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Abstract

Flexible and robust biological navigation are roledels for
robots. Biological odometry data from experimentghw
human subjects are explained by our novel matheaiati
model of biological path integration. We show the
equivalence of neural representations of Polar @adesian
egocentric path integration.
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1 Introduction

Navigation can be defined as a process that anghers
following questions (a) “where am 1?” (b) “wheresasther
places with respect to me?” (c) “how do | get thestplaces
with respect to me?” (Levitt and Lawton, 1990). vidgation
is different from other forms of spatial behaviarck as
exploration, or foraging, in that there is an egiplieference
to a goal location (Franz & Mallot, 2000). While nya
animals normally use landmarks or familiar posiioto
navigate, arthropods, many mammals and humanseeah r
their goal relying solely on their own locomotioigrsals.
This type of navigation is known gsath integrationin
biology orodometryin robotics.

Path integration has been studied extensivelyaserd
arthropods and mammals (Weber et al., 1997; Ségeno
al.,, 1998; Etienne & Jeffery, 2004; Merkle, 200For
humans, path integration is normally studied thtoug
triangle completion experiments (e.g. Riecke ét liener
and Mallot (2006) studied visual path integrationtmiman
subjects using more complex paths with a greaterbau of
segments and turning angles.

In robotics, sensory inputs are used to build apdate a
global representation of the environment. Thereaftetor
actions are derived by an inference procedure fthis
representation (McKerrow, 1991). The flexibility dan
navigation performance of biological organisms .(e.g
migrating birds, arthropods) has motivated robotic
researchers to adopt biologically-inspired appreacin
order to achieve more accurate and robust navigatio
Viewed in the opposite direction, such robots calp lus to
understand the behavior and biomechanics of bickbgi
systems. For instance, Moller et al. (1998) used a
autonomous agent to study path integration in a tgp
desert ant. Lambrinos et al. (1997) studied theoded
signals of robot's wheels to estimate the movedadise.
Polarized light was used as an allothetic signdhe T
navigation ability of a mobile robot using only wa

S

sensory input was investigated by Chahl and Srazina
(1996). Weber et al. (1997) studied image motion
information to estimate the travelled distancehsy/iobot.In
this paper, we address the problem of odometryutitrahe
mathematical modeling of a path integration systeiich
matches the results from experiments conducteduomah
subjects (Riecke et al., 2002). In this way, weestigate
what is happening at the neuronal level duringetkecution
of the task which can later be used in biomimedlmots.
Generally speaking mathematical models of path
integration can be divided in two types: geocentaitd
egocentric. In the present work, we focus on theceagtric
model, described in section 2.1. Section 2.2 dsfififerent
sources of noise that arise in path integratiorselction 2.3.
the experimental data obtained from path integnatigth
human subjects is described. In section 2.4 théenadtical
model of this system is explained. To find the aois
parameters which define the best mathematical model
according to the experimental data, we need toesalv
optimization problem which we elaborate on in s&ttB.
The results are provided in section 4.

2 Path Integration (Odometry)

Mittelstaedt and Mittelstaedt (1980) establishegl tirm
“path integration” and were the first to study o a
computational standpoint. They hypothesized that th
signals derived from locomotion are used continlyots
estimate the so-called global vector (travelledtagise).
This vector connects the reference point (e.g. niest
position) to the current position of the agent (¢hg goal or
target point) in a fixed coordinate system. Theselets of
path integration are known &seocentric models.

In contrast, Egocentric modelscenter the coordinate
system on the body of the moving agent. The agent
computes and updates the sensory signals pertaioiitg
position and orientation in each time step (Gallisi990;
Benhamou and Séguinot, 1995). This approach
computationally efficient and particularly importan e.g.
ants, given their limited computational resources.

Both models can be defined in terms of Polar and
Cartesian coordinates. The models investigated beee
based on an egocentric computation to formulateptité
ﬁhtegration task conducted in an experiment on huma
subjects.

is
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2.1 Egocentric Models
For path integration in egocentric models, two ciles
are measured, the forward (translational) veloeitgnd the
angular velocity, ® (Figure 1). Egocentric related
differential
Séguinot (1995) are obtained considering small titeps.
In the polar coordinates they are,

ar_ -vcosd, 1)
dt
do_,sind_, )

dt o

The differential equations in Cartesian coordinafieg
Banhamou and Séguinot , 1995) are,

dx

— ==+ A 3

at wy, X
dy

—Z =— 4

ot )

This egocentric model linearly applies the paramseteand
®, as additive or multiplicative terms.

2.2 Noise Type
Homing in mammals and arthropods is imperfect. [Hok
of familiar positions or salient objects in idegiifg the
starting position produces errors during path irgggn
(Riecke et al., 2002). There are two types of erinrpath
integration that should be distinguished:
systematic errors. Merkle (2007) mentioned thaer¢his

equations formulated by Banhamou and

randond an
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Figure 1:Egocentric path integration schema. The global
vector, G, represented in Cartesian coordinat€ a&, Y), and
the polar coordinates G=§},(Merkle, 2007)
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Figure 2: The types of noise in the navigation exyst

evidence that random errors can originate from the
inaccurate measurement of angles or distances, eaber table in the centre of the screen with a threedoumouse ,

systematic errors probably arise at the neurall le¥ehe
organism”.

and is presented with visual cues. Pressing thedlmid
button was used for forward translation and reteador

We examine the effect of both types of noise inhpat ending the motion. The left and right buttons wased for

integration which is modelled by Monte-Carlo sintida in
each unit of path movement. The first type of naffects
the sensors which measwandw. This is considered due
to the imperfectness of sensors. As the agent maveses
path integration to update its position across muam
steps in relation to the reference point (nesttpmyi. The
second type of noise is added to these calculakeks to
obtain the agent’s position (Figure 2).

2.3 Experimental Data
To examine whether only vestibular cues are reduioe
navigation, Riecke et al. (2002) conducted expent:mi@n
spatial orientation tasks. The experiments werelgoted in
the 180° Virtual Reality (VR) environment lab, wighhalf-
cylindrical screen, where the participant is seduteltind a

left or right rotations, respectively. Since th&eaninimum
proprioceptive feedback in the button-based motimdel,
it is normally used as a model in VR related tasKse
experimental landscapes were streets, trees ansefoln
each trial participants were presented with yellvd blue
light beams, respectively, as the first and theosdayoal.
The goals disappeared on contact. After the segwal
disappeared there was as@cond period of darkness. The
task was then to return to the starting positiooueately.
The experiment was also done without reliable laaudisin
a 3D field of blobs and with the naturalistic town
environment and temporal landmarks. The readexfesned
to Reicke et al. (2002) for a more detailed desicnip
Reicke et al. (2002) chose triangle completion esitiis
task is “the simplest nontrivial combination ofristations
and rotations”.Each participant was presented with sixty
isosceles triangles in random order; five differéumtning
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angles (30°, 60°, 90°, 120°, and 150°) and two itign
directions (left or right) which were repeated gimes.

Experimental results showed that participants coude

their proprioceptive signals to estimate their é¢léd

distance and turn back to the starting point widlms bias
(Figure 3). If we look at the homing trajectory gmuints for

each participant over all his/her trials in Fig8reve end up
with a distribution over these sets of end poiwie mainly

work with this distribution in the next sections.

3 Mathematical Modeling

As in the experiment above, we model movement alon

isosceles triangles with 20 units and five différestation
angles between equal sides of a triangle. Aftesipgsone
side of a triangle and reaching the first goal, Hyent
rotates and crosses the second side to reachdbedsgoal
and now it has to compute the third side of triangiVe

used Monte Carlo simulations to simulate the path

integration equations of section 2.1 and the nofsgection
2.2. Sensor noise was added by Monte Carlo sinonlats
follows:

&)
)

vi=v+N(, v +a, o))
w=w+N(a, [v|+a, |w]).

whereVv' andw' are the noisy sensor values, anda,, oz
anda, are user-defined free parameters.

compared the home-ending distributions by meansa of
Homogeneity test (section 3.1). Determining thet beése
parameter that provides the distribution closestht real
home-ending distribution of experimental data resepli
solving an optimization problem (section 3.2). Arample
simulated path from our mathematical model, anchthrae-

ending distributions are depicted in Figure 4.

Figure 4:Left: Monte Carlo simulation generated noise.
The agent’s rotation angle of the agent is 45 degrRight:
the red ellipse indicates the home-ending distidimubf
experimental data, the blue ellipse is the oneinbthby
Monte Carlo simulation.

0 $ 10 s a2 >

3.1 Homogeneity Testing to Compare the
Distributions
Suppose {X ..., %o} and {yi,...,yn} are two-samples
drawn i.i.d. from distributions P and Q, respedijya two-
sample test tests whether#RQ (hypotheses are,(HP=Q,

The second type of noise was added to the calcllatedgainst the alternative,HP # Q). We used Maximum Mean

parameters which define the position of the ageftdlar or
Cartesian coordinate systems. The noise can bedadyle
Monte Carlo simulation in two ways: in a partiatrfg egs.
7, 8 (Cartesian coordinates), 9 and 10 (Polar éoatels),

X'=X+N(0).X 7
Y'=Y+N(0)Y 8)
r'=r+N(o).r 9)
0'=0+N(0).0 10

or in an absolute form, egs. 11, 12 (Cartesiandioates),
13 and 14 (Polar coordinates).

X'= X +N(0) 10
Y'=Y +N(0) 12
r'sr+N(o) 19
0'=0+N(0) 14

Tuning the noise parameters of the Monte Ca
simulation yields different ending distributionsoand the
reference point of the modelled triangular
To evaluate the simulated
mathematical model and the real experimental data,

path.
results predicted by th

Discrepancy (MMD; Gretton et al.,
homogeneity test.

Theoreml Let (X,B) be a metric space, and let P, and Q
be two Borel probability measures defined on X. Kémmel
function k: Xx X2 R embeds the pointsx _ X into the
corresponding reproducing kernel Hilbert space tem P

Q if and only if MMD[P,Q] =0, where
MMD [P,Q]:=E, [k(x,.)] - E,[K(y,.)]

where” . ||H represents the RKHS norm.

2007) as our

’
H

For a predefined significance level (e.g. 5%), MMD
values closer to zero indicate higher similarityween the
distributions.

3.2 Optimization

To find the noise parameters providing the modeled
distribution closest to real home-ending distribos, we
need to solve an optimization problem,i.e. find thaxima
or minima of a so-called objective function. If thisjective
function is differentiable, we can use derivativaeséd
methods to solve the optimization problem. Diregarsh
methods are used in cases in which we do not heplecié
Gnformation about the objective function, or areable to
compute the derivatives. The Nelder-Mead simplexhog:
Lagarias et al., 1998) is a direct search methbdthvis

idely used to optimize multidimensional objective
functions with no constraints. We use the Neldeatfle

rl
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simplex method since our objective function is atirce that
does not have an analytical form. The input argusef
this routine are the noise parameters and the bugpan
MMD value. It has 6 free noise parameters ., oz, 04 oy,
andoy), e.g., of the noise which is generated for instaim
a Cartesian coordination system. Without loss afegality
we simplify equations 5 and 6 by settiag oy, as, oy equal
to 1:

v'=v+ N(0)
«'=w+N(0)

19
16)

Then our goal is minimization of the simplified ebjive

function f (c,, o, ox, o,) under the constraints of non-

negative parameters (standard deviations). Thetisolus
the minimal MMD values. As mentioned before, thédde-

minimize the Maximum Mean discrepancy between the
model and human data. We showed that at the ndurona

level, the perceived advantage, in terms of both
computational overhead and representational power,
between Polar and Cartesian representations, is non

existent.
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N

Figure 5: The results of sensor noise with absdtaedard deviation production in the polar cocatirsystem.
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Table 1: An example of how the home-ending distidns change with respect to the parameters ofithrete Carlo
simulation. Entries are shown for increments oflddr botho,, oy, in Cartesian coordinates. Note how the generated
Monte Carlo distributions change smoothly withe,. The confidence interval over 30 runs is reporfiétk rotation angle

of the path is 120°.

Oy 0.01 0.02 0.03 0.04 0.05
Oy G1, 62 G1, 02 G1, 02 G1, G2 G1, G2
0.01 1.63+0.01,0.774+0.01 3.24+0.02,1.55+0.0% 4.77+0.02,2.37+0.0% 6.26%0.05,3.28+0.0z 7.66+0.1,4.21+0.08
0.02 1.63+0.03,0.77+0.01 3.27#+0.03,1.56+0.01 4.77+0.3¥#0.02 6.32+0.06,3.30+0.02 7.65+0.13,4.23+0.03
0.03 1.64+0.01,0.79+0.01 3.27+0.03,1.59+0.0% 4.75+0.10,2.37+0.01 6.28+0.02,3.29+0.0¢ 7.61+0.15,4.25+0.08
0.04 1.65+0.02,0.81+0.02 3.24+0.04,1.59+0.04 4.78+0.03820.04 6.25+0.09,3.21+0.08 7.61+0.11,4.22+0.05
0.05 1.64+0.03,0.81+0.01 3.25+0.06,1.60+0.0z 4.80+0.11,2.40+0.0¢ 6.27+0.06,3.25+0.0t 7.64+0.10,4.32+0.05

Table 2: Comparison between simulated distributemosind the initial point of the navigation pathaf@sian coordinates,
various noise types). Thg ,and o, to generate the Monte Carlo distributions are 8d |6 respectively. The null

hypothesis i means the two distributions are similar.

Rotation Simulated Simulated MMD
Angel dist. Cartesian dist. Polar
(ny, 0% 1y, ) (ny, o5 1y, )

30° 0.12, 2.41,0.09,3.29 -0.04,2.36,0.02,3.28= 3.3
Accept H

60° 0.09,3.29,-0.01,3.09 0.06,3.22,-0.07,3.@8= 3.72
Accept H

oC -0.01, 3.42,-.09,3.37 0.18,3.42,-0.03,3.3¢ = 3.89
Accept H

120° 0.12,3.11, 0.15,3.79  0.05,3.11,0.24,3.88 = 3.95
Accept H

150° -0.06,2.60,-0.01,4.510.15,2.54,0.19,4.66 & =4.10
Accept H

Table 3 Comparison of simulated distributions around ttigial point of the navigation path (polar coordies, various
noise types). The,, and o, to generated the Monte Carlo distributions are IBofi. The null hypothesisgHmeans the two

distributions are similar.

Rotation Simulated Simulated MMD
Angel dist. Cartesian dist. Polar
(ny, oy 11y, 6y) (x4, 1y, )
30° -0.15, 6.3, - -.05,6.55,0.19,6.31 ¢ =7.59
0.21,6.50 Accept H

60° 1.02, 6.82, 2.02, 5.140.82, 6.82,1.85,5.336 = 6.75
Accept H

90° 0.87,6.04,0.86,4.19 0.29,6.99,1,4.25 ¢ =5.58
Accept H

120° 0.82, 6.75, 0.75, 4.880.29,6.99,0.96,4.7 © =6.67
Accept H

150° -0.03,8.64, 0.31,8.61 -0.03, 8.76,0.27,8.6 = 10.23
Accept H
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