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Abstract

Cognitive scientists have begun collecting the trajectories of
hand movements as participants make decisions in experi-
ments. These response trajectories offer a fine-grained glimpse
into ongoing cognitive processes. For example, difficult deci-
sions show more hesitation and deflection from the optimal
path than easy decisions. However, many summary statistics
used for trajectories throw away much information, or are cor-
related and thus partially redundant. To alleviate these issues,
we introduce Gaussian process regression for the purpose of
modeling trajectory data collected in psychology experiments.
Gaussian processes are a well-developed statistical model that
can find parametric differences in trajectories and their deriva-
tives (e.g., velocity and acceleration) rather than a summary
statistic. We show how Gaussian process regression can be im-
plemented hierarchically across conditions and subjects, and
used to model the actual shape and covariance of the trajecto-
ries. Finally, we demonstrate how to construct a generative hi-
erarchical Bayesian model of trajectories using Gaussian pro-
cesses.
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Bayesian statistics.
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Introduction

Cognitive scientists are gradually turning toward more fine-
grained measures to gain more insight into the continuous
nature of the cognitive processes that underly behavior. Per-
haps the most widespread of these measures is eye tracking,
in which we assume that where people gaze is the current fo-
cus of attention and processing. For example, when reading
a syntactically ambiguous sentence, people tend to make eye
movements back toward the function word or pronoun that
best helps resolve the ambiguity (Frazier & Rayner, 1987).
Or, when hearing continuous speech, people will tend to look
more at objects whose names are consistent with a partially-
heard word (e.g., people will look at either a “ball” or a “bear”
if they have just heard the syllable “b”), indicating that peo-
ple make continuous predictions about the content of speech
based on partial information (Spivey, Grosjean, & Knoblich,
2005). Thus, a continuous measure of behavior, like eye
tracking, appears to provide insight into ongoing cognitive
processes.

More recently, researchers have begun to collect explicit
continuous behavioral measures in the form of mouse or sty-
lus movements (e.g., Freeman & Ambady, 2010). These may
easily be used in place of any task that requires an explicit
choice on the part of the participant, which includes most ex-
perimental paradigms in cognitive psychology. Rather than
simply pressing a key to make their response, a participant
can instead move their hand (as well as an attached mouse
or stylus) toward the option of their choice before selecting

(clicking) it. Similar to eye tracking, the trajectories of these
continuous motor movements provide a way of measuring the
ongoing cognitive processes that lead to the participant’s final
choice.

A major hurdle with any new measure is the need for ap-
propriate analytical tools and statistical tests that allow re-
searchers to draw inferences from trajectory data. Due to the
richness of this data, many measures are possible and can lead
to principled inferences (for an overview, see Freeman, Dale,
& Farmer, 2011). When moving their hand while making a
decision, people may deviate more from a straight trajectory
if there is a tempting alternative, making viable such mea-
sures as maximum deviation, curvature area, and switches in
direction.

In this paper, we introduce a new method for analyzing tra-
jectory data. Our method is based on treating trajectories as
a Gaussian process, for which there is much well-developed
statistical theory. We begin by providing a brief overview
of Gaussian process regression and show how it may be ap-
plied to motor response trajectories and—more fruitfully, we
argue—their derivatives. Finally, we show how Gaussian pro-
cess regression can be incorporated into a generative hierar-
chical Bayesian model of trajectories.

Gaussian Process Regression

Gaussian process regression (GPR) is a statistical tech-
nique with a long history in spatial statistics, and more re-
cently in function estimation and prediction (Griffiths, Lucas,
Williams, & Kalish, 2009). The interested reader is directed
to the excellent text on Gaussian processes by Rasmussen and
Williams (2006).

Gaussian Processes

A Gaussian process (GP) is simply a collection of random
variables, all of which are jointly Gaussian distributed. What
differentiates a Gaussian process from the more familiar mul-
tivariate Gaussian distribution is the fact that a Gaussian pro-
cess may have an infinite index set, that is, it may specify
an infinite number of jointly Gaussian variables. Thus, it is
possible to define a Gaussian process over a continuous vari-
able, like time. Just as a multivariate Gaussian distribution
is defined entirely by its mean vector and covariance matrix,
a Gaussian process is defined by its mean function m(x) and
covariance kernel, k (x,x’), where x and x" are two (possibly
multidimensional) values of some predictor variable X (e.g.,
time). We denote the fact that a function f(x) is a Gaussian

1440



process by
f(x) ~ GP (m(x),k (x,x)).

A Gaussian process can be considered a distribution over
functions, with m(x) expressing the mean value of all of these
functions at x and k(x,x’) represented the expected covari-
ance between the function value at x and that at X/, i.e., the
amount of “information” that the function f(x') carries about
the value at f(x) (and vice versa). Thus, if we encounter data
(like trajectory data) for which we do not know or cannot
guess the form of the function that generated it, we can infer
the form of this function if we assume that it is a Gaussian
process. This kind of inference is termed “Gaussian process
regression”.

Bayesian Inference with GPs Gaussian process regression
(GPR) seeks to model an unknown function f(x), which is as-
sumed a priori to be a Gaussian process. To do this, we need
two things: a set of function observations f(x) at some known
values of the predictor x; and an expression for the covariance
kernel k(x,x’). The data come from some experiment (e.g., a
set of cursor coordinates f(x)). We must, however, assume a
particular covariance kernel. Although many kernels are pos-
sible, for the purposes of this paper, we will confine ourselves
to the squared exponential (SE) or “radial basis function” ker-

nel:
/ 1 ‘x_x/‘ g
k(x,x') = fexp —3 ( ; ) ) (1

The SE kernel is symmetric, is strictly positive, and most
important for our purposes later, is infinitely differentiable.
Notice that this kernel has two “hyperparameters”: f, which
scales the maximum possible covariance; and /, which func-
tions as a length scale. Later, we will consider how the values
of these hyperparameters may themselves be estimated from
data, but for the moment we shall assume they are known and
fixed.

Armed with a set of observations and knowledge of the
covariance kernel, we now wish to perform inference on the
function that is presumed to have generated the observations.
In other words, we are following the logic of Bayes’ rule:

p(x,f(x)|6)p(6)
[ p(x,£(x)|8)p(6)d6’

where 0 are the parameters of the Gaussian process. Unlike
in other regression settings (e.g., linear regression), where the
parameters are a finite number of regression coefficients, the
parameters of a Gaussian process may be infinite in number,
since a GP prior allows nonzero probability to any functional
form. We can, however, express our knowledge of the param-
eters of the GP implicitly via the posterior predictive distribu-
tion over novel function observations f(x*). This distribution
is obtained by marginalizing over the parameters of the GP:

p(8)x,f(x)) =

f(X*)IX*,X,f(X))=/P(f(x*)|9)p(9|X7f(X))d9- )]

This distribution captures both the residual uncertainty about
the underlying function f(x) and the knowledge gained about
it from the observed data.

Posterior Predictive Distribution Computing the poste-
rior predictive distribution begins with a prior on the mean
and covariance functions of the GP, i.e., p(68). For the mo-
ment, we shall assume that the underlying function has a con-
stant mean of zero, with a SE covariance function (equation
1). Expressing the likelihood of the observed function val-
ues, p(x,£(x)|0), is straightforward because they are assumed
to come from a Gaussian process, and hence are jointly nor-
mally distributed. The parameters of this distribution come
from our prior, i.e., the prior mean of each observation is
taken to be zero, and the covariance between function val-
ues is dictated by our prior covariance kernel (the SE kernel
given in eq. 1). Denoting the matrix of pairwise covariances
between each observed datum as K(X,X), we have

f(x) ~ N(0,K(X,X)).

Now, say we wish to express a posterior predictive distri-
bution over function values at set of novel predictor values,
denoted X*. We can similarly compute a matrix of covari-
ances between these points, K(X*,X*), and between these
novel points and the observed points, K (X, X*). Because both
these novel points and the previously observed data values are
presumed to have been generated by the same GP, they are all
jointly normally distributed with mean zero and block covari-
ance matrix:

f(x) K(X,X)
{f(x*)} - N(“’ [K(X*,X)
We can then express the conditional posterior over

f(x*)|f(x) as another multivariate Gaussian distribution, us-
ing known identities regarding the Gaussian distribution:

,’5&“;))} > ‘

£(x*) (%) ~ AL (K (X*, X)K(X,X) ™ f(x),
K(X*,X*) - K(X*, X)K(X,X)"'K(X,X")). (3)

The posterior predictive distribution given just a few data
points is shown in figure la. This figure also depicts three
functions randomly drawn from this posterior. Note that they
all pass through the observed function values (and the pos-
terior variance at those points goes to zero). This is because
we have assumed thus far that our function observations are
noiseless; thus, we have absolute certainty that, whatever the
true generating function is, it must pass through the values
we have thus far observed. In addition, our (assumed) knowl-
edge of the covariance kernel allows us to estimate the func-
tion’s behavior between and, to a certain extent, beyond the
observed values.

In reality, we will rarely have noiseless observations of
our function of interest. Luckily, observation noise is eas-
ily incorporated into the GPR framework by adding a noise
term, o2, to the diagonal elements of the observed covari-
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(a) No observation noise.

(b) With uniform, uncorrelated
Gaussian noise (6% = .1).

Figure 1: Examples of GPR given a set of function observa-
tions. The open circles are the observed values. The black
line is the mean of the posterior predictive distribution, while
the gray region is the 95% confidence region around that
mean. The three colored lines are functions randomly drawn
from the posterior. Covariance was assumed to be SE with
f=1landl=1.

ance matrix, i.e., K(X,X) +c?I. The resulting joint ob-
served/predicted distribution becomes

)~ (e[S &)

and the posterior predictive distribution changes accordingly:

£(x) %) ~ 2 (K (X, X) [K(X,X) +6%1] £(x),

K(X*,X*)—K(X*,X) [K(X,X) +<521Tl

K(X.X7). @)
This assumes that noise is uniformly distributed and indepen-
dent between observations, but if there is correlated noise be-
tween observations, this may be incorporated directly into the
covariance kernel. An example of a posterior predictive dis-
tribution with observation noise is given in Figure 1b.

GP Likelihood In order to fit a GPR model to data, we re-
quire an expression for the likelihood of a set of function ob-
servations that are assumed to come from a GP. Luckily, as is
clear from above, these observations can be treated as coming
from a multivariate Gaussian with mean zero and covariance
matrix K(X,X). Thus, the likelihood is merely the multivari-
ate Gaussian likelihood:

_n _1 —
p(E(x)) = (2m) "7 |K(X,X)| "2 exp [—5f(x)" K(X,X) " 'f(x)]
&)
where n is the number of observed data points and K(X,X)
may be replaced by K(X,X) + o1 if observation noise is as-
sumed.

Multiple Observed Functions If multiple functions are
observed simultaneously, e.g., the x and y coordinates of a
cursor on a screen, they can each be treated as a priori inde-
pendent Gaussian processes and the above reasoning applied
to each individually.

Derivatives of Gaussian Processes

Because differentiation is a linear operation, the derivative of
a GP is itself a GP. Function derivatives are useful in the event
that we actually have observations of the derivative (as in So-
lak, Murray-Smith, Leithead, Leith, & Rasmussen, 2003).
However, we also argue that the derivatives of a continu-
ous response like a mouse movement are more informative
about the underlying cognitive process that generates them.
For example, the acceleration is critical for finding inflection
points, which could indicate that the participant is considering
changing his or her mind, or that they have just incorporated
new information into their decision process.

In the cases we consider below, we have direct observa-
tions only of position information, not of its derivatives (e.g.,
velocity and acceleration). To compute a posterior predictive
distribution over function derivatives, we need only compute
the covariances between each function observation and the
its derivatives at the points at which we are seeking predic-
tions. This, in turn, requires expressions for the covariances
between function values and derivatives, which are given for
the SE covariance kernel below:

ki) = _k(?zx,) (x—) ©)
Sk ) = 00 Kx_le)z - 1] )
skt = K50 Kx_zx/):l ®)
S
,

+3 (x_lx/> —31. 9)

We can then compute a posterior predictive distribution over
any desired derivative, given only raw function observa-
tions, by constructing the covariance matrices K(X*,X) and
K(X*,X*) from equation using the appropriate partial deriva-
tive above, rather than the original SE kernel k(x,x). For ex-
ample, to compute the posterior predictive distribution for the
velocity, f*(x*)|f(x), compute K(X*,X) using equation 6 for
each pair of predicted and observed x values and K(X*,X*)
using equation 7 for each pair of predicted x values.

Applications of GPR to Trajectory Analysis

In this section, we provide several examples of applications
of GPR to trajectory analysis. In so doing, we introduce sev-
eral extensions to the GPR modeling framework that place it
in the realm of hierarchical generative models which can en-
able principled Bayesian inferences regarding the cognitive
processes that underly observed motion trajectories.

Estimating Hyperparameters

Although the posterior distribution in GPR is easily expressed
analytically given knowledge of the covariance kernel and its
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Figure 2: Example of GPR on a single two-dimensional tra-
jectory. In B, C, and D, the light blue region depicts a 95%
credible region about the mean posterior predictions.

hyperparameters, we are left with having to estimate f, /, and
o2 (if we assume there is noise in the observations). In par-
ticular, we would like to be able to express our beliefs over
these hyperparameters in the form of a posterior distribution.
Unfortunately, this posterior will not in general be express-
ible analytically. Thus, we must turn to Monte Carlo methods
to estimate the posterior over these parameters.

A Single Trial Let us assume we have a single mouse tra-
jectory in two dimensions, as shown in Figure 2A. This trajec-
tory is a single trial from the experiment reported by Spivey et
al. (2005). On each trial of this experiment, participants saw
two objects, the names of which either had similar phono-
logical onsets (i.e., were members of the same “cohort”) or
had phonologically unrelated names (the control condition).
An audio recording instructed the participant to move their
mouse cursor from a box in the lower center of the screen and
click on one of the two objects (thus ending the trial).

The single trajectory consists of a series of (¢,x,y) triples,
with x and y coordinates and the times ¢ at which they were
observed. We treat the times t as a univariate predictor (i.e.,
in the role of x in the previous section) and x and y as condi-
tionally independent Gaussian processes operating on ¢, with
zero mean and SE covariance kernel (i.e., in the role of f(x)
in the previous section). There are three hyperparameters that
must be estimated: the parameters of the covariance kernel,
f and [ (see equation 1), and a noise term, 62, which is as-
sumed to apply to measurements in both the x and y directions
(isotropic noise is assumed here merely for simplicity). We
choose very vague priors on each of these hyperparameters,
such that they are informed almost entirely by the data, rather
than our priors (although these priors could be informed by
knowledge, e.g., of the accuracy of mouse position measure-
ments). We assign a Gamma prior to f and [ with shape and
scale parameters set to 0.001 and an inverse-Gamma prior
to 6> (also with shape and scale parameters of 0.001). The

likelihood of the observed trajectory, conditional on particu-
lar values of the hyperparameters, is then given by equation
5. This model was implemented in JAGS (Plummer, 2011),
drawing 1000 samples from the joint posterior over hyperpa-
rameters after 1000 steps of “burn-in”.

The estimated posterior mean of each hyperparameter is
f = 14760, [ = 0.1146, and 6 = 0.9471. The bottom three
graphs of Figure 2 (B, C, and D) show the mean and 95%
credible region of the posterior predictive distribution for
the x coordinate (as well as its velocity and acceleration),
marginalized over the samples of the hyperparameters.

Multiple Trials While this simple example illustrates
how GPR can be applied to a single trajectory, we
usually have several trials per participant per condi-
tion. In this case, we have multiple sets of triples,
{(t1,x1,y1), (t2,X2,¥2), ..., (tn,Xn,¥n)}. and we can treat
them all as having been generated by the same underlying GP.
In other words, even if two observations (x1,y;) and (x2,y2)
were from different trials, we can still compute their covari-
ance k(t1,t,) as a function of the times #; and #, at which they
were observed, as if they were part of the same trial (and thus
they also share hyperparameters). Collecting the observed
function values x; and y; (where i indexes the trial), we can
write

X1 K(x1,x1) K(x1,X2) K(x1,Xn)
X2 K(x2,%1) K(x2,X2) K(x2,Xp)
~A| 0, . )

Xn K(xn,X1) K(Xn,X2) K (Xn,Xp)

where K (xj,X;j) denotes the covariance matrix between each
sample in trial i and trial j (and a similar multivariate Gaus-
sian likelihood is defined for y).

The assumption leading to the above likelihood is only
valid if we assume that trajectories generated by the same par-
ticipant in the same condition in fact represent samples from
the same underlying process. If we assume that different tri-
als from the same participant may be come from different
processes that nonetheless share some underlying character-
istics, the hierarchical extension of GPR that we introduce in
the next section may be employed instead.

Hierarchical GPR

Having shown how GPR can be applied to single trajecto-
ries and to multiple trajectories that may be assumed to share
the same hyperparameters (i.e., to have been generated by the
same underlying GP), we now turn to the case of multiple
conditions and multiple participants per condition.

Multiple Conditions When there are multiple conditions
in an experiment, we assume that a trajectory produced in
one condition is conditionally independent of a trajectory pro-
duced in another condition, that is, that the trajectories are
generated by different GP’s that nonetheless share hyperpa-
rameters. The rationale for sharing hyperparameters across
conditions is simple: measurement noise (the 6> parameters,
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Figure 3: Posterior predictive distributions for trajectories inferred
from a single subject from Spivey et al. (2005). The upper right plot
shows the contrast computed between the x-positions in two cohort
and two control conditions, while the lower left plot depicts the same
contrast with the x-accelerations. Solid lines show the posterior pre-
dictive mean while the colored regions depict 95% credible regions
around the corresponding mean.

one for each observed function) should depend only on the
apparatus (e.g., the mouse or stylus). The hyperparameters of
the covariance kernel, meanwhile, may be interpreted to re-
flect properties of the motor system of the participant, which
are, of course, shared across conditions: f reflects the degree
of “hysteresis”, or the tendency for the participant to produce
trajectories with points that lie near one another, while / is in-
dicative of the typical size of deviations from a straight line!.

We can again express the conditional likelihood of a set

of function observations, as a zero-mean multivariate Gaus-
sian. Similar to the multiple-trial situation above, we can de-

note the observed trajectory points in condition j by {x;};
and the covariance between each observation in condition j
as K ({xi};,{xi};). Then, we construct a block covariance
matrix for the likelihood that reflects our assumptions about
conditional independence between conditions:

{xih K({xi}t1,{xi}1) 0 0
{xi}2 0 K({xi}2, {xi}2) - 0
- [~ : : : :
{xi} 0 0 K({xi}, {xi )

And, again, we can follow the same logic to construct a sim-

ilar likelihood for y or any other observed component of the
trajectory.

To assess differences in trajectories between each condi-
tion, we can compute functional “contrasts” by taking the dif-
ference of the posterior predictive distributions for two con-
ditions. This is done for one subject’s data from Spivey et

LOf course, other choices of covariance kernel would have their
own parameters which would have their own characteristic interpre-
tations.

al. (2005) and shown in Figure 3. In this case, the contrast
is between two pairs of conditions: the two cohort conditions
(left and right) and the two contrast conditions. Zero lies out-
side the 95% credible region of the position contrast function
between roughly .30 and .83 seconds, indicating that the tra-
jectories produced by this subject to cohort and control stim-
uli are credibly (“significantly”) divergent over this region.
This divergence results from the additional complexity of the
cohort trajectories, which is shown by the acceleration con-
trast: The cohort trajectories include an additional “nudge”
between .55 and .67 seconds after stimulus onset, as the sub-
ject reconsiders what he or she has heard.

This example illustrates two useful features of GP’s as tra-
jectory models: First, when analyzing contrasts, they do not
risk inflating the probability of false alarms due to compar-
isons at multiple time-points. Because a GP represents a dis-
tribution over functions, there is only one comparison actually
taking place. Second, because GP’s allow one to compute
the higher derivatives of a trajectory, they afford greater in-
sight into the functional behavior that gives rise to observed
differences between trajectories, leading to potentially useful
insights into the cognitive processes that generate them.
Multiple Participants We further expand the scope of the
analysis by allowing for multiple participants, each of whom
contributes data in multiple conditions, perhaps in many tri-
als. Researchers typically obtain trajectory measurements
from multiple participants in the same condition in order to
better estimate a general property that is presumed to hold
across the population. In a memory experiment, this general
property might be the probability of correctly recognizing a
previously studied item. There may be great variability be-
tween participants in their ability to recognize the item, but
each observation is presumed to be a sample from a general
group tendency.

In the case of trajectory analysis, we similarly assume that
each participant produces a trajectory (or trajectories) that are
samples from a distribution of possible trajectories. A GP ex-
presses just such a distribution. Hence, we assume that there
is a group-level GP for each condition, the covariance ker-
nel of which has its own hyperparameters f; and Ig. This
group level GP captures the covariance between different tri-
als generated by different participants in the same condition.
Meanwhile, the covariance between different trials generated
by the same subject have their own covariance structure that is
added to the group-level covariance. For example, if x; and x»
are two data points observed in different conditions, their co-
variance k(x1,x;) =0, as before. If, however, x; and x3 come
from the same condition, but different subjects, their covari-
ance will be a function of the group-level covariance, param-
eterized by fg and I, denoted kg (x1,x3). Finally, if x; and
x4 are two data points generated by the same subject (subject
s) in the same condition, their covariance will be the group
covariance plus the covariance resulting from individual vari-
ation around the group trajectory, i.e., kg (x1,x4) + kg (x1,X4),
where kq(+,-) is a covariance kernel parameterized by subject-
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specific parameters f; and /;. As before, we can construct
from these terms a covariance matrix for the entire dataset.
To perform inference in this case requires placing priors
on both the group-level hyperparameters and the subject-
level hyperparameters. When using vague priors, as we
have thus far, it is often advisable to make use of hyper-
priors. Thus, we let ur ~ Gamma(0.001,0.001) and G% ~
Inverse Gamma(0.001,0.001) be top-level priors on the mean
and variance of the distribution of f; values per subject. Then,
2
by moment matching, we draw each f; ~ Gamma (i{, ';%) .
We do the same for each [ (i.e., place a hyperpriorfonfthe
mean and variance). By using hyperpriors in this way, we
obtain “shrinkage” of the estimates of the subject-specific pa-
rameters, such that they can mutually inform one another.

Generative GPR

Thus far, we have employed GPR solely in the way it was
originally intended: as a nonparametric approach to function
approximation—as a purely descriptive model. However, we
can use GPR as a generative model in the following way:
Say that we expect all trajectories in a particular condition
to possess characteristic landmarks. These landmarks may
be actual positions, or they may be particular values of one
of the derivatives of the trajectory. For example, an inflec-
tion point—a point where the acceleration of the trajectory
in a particular direction reverses—may have a special cogni-
tive interpretation. In our ongoing example from Spivey et
al. (2005), such a point may reflect the instant at which the
word in the cohort condition has been completely processed,
and the participant moves his or her cursor away from the
distractor and toward the named object.

To implement this idea in a Bayesian fashion, we place a
prior on the number of inflection points in the group-level
trajectory. In principle, this number could be infinite, but in
practice we assume this is a multinomial draw between 1 and
8 (the maximum allowed number of inflection points may, of
course, vary depending on application). This multinomial is,
in turn, parameterized by a draw from a Dirichlet distribution,
which itself reflects a prior on the overall probability that the
trajectory has a certain number of inflection points (from 1 to
8). Finally, for a given number of inflection points, the points
themselves are presumed to be a priori uniformly distributed
in time across the range of data points.

We can make use of the same formalism we have previ-
ously used to obtain the posterior predictive distribution for
GPR to compute the likelihood, conditional on a certain set
of sampled inflection points iy, is,...,i,. This involves com-
puting the covariance matrix K(i,i) between the inflection
points using the kernel in equation 9 and between the in-
flection points and observed values K(X,i) via equation 8.
The conditional covariance of the data is then K(X,X) —
K(X,i)K(i,i)~'K(i,X). The posterior predictive distribution,
along with a sample of inferred inflection points, is shown in
Figure 4. Notice that only the cohort conditions have inflec-
tions in the central region, reflecting the greater complexity of
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Figure 4: Posterior predictive distributions with a sample of the
inflection points (+) inferred by the generative model.

both the trajectories and their underlying cognitive processes.

Discussion

We have presented a general statistical method for modeling
trajectories, and shown how it can be used to capture effects
at multiple levels. A main advantage of Gaussian process re-
gression over the various summary statistics used previously
(e.g., maximum deviation) is that less information is thrown
away: looking at the posterior density shows a normatively
correct summary of the data, given the general assumptions
made by the model. GPR balances functional complexity
with capturing the underlying data, and is thus both more gen-
eral and more principled than other forms of regression. Hi-
erarchical GPR may be used to distinguish individual, group,
and condition differences.

By accurately tracing and modeling the movement of the
body, we can find evidence of ongoing cognitive processes,
and literally see the shape of their influence. Many have won-
dered when psychology will reach paradigmatic maturity—
like physics. Trajectories, tracing movement through space
over time, are a fundamental property that all organisms and
matter create.

References

Frazier, L., & Rayner, K. (1987). Resolution of syntactic category
ambiguities: Eye movements in parsing lexically ambiguous sen-
tences. Journal of Memory and Language, 26(5), 505-526.

Freeman, J. B., & Ambady, N. (2010). MouseTracker: Software for
studying real-time mental processing using a computer mouse-
tracking method. Behavior Research Methods, 42(1), 226-241.

Freeman, J. B., Dale, R., & Farmer, T. (2011). Hand in motion
reveals mind in motion. Frontiers in Psychology, 2(0).

Griffiths, T. L., Lucas, C. G., Williams, J. J., & Kalish, M. L. (2009).
Modeling human function learning with Gaussian processes. Ad-
vances in Neural Information Processing Systems, 21.

Plummer, M. (2011). JAGS: Just another gibbs sampler. Available
from http://mcmc-jags.sourceforge.net/

Rasmussen, C. E., & Williams, C. K. I. (2006). Gaussian processes
for machine learning. Cambridge, MA: The MIT Press.

Solak, E., Murray-Smith, R., Leithead, W. E., Leith, D. J., & Ras-
mussen, C. E. (2003). Derivative observations in Gaussian pro-
cess models of dynamic systems. In S. T. Becker & K. Ober-
meyer (Eds.), Advances in neural information processing systems
(Vol. 15, pp. 1033-1040). MIT Press.

Spivey, M. J., Grosjean, M., & Knoblich, G. (2005). Continuous
attraction toward phonological competitors. Proceedings of the
National Academy of Sciences, 102(29), 10393-10398.

1445



