later be used in biomimetic robots. 

Generally speaking mathematical models of path 
integration can be divided in two types: geocentric and 
egocentric. In the present work, we focus on the egocentric 
model, described in section 2.1. Section 2.2 defines different 
sources of noise that arise in path integration. In section 2.3. 
the experimental data obtained from path integration with 
human subjects is described. In section 2.4 the mathematical 
model of this system is explained. To find the noise 
parameters which define the best mathematical model 
according to the experimental data, we need to solve an 
optimization problem which we elaborate on in section 3. 
The results are provided in section 4. 

 
2 Path Integration (Odometry) 

Mittelstaedt and Mittelstaedt (1980) established the term 
“path integration” and were the first to study it from a 
computational standpoint. They hypothesized that the 
signals derived from locomotion are used continuously to 
estimate the so-called global vector (travelled distance). 
This vector connects the reference point (e.g. the nest 
position) to the current position of the agent (e.g. the goal or 
target point) in a fixed coordinate system. These models of 
path integration are known as Geocentric models. 

In contrast, Egocentric models center the coordinate 
system on the body of the moving agent. The agent 
computes and updates the sensory signals pertaining to its 
position and orientation in each time step (Gallistel, 1990; 
Benhamou and Séguinot, 1995). This approach is 
computationally efficient and particularly important in e.g. 
ants, given their limited computational resources. 

Both models can be defined in terms of Polar and 
Cartesian coordinates. The models investigated here are 
based on an egocentric computation to formulate the path 
integration task conducted in an experiment on human 
subjects. 
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2.1   Egocentric Models 
For path integration in egocentric models, two velocities 

are measured, the forward (translational) velocity, v, and the 
angular velocity, ω (Figure 1). Egocentric related 
differential equations formulated by Banhamou and 
Séguinot (1995) are obtained considering small time steps. 
In the polar coordinates they are, 

                    dr

dt
= −ν cosδ,                           (1) 

                                                        
                 dδ

dt
= ν sinδ

r
−ω.                         (2)   

                                                                
The differential equations in Cartesian coordinates (by 

Banhamou and Séguinot , 1995) are, 
 

                         
dx

dt
= −ν +ωy,                                  (3)     

                                                                                                

                         
dy

dt
= −ωx.                                          (4)  

                                                                                                            
This egocentric model linearly applies the parameters v, and 
ω, as additive or multiplicative terms. 
 

2.2   Noise Type 
Homing in mammals and arthropods is imperfect. The lack 
of familiar positions or salient objects in identifying the 
starting position produces errors during path integration 
(Riecke et al., 2002). There are two types of errors in path 
integration that should be distinguished: random and 
systematic errors. Merkle (2007) mentioned that “there is 
evidence that random errors can originate from the 
inaccurate measurement of angles or distances, whereas 
systematic errors probably arise at the neural level of the 
organism”. 

We examine the effect of both types of noise in path 
integration which is modelled by Monte-Carlo simulation in 
each unit of path movement. The first type of noise affects 
the sensors which measure v and ω. This is considered due 
to the imperfectness of sensors. As the agent moves, it uses 
path integration to update its position across movement 
steps in relation to the reference point (nest position). The 
second type of noise is added to these calculated values to 
obtain the agent’s position (Figure 2). 

 
2.3   Experimental Data 

To examine whether only vestibular cues are required for 
navigation, Riecke et al. (2002) conducted experiments on 
spatial orientation tasks. The experiments were conducted in 
the 180˚ Virtual Reality (VR) environment lab, with a half-
cylindrical screen, where the participant is seated behind a  

 
Figure 1: Egocentric path integration schema.  The global 

vector, G, represented in Cartesian coordinates as G =(X, Y), and 
the polar coordinates G=(r,δ) (Merkle, 2007). 

 

 
 

Figure 2: The types of noise in the navigation system. 
 

table in the centre of the screen with a three button mouse , 
and is presented with visual cues. Pressing the middle 
button was used for forward translation and releasing for 
ending the motion. The left and right buttons were used for 
left or right rotations, respectively. Since there is minimum 
proprioceptive feedback in the button-based motion model, 
it is normally used as a model in VR related tasks. The 
experimental landscapes were streets, trees and houses. In 
each trial participants were presented with yellow and blue 
light beams, respectively, as the first and the second goal. 
The goals disappeared on contact. After the second goal 
disappeared there was a 2 second period of darkness. The 
task was then to return to the starting position accurately. 
The experiment was also done without reliable landmarks in 
a 3D field of blobs and with the naturalistic town 
environment and temporal landmarks. The reader is referred 
to Reicke et al. (2002) for a more detailed description.  

Reicke et al. (2002) chose triangle completion since this 
task is “the simplest nontrivial combination of translations 
and rotations”. Each participant was presented with sixty 
isosceles triangles in random order; five different turning 
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angles (30˚, 60˚, 90˚, 120˚, and 150˚) and two turning 
directions (left or right) which were repeated six times. 
Experimental results showed that participants could use 
their proprioceptive signals to estimate their travelled 
distance and turn back to the starting point with some bias 
(Figure 3). If we look at the homing trajectory end points for 
each participant over all his/her trials in Figure 3, we end up 
with a distribution over these sets of end points. We mainly 
work with this distribution in the next sections. 

 

3 Mathematical Modeling 
As in the experiment above, we model movement along 
isosceles triangles with 20 units and five different rotation 
angles between equal sides of a triangle. After passing one 
side of a triangle and reaching the first goal, the agent 
rotates and crosses the second side to reach the second goal 
and now it has to compute the third side of triangle. We 
used Monte Carlo simulations to simulate the path 
integration equations of section 2.1 and the noise of section 
2.2. Sensor noise was added by Monte Carlo simulation as 
follows: 

 
                  |)|||(Nv'

21
ωα+να+=ν ,                    (5)                                                 

                  |)|||(N'
43

ωα+να+ω=ω ,                   (6)  

 
where v' and ω' are the noisy sensor values, and α1, α2, α3 
and α4 are user-defined free parameters. 

The second type of noise was added to the calculated 
parameters which define the position of the agent in Polar or 
Cartesian coordinate systems. The noise can be added by 
Monte Carlo simulation in two ways: in a partial form, eqs. 
7, 8 (Cartesian coordinates), 9 and 10 (Polar coordinates), 

 
                          X ' = X + N(σ ).X                                (7)                                                          

                          YNYY ).(' σ+=                                   (8)                                                                                                 

                          rNrr ).(' σ+=                                     (9) 

                         δσδδ ).(' N+=                                   (10)  

                                                           
or in an absolute form, eqs. 11, 12 (Cartesian coordinates), 
13 and 14 (Polar coordinates). 
 
 
                          )(' σNXX +=                                   (11) 

                          )(' σNYY +=                                     (12) 

                           )(' σNrr +=                                     (13) 

                          )(' σδδ N+=                                     (14)  

 
  Tuning the noise parameters of the Monte Carlo 

simulation yields different ending distributions around the 
reference point of the modelled triangular path.                                                              
To evaluate the simulated results predicted by the 
mathematical model and the real experimental data, we 

compared the home-ending distributions by means of a 
Homogeneity test (section 3.1). Determining the best noise 
parameter that provides the distribution closest to the real 
home-ending distribution of experimental data required 
solving an optimization problem (section 3.2). An example 
simulated path from our mathematical model, and the home-
ending distributions are depicted in Figure 4.

 
Figure 4: Left: Monte Carlo simulation generated noise. 

The agent’s rotation angle of the agent is 45 degrees. Right:  
the red ellipse indicates the home-ending distribution of 
experimental data, the blue ellipse is the one obtained by 

Monte Carlo simulation. 
 

3.1   Homogeneity Testing to Compare the 
Distributions  

Suppose {x1, …, xm} and {y1,…,yn} are two-samples 
drawn i.i.d. from distributions P and Q, respectively, a two-
sample test tests whether  P ≠ Q (hypotheses are, H0: P=Q, 
against the alternative H1: P ≠ Q). We used Maximum Mean 
Discrepancy (MMD; Gretton et al., 2007) as our 
homogeneity test.  

Theorem1. Let (X,B) be a metric space, and let P, and Q 
be two Borel probability measures defined on X. The kernel 
function k: X× X� R embeds the points  x ∈ X  into the 
corresponding reproducing kernel Hilbert space H. Then P 
= Q if and only if MMD[P,Q] =0, where 

HQp
,.)]y(k[E,.)]x(k[E:]Q,P[MMD −= ,   

 where 
H

.  represents the RKHS norm. 

For a predefined significance level (e.g. 5%), MMD 
values closer to zero indicate higher similarity between the 
distributions. 
 

3.2   Optimization 
To find the noise parameters providing the modeled 
distribution closest to real home-ending distributions, we 
need to solve an optimization problem,i.e. find the maxima 
or minima of a so-called objective function. If the objective 
function is differentiable, we can use derivative-based 
methods to solve the optimization problem. Direct search 
methods are used in cases in which we do not have explicit 
information about the objective function, or are unable to 
compute the derivatives. The Nelder-Mead simplex method 
(Lagarias et al., 1998) is a direct search method which is 
widely used to optimize multidimensional objective 
functions with no constraints. We use the Nelder-Mead 
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simplex method since our objective function is a routine that 
does not have an analytical form. The input arguments of 
this routine are the noise parameters and the output is an 
MMD value. It has 6 free noise parameters (α1, α2, α3, α4, σx, 
and σy), e.g., of the noise which is generated for instance in 
a Cartesian coordination system. Without loss of generality 
we simplify equations 5 and 6 by setting α1, α2, α3, α4 equal 
to 1: 

  
                        )(' σν Nv +=                              (15)                                                                                               

                       )(' σωω N+=                              (16)  

                                                                                             
Then our goal is minimization of the simplified objective 

function f (συ, σω, σx, σy) under the constraints of non-
negative parameters (standard deviations). The solution is 
the minimal MMD values. As mentioned before, the Nelder-
Mead simplex method is used to solve unconstrained 
problems; then, we need to convert our constrained problem 
to an unconstrained one. This is done with the algorithm 
introduced by J. D’Errico which uses the transformation 
values related to each bound, such as a quadratic function 
for ingle bounds and a sinusoidal function for dual bounds.  
 

4   Results 
To make sure our objective function is not affected by 

sudden unexpected changes due to changing noise 
parameters, we approximately cover the variable space by 
changing steps of 0.01 to plot the function values (Table 1). 
To get a smoothly changing objective function we tuned the 
triangular side lengths to 20 meters. This value is 40 m in 
real experiments. There are 1000 Monte Carlo-generated 
home-ending data points. For MMD we use the Gaussian 
kernel with automated standard deviation tuning by the 
median sample data distance in distributions. We report 
results for the 5% significance level. Results for relative 
noise (eq. 7 and 8) and absolute noise (eq. 11 and 12) are 
obtained in both Cartesian and Polar coordinate systems. 
Results of simulated distributions in polar coordinates with 
absolute noise are depicted in Figure 5. Table 2 and 3 
compare simulated distributions around the reference point 
of the navigation path with the distribution of home-ending 
points in experimental data for absolute and relative noise 
types. 

An interesting question is whether polar or Cartesian 
coordinates are used on the neural level. Our results show 
they provide similar results. We also generated final 
distributions compatible with experimental data. 

 
5 Conclusion 

We introduced a novel mathematical model of egocentric 
path integration that uses Monte Carlo simulation of both 
the path integration equation and the noise. The home- 
ending distributions of data collected from experiments with 
human subjects were compared to those predicted by Monte 
Carlo. The closest matching distribution simulated by the 
model was found using the Nelder-Mead simplex method to 

minimize the Maximum Mean discrepancy between the 
model and human data. We showed that at the neuronal 
level, the perceived advantage, in terms of both 
computational overhead and representational power, 
between Polar and Cartesian representations, is non-
existent.  
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Figure 3.  Homing performance in the Landmarks experiment. The data is pooled over the turning direction (left/right) as it 

had no significance influence on homing performance. Plotted are the mean (centroid), the 95% confidence ellipse (outer 
ellipse with thick line), and the standard ellipse (inner ellipse with thin line) for the homing endpoints (Reicke et al, 2002).  
 

 
Figure 5: The results of sensor noise with absolute standard deviation production in the polar coordinate system. 
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Table 1: An example of how the home-ending distributions change with respect to the parameters of the Monte Carlo 
simulation. Entries are shown for increments of 0.01 for both σx, σy, in Cartesian coordinates. Note how the generated 

Monte Carlo distributions change smoothly with σ1, σ2. The confidence interval over 30 runs is reported. The rotation angle 
of the path is 120˚. 

 
     σx                                                                
σy                 

0.01 
σ1, σ2 

0.02 
σ1, σ2 

0.03 
σ1, σ2 

0.04 
σ1, σ2 

0.05 
σ1, σ2 

0.01 1.63±0.01,0.77±0.01 3.24±0.02,1.55±0.03 4.77±0.02,2.37±0.03 6.26±0.05,3.28±0.02 7.66±0.1,4.21±0.08 
0.02 1.63±0.03,0.77±0.01 3.27±0.03,1.56±0.01 4.77±0.01,2.37±0.02 6.32±0.06,3.30±0.02 7.65±0.13,4.23±0.03 
0.03 1.64±0.01,0.79±0.01 3.27±0.03,1.59±0.03 4.75±0.10,2.37±0.01 6.28±0.02,3.29±0.08 7.61±0.15,4.25±0.08 
0.04 1.65±0.02,0.81±0.02 3.24±0.04,1.59±0.04 4.78±0.06,2.38±0.04 6.25±0.09,3.21±0.08 7.61±0.11,4.22±0.05 
0.05 1.64±0.03,0.81±0.01 3.25±0.06,1.60±0.02 4.80±0.11,2.40±0.06 6.27±0.06,3.25±0.05 7.64±0.10,4.32±0.05 

 
Table 2: Comparison between simulated distributions around the initial point of the navigation path (Cartesian coordinates, 

various noise types). The σx,,and  σy to generate the Monte Carlo distributions are 0.1 and 1.6 respectively. The null 
hypothesis H0, means the two distributions are similar. 

 
Rotation  
Angel 

Simulated 
dist. Cartesian 
(µx, σx, µy, σy) 

Simulated 
dist. Polar 
(µx, σx, µy, σy)   

MMD  

30˚  0.12, 2.41,0.09,3.29 -0.04,2.36,0.02,3.28 σ = 3.3 
Accept H0 

60˚ 0.09,3.29,-0.01,3.09  0.06,3.22,-0.07,3.08 σ = 3.72 
Accept H0 

90̊  -0.01, 3.42,-.09,3.37 0.18,3.42,-0.03,3.31 σ = 3.89 
Accept H0 

120˚ 0.12,3.11, 0.15,3.79  0.05,3.11,0.24,3.89 σ = 3.95 
Accept H0 

150˚ -0.06,2.60,-0.01,4.51 0.15,2.54,0.19,4.66 
  

σ = 4.10 
Accept H0 

 
 

 
Table 3: Comparison of simulated distributions around the initial point of the navigation path (polar coordinates, various 

noise types). The σx,, and  σy to generated the Monte Carlo distributions are both 0.01. The null hypothesis H0, means the two 
distributions are similar. 

 
Rotation  
Angel 

Simulated 
dist. Cartesian 
(µx, σx, µy, σy) 

Simulated 
dist. Polar  
(µx, σx, µy, σy)  

MMD  

30˚  -0.15, 6.3, -
0.21,6.50 

-.05,6.55,0.19,6.31 σ = 7.59 
Accept H0 

60˚ 1.02, 6.82, 2.02, 5.14  0.82, 6.82,1.85,5.33 σ = 6.75 
Accept H0 

90˚ 0.87, 6.04, 0.86,4.19  0.29, 6.99,1,4.25 σ = 5.58 
Accept H0 

120˚ 0.82, 6.75, 0.75, 4.88  0.29,6.99,0.96,4.7 σ = 6.67 
Accept H0 

150˚ -0.03,8.64, 0.31,8.61 -0.03, 8.76,0.27,8.7 
  

σ = 10.23 
Accept H0 

 
 

 
 

 

1451


