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Abstract 

Higher-order relations are important for various cognitive 
tasks, such as analogical transfer. The current study tested 
people’s ability to learn new relational categories, using a 
learning test of pure higher-order relations. Each stimulus 
consisted of 4 objects varying on 3 dimensions. Each 
category was defined by three binary relations between pairs 
of objects, producing six logically different conditions. Every 
category was composed of the same number of relations, but 
differed in the manner that the relations were linked (i.e., by 
operating on shared objects). Various learning models were 
compared and the significance of their performance on the 
experimental task is discussed. The current findings may 
advance understanding of the cognitive mechanisms involved 
in relational learning and the manner in which people 
naturally represent higher-order relational structures.  

Keywords: higher-order relations; schema refinement; 
schema elaboration; structure acquisition. 

Introduction 
The ability to generalize and transfer knowledge from a 
given problem to an analogous task has been of great 
interest to cognitive scientists and has led to an extensive 
amount of research. The large body of work on analogical 
transfer has converged on the idea that transfer is driven by 
discovering the common relational structure between two 
analogous scenarios (Gentner, 1983; Gick & Holyoak, 
1983). Penn, Holyoak, and Povinelli (2008) posit higher-
order relations are critical for most other higher cognitive 
processes as well, including inference, causal reasoning, and 
theory of mind. Nevertheless, there is little understanding of 
the cognitive mechanisms that subserve learning and 
recognition of higher-order relations.  

The purpose of the current study is to explore how people 
learn different higher-order relations. We define a higher-
order relation to be a system of first-order (i.e., primitive) 
relations operating on a common set of objects.  Different 
higher-order relations differ in how the first-order relations 
are linked together by shared role-fillers. We report an 
experiment using a relational category-learning task, in 
which each subject learned a category defined by a higher-
order relation, by learning to distinguish category members 
from non-members. The category in each experimental 
condition was defined by three binary relations among four 
objects. In the spirit of Shepard, Hovland, & Jenkins’ (1961) 
classic study on learning feature-based categories, we 
conduct an exhaustive comparison of the six logically 
different categories of this type.  

The dominant view of how people acquire relational 
concepts is schema refinement (e.g., Doumas, Hummel, & 
Sandhofer, 2008), but the present results highlight a number 

of conceptual problems with this approach. As an 
alternative, we introduce schema elaboration as a 
mechanism that is more psychologically plausible and better 
able to match human performance. We consider four 
variants of schema elaboration, motivated by different 
theoretical perspectives, and compare their ability to predict 
the relative learnability of different higher-order relations.  

Structure-Mapping Theory 
Since its initial proposal (Gentner, 1983), structure-mapping 
theory has provided a great deal of insight into the process 
of analogical learning and transfer. Structure-mapping 
theory posits that analogy involves aligning the relational 
structures of two scenarios. A relational structure is 
composed of multiple first-order relations that are linked 
together in a specific manner (i.e., the manner in which they 
operate on shared objects). Consider the classic solar 
system-atom analogy (Figure 1): Planets revolve around the 
sun, and planets are smaller than the sun; electrons revolve 
around the nucleus, and electrons are smaller than the 
nucleus. Although the same first-order relations are present 
in both scenarios (i.e., smaller than and revolves around), 
the analogy only works because the first-order relations 
share objects in the same way, such that their first roles are 
filled by the same object (i.e., planet and electron). In 
structure-mapping theory, this property is formally known 
as parallel connectivity (Gentner, 1983).  

Thus, analogy can be viewed as the recognition that two 
scenarios are instances of the same higher-order relation, 
that is, first-order relations connected in the same manner. 
When the same first-order relations are present in two or 
more scenarios, but are shared differently between objects, 
different higher-order relations are formed. Hence, to 
successfully transfer between two analogous scenarios, 
people must learn the exact manner in which the first-order 
relations are connected to form a specific higher-order 
relation. 

 

 
 

Figure 1. Diagram of solar-system–atom analogy. 
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Schema Refinement 
Formation of an analogy has been proposed to lead to 
induction of a schema, an abstract representation that 
captures the relational structure common to both analogues 
(Gick & Holyoak, 1983; Hummel & Holyoak, 2003; 
Kuehne, Forbus, Gentner, & Quinn, 2000). Subsequent 
analogy between a schema and a new episode can result in a 
new schema (replacing or supplementing the original 
schema) that contains only the structure that is common to 
the original schema and the new episode.  This process is 
referred to as schema refinement, and it has been proposed 
to operate by a mechanism of intersection discovery 
(Doumas et al., 2008). An analogy between two episodes 
may lead to a “dirty” schema that includes idiosyncratic 
properties common to both episodes but not universal to 
other instances of the abstract concept being acquired 
(Doumas et al., 2008; Hummel & Holyoak, 2003). Through 
comparison to successive instances of the abstract concept 
(as they are encountered), the schema can be refined to 
contain only information that belongs to the concept. 

As a model of relational learning, schema refinement has 
several shortcomings. First, because refinement models only 
allow for a schema to decrease in size, the model cannot add 
new information. Consequently, upon its first encounter 
with a member of a relational category, the model must 
retain all information contained in the exemplar, as it may 
be necessary in defining the category.  Contrary to the 
results presented below, this assumption leads to a 
prediction of no false alarms during learning of a relational 
category. A false alarm can only occur when a subject’s 
current schema is missing relational constraints for what 
constitutes category membership.  Under an idealized model 
of pure schema refinement, there is no way for the model to 
delete relations that are present in all category members.     

A related assumption of schema refinement is that the 
model can start off with and maintain highly complex 
schemas. Given the processing constraints of working 
memory (Baddeley, 2003), such an assumption seems 
psychologically implausible.  Instead, subjects should be 
expected to quickly forget a large amount of the information 
that was initially processed. When the number of objects 
and predicates contained within a higher-order relation 
exceeds the processing capacity of working memory, 
schema refinement may not accurately reflect how the 
concept is acquired., Thus, we propose that a more complete 
model of relational learning must incorporate forgetting, 
and, consequently, the ability to add information to the 
schema rather than only simplifying it.  

Schema Elaboration 
When a learning model contains processing constraints 
similar to those of working memory, the ability to elaborate 
upon a schema (i.e., to add new information) may be better 
suited than schema refinement alone for the acquisition of 
higher-order relations. We propose that in cases where a 
schema is insufficiently complex (i.e., is missing 
appropriate relational constraints), people are capable of 

updating their schema by adding new relations.  We refer to 
this process as schema elaboration. 

Because the pure schema refinement model is unable to 
add new information, the model has no room for error if true 
relational constraints are mistakenly discarded. This makes 
schema refinement an unrealistically rigid learning model. 
The schema elaboration model described in detail below is 
more flexible, as it is able to reincorporate information that 
it has mistakenly discarded or forgotten.  

Experiment 
The current study investigated people’s ability to learn 
arbitrary new higher-order relations.  The study used a 
standard category-learning paradigm, with an A/not-A 
design in which subjects were asked to decide whether each 
stimulus did or did not belong to the category.  The category 
to be learned was manipulated between subjects.  The 
category structures all contained the same number and types 
of first-order relations but differed in how those relations 
were connected (i.e., in the higher-order relation they 
formed). We aimed to test models of relational concept 
acquisition by assessing how this manipulation of higher-
order structure affects learning. 

Figure 2 shows an example stimulus.  Each stimulus 
comprised four objects, known in the literature as Shepard 
circles, arranged in a square configuration. The objects 
varied along three separable dimensions: brightness, size, 
and radius tilt. Each dimension had four levels, assigned 
without replacement to the four objects on each trial.  

Each dimension defines a comparative binary relation 
among the objects (i.e., brighter, larger, steeper). The 
category to be learned by each subject was defined by three 
such relations, one on each dimension. Thus, a stimulus was 
a member of the category if it satisfied all three of these 
relations (e.g., upper-right object must be larger than upper-
left object, lower-left object must be brighter than lower-
right object, and lower-right object must have its radius 
more tilted than upper-left object). The category structures 
varied in how the relations were connected to each other, in 
terms of the objects they were defined on.  For example, any 
two relations could operate on the same pair of objects, on 
disjoint objects, or on one shared object with one unique 
object for each relation.  This design leads to six 
topologically unique category structures, shown 
schematically in Figure 3. The manner in which these 
topological structures were instantiated (i.e., the roles of the 
four spatial locations) was counterbalanced across subjects 
within each condition. 

 
Figure 2. Example stimulus from main task. 
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Method 
137 undergraduates were randomly assigned to six (between 
subjects) conditions, differing in the category structure to be 
learned. Subjects were given a cover story in which the 
stimuli were optical key cards for a building; their task was 
to learn which key cards would open a door.  

To familiarize subjects with each of the first-order 
relations, they were given three training tasks prior to the 
main task, one for each first-order relation (i.e., brighter, 
larger, and steeper).  The training tasks were the same as the 
main task, except that each stimulus contained only two 
objects instead of four, and each category was defined by 
only one relation (e.g., right object must be darker than left 
object).  Each training task ended once the subject answered 
eight consecutive correct responses. The order of training 
tasks was counterbalanced.  

All four tasks followed the same procedure.  On each 
trial, a stimulus was sampled randomly, subject to equal 
probability of choosing a stimulus in or out of the category. 
The subject responded by pressing Y or N (indicating the 
key card does or does not open the door), and then the 
correct answer was displayed.  The instructions for each 
task indicated the categories were different (i.e., each task 
was about a different door of the building) and included a 
random, positive example (i.e., a key card that opens the 
current door). The full experiment (i.e., training and main 
tasks combined) was programed to end after 55 minutes. 

 
Figure 3. Diagram of each category condition. Lines 

connecting objects indicate first-order relations. 

Models 
Before presenting the results, we describe a series of models 
that were compared to the data.  These models were 
designed to test the need for augmenting theories of schema 
refinement with mechanisms of forgetting and schema 
elaboration.  Only the main task was modeled. 

Control Models 
Three control models—pure refinement, refinement with 
forgetting, and refinement with forgetting and elaboration—
were formulated to provide a baseline for the more 
sophisticated elaboration models discussed below.  

All of the models operate by maintaining a schema from 
trial to trial that contains some set of relations among the 
objects within the stimuli. Each stimulus is classified as in 
the category if it satisfies all relations currently in the 

schema.  The schema is initialized as a complete 
representation (i.e., all 18 binary relations) of the example 
stimulus provided in the instructions for the main task. 

The pure refinement (PR) model learns only following a 
miss, meaning a trial on which the stimulus belongs in the 
category but is mistakenly classified as a nonmember.  This 
can occur when the schema includes relational constraints 
that are not part of the true category rule.  Feedback after a 
miss causes the schema to be updated (refined) by 
intersection discovery, discarding all relational constraints 
the stimulus violates. All other relations in the schema are 
retained. This learning process will continue until all 
incorrect relational constraints are removed, at which point 
the schema will necessarily coincide with the true category 
rule.  

The refinement-with-forgetting (RF) model incorporates 
processing constraints meant to mimic those of working 
memory. Soft capacity limitations result in the model losing 
(i.e., forgetting) relational constraints prior to each trial. 
Each relation has an independent probability p of being 
forgotten, which depends on the total number of relations 
currently in the schema (r): 

 p =1− L
r
1− e−r L( ) , (1) 

where L is a processing-capacity parameter. This 
formulation has the property that the expected number of 
retained relations equals L * (1 – exp(-r/L)), that is, 
exponential approach to some limiting capacity L.   

The random elaboration model (RE) includes refinement, 
forgetting, and elaboration. The interplay between 
refinement and elaboration leads the model to add and 
remove constraints one at a time until the schema converges 
on the true category structure. The forgetting mechanism in 
the model allows for false alarms, as true relational 
constraints can be lost, making the schema under-
constrained. Indeed, a subject may commit a false alarm if 
his or her working schema lacks a relational constraint that 
is part of the category rule.  

According to the elaboration assumption, false alarms 
lead to the appendage of a new relation, which the stimulus 
satisfies but was not part of the initial hypothesis.  This 
mechanism allows the schema to increase in size and 
complexity.  Unlike with misses, after receiving feedback of 
a false alarm the subject does not know which relational 
constraints must be added (i.e., which relation in the 
stimulus constitutes a violation of the rule). Therefore, the 
model identifies all relations in the stimulus that are absent 
from the schema, and treats each as a candidate to be added. 
For simplicity, we assume exactly one relation is added to 
the schema following any false alarm.  In the RE model, this 
choice is made at random among the candidates.  

The PR model is an ideal observer for the present task, 
and hence performance was expected to be high for all 
conditions. In the RF model, once a true relational constraint 
is forgotten, it has no way of being reincorporated into the 
schema; hence all relations will eventually be lost and the 
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model should asymptote chance performance.  In the RE 
model, elaboration and forgetting can combine to produce 
intermediate levels of performance (depending on the 
capacity parameter L).  However, it was expected that none 
of the three control models would predict any learning 
differences among the different category conditions.  
Indeed, all relations are treated independently (except for a 
global effect of schema size on the forgetting probability), 
and hence the manner in which relations are linked through 
operating on shared objects should have no effect on model 
performance. 

The Search for Relational Constraints 
The RE model assumes schema elaboration involves 
random selection of a candidate relation that is in the 
stimulus but not in the schema.  Alternatively, the selection 
could be preferential, sensitive to higher-order structure.  
Different assumptions about preferences guiding the 
relations that are added lead to different models of 
preferential elaboration, each making unique predictions 
about the relative learnability of the category structures in 
the current study. Here we consider four possibilities, 
motivated by different theoretical perspectives in the 
literature. Importantly, each model is inspired by the 
corresponding theoretical perspective but is not meant to be 
a formal implementation of that theory.  

Each of the four models presented below works in the 
following manner. Following a false alarm, each candidate 
relation for addition to the schema is assigned a score that 
determines its probability of being selected. The probability 
each candidate is selected is given by  

 
eϕs

eϕs 's '∑
 (2) 

where s is the score for the candidate, s' ranges over all 
candidates, and φ is a parameter determining the degree of 
stochasticity in the decision process.  The models differ in 
how the scores are determined by higher-order structure. 

Conceptual Coherence  
Murphy and Medin (1985) proposed that people’s lay 
theories about the world make categories conceptually 
coherent. One reason for this may be that a theory provides 
a conceptual filter through which relational information can 
be processed and organized around. Furthermore, research 
has shown that features that are central to a concept more 
strongly influence the concept’s conceptual coherence 
(Sloman, Love, & Ahn, 1998). Taken together, these ideas 
suggest that a category composed of a central object that 
participates in all three relations will be more conceptually 
coherent than other category structures, as the category 
representation can be organized around the central object, 
providing a critical conceptual reference point. Thus, 
performance should be higher for conditions 2, 4, and 6 than 
for other category structures. To formalize this principle, the 
score (s) for each candidate relation was defined as the sum, 

over the two objects that relation operates on, of how many 
relations already in the schema each object participates in.  
This assumption leads the conceptual coherence (CC) model 
to prefer relations built on already more central objects, thus 
favoring categories with a centralized structure. 

Economy of Objects 
Due to the processing constraints of working memory 
(Baddeley, 2003), it may be easier to discover an analogy 
that requires mapping fewer objects between scenarios. 
Therefore, when elaborating a schema, subjects may be 
inclined to select relations that minimize the total number of 
objects involved. This hypothesis predicts that learning will 
be superior for category structures involving a smaller 
number of objects, such as condition 6 and to a lesser extent 
3 and 4. This principle was formalized in the economy of 
objects (EO) model, by defining the score for each 
candidate relation as the number of its objects (0, 1, or 2) 
that participate in other relations already in the schema. 

Plurality of Objects 
In contrast to the EO model, cognitive load theory (van 
Merriënboer & Sweller, 2005) suggests that objects that do 
not participate in any of the category’s relations will act as 
extraneous distractors.  Therefore, subjects’ attention may 
be drawn to such objects, making them more likely to add 
relations on new objects when elaborating the schema.  
Because people often struggle to recognize surface features 
as irrelevant information (Cooper & Sweller, 1987), 
irrelevant objects may place an unnecessary amount of 
strain on working memory, while concurrently obscuring 
the category’s higher-order structure. Consequently, 
category structures that contain the greatest number of 
irrelevant objects (condition 6, followed by 3 & 4) would be 
most difficult to learn. This principle was formalized in the 
plurality of objects (PO) model, by defining the score for 
each candidate relation as the number of its objects (0, 1, or 
2) that do not participate in any relations currently in the 
schema.  This scoring rule is opposite that used in the EO 
model, and the two models are equivalent under a 
substitution ϕ→−ϕ . 

Relational Chaining 
Lastly, learning may be better for category structures 
composed of relations that are chained together (e.g., 
condition 1), as people may be intuitively inclined to link 
known relational structure to new objects.  Such a 
preference might arise from a causal learning perspective, in 
which subjects seek to discover causal chains among the 
objects.  For example, upon learning that object A must be 
bigger than object B, people may be inclined to test whether 
object B must be brighter than object C. Thus, structures 
composed of relations that can be more readily chained 
together may be easier to acquire. This principle was 
formalized in the relational chaining (RC) model, by 
defining the score for each candidate as 
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 s = 1
cmin + 2

+
1

cmin+1
− 1
cmin+2

cmax − cmin +1
, (3) 

where cmin and cmax are the counts of relations currently in 
the schema in which the candidate’s two objects participate.  
This rule was designed to implement a lexicographic 
preference for small values of cmin followed by small values 
of cmax – cmin. As a special case, the score for relations with 
cmin = cmax = 0 was set to zero, to implement a preference 
not to add isolated relations. Thus, the ideal candidate is one 
that extends an existing chain: cmin = 0, cmax = 1. 

Summary of Models 
The preceding subsections fully specify the models tested.  
The categorization response is determined by whether the 
stimulus satisfies all relations currently in the schema.  
Refinement follows misses, by intersecting the schema with 
the stimulus.  Forgetting precedes each trial, following 
Equation 1.  Elaboration follows a false alarm, adding a 
single relation from the stimulus, chosen by Equation 2 (or 
randomly, in the RE model).  The models differ in whether 
they include forgetting and elaboration, and in the 
preferences guiding elaboration. 

Experiment and Model Results 
Subjects varied in how much time they took to learn the 
training tasks, and hence in how much time they had for the 
main task. To reduce statistical noise and ensure all subjects 
had enough time to learn their condition’s category 
structure, a selection criterion was used to exclude subjects 
who spent over 35 minutes on the training tasks (leaving 
less than 20 minutes for the main task).  Because this 
criterion is based on events prior to the experimental 
manipulation, it introduces no bias in estimating differences 
among conditions.  The selection left 104 subjects in the 
analysis. Of these subjects, the fewest number of trials 
completed on the main task was 245.  

An ANOVA comparing average proportion correct on the 
first 245 trials across conditions revealed a non-significant 
trend, F (5, 98) = 1.83, p = .114, MSE = .004.  Because of 
the complexity of the main task, 245 trials may be 
insufficient for learning.  Therefore, we repeated the 
analysis while excluding the 6 additional subjects who had 
completed the fewest trials.  The remaining 98 subjects all 
completed over 350 trials.  An ANOVA on these subjects’ 
performance on the first 350 trials indicates a significant 
main effect of category structure, F (5, 92) = 2.76, p = .023, 
MSE = .012. Figure 4 shows the mean performances by 
condition, compared to model predictions. Importantly, the 
ordering among conditions remained unchanged from the 
initial analysis, and means were nearly unchanged. Finally, 
the 6 excluded subjects were re-included, with their 
proportions correct defined based on the number of trials 
actually completed. The analysis again revealed a 
significant effect of condition, F (5, 98) = 2.75, p = .023, 
MSE = .012. Again, the ordering of performance between 

conditions was unchanged, and condition means were nearly 
identical to the previous analyses.  

Figure 4 shows the behavioral results and the simulated 
predictions of all models.  Model parameters (as applicable) 
were the same for all models and were chosen by hand, with 
L = 9 and φ = 10.  

Evaluation of the models in sequence provides support for 
each of our theoretical proposals (see Table 1).  As 
predicted, the PR model far outperformed the subjects, 
suggesting the need for some sort of forgetting mechanism 
in addition to schema refinement.  However, the RF model 
performed nearly at chance, because it eventually forgot all 
relations, suggesting a further need for some sort of schema 
elaboration mechanism.  The RE model can match subjects’ 
intermediate performance level, but it fails to predict 
differences among conditions.  The last four models predict 
condition differences because they are sensitive to higher-
order structure.  However, the differences are all weaker 
than in the empirical data.  The predicted condition 
differences are greater when L is increased to produce levels 
of performance (Figure 5, with L = 40), but still none of the 
models reproduces the correct ordering among conditions.  
Therefore, further work is required to understand exactly 
how higher-order structure affects relational learning. 

Figure 4. Mean performance for subjects and models. 
 

  
Figure 5. Predictions of structure-sensitive models at higher 
levels of performance, to accentuate condition differences. 
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Table 1. Strengths (+) and weaknesses (–) of the simulated 
models. 

 
 Model 
 PR RF RE CC EO PO RC 

Performs within the 
range of subject data – – + + + + + 

Predicts differences 
across conditions – – – + + + + 

Predicted differences 
match subjects  – – – – – – – 

Discussion 
Although previous research has not directly addressed how 
readily people learn different types of higher-order relations, 
the acquisition of such concepts is integral to the 
development of expert representations (Chi, Feltovich, & 
Glazer, 1981). The current behavioral data suggest that 
acquisition of higher-order relations is indeed affected by 
the manner in which the elementary relations within a 
relational structure are connected. Subjects’ performance 
was best for conditions in which relations could be chained 
together and where single objects participated in multiple 
relations (i.e., Conditions 1, 4, and 3). 

Although schema refinement has been the dominant 
model of relational learning (e.g., Doumas et al., 2008), the 
PR model incorrectly predicts no learning differences across 
the different category conditions. Further, the model’s 
performance differed dramatically from that of subjects. As 
expected, when processing constraints were introduced, the 
RF model failed to retain any of the relational constraints in 
the category, performing at chance in all conditions. Taken 
together, these results suggest that schema refinement alone 
is an insufficient explanation of human relational learning. 

The predictions from the elaboration models allow us to 
address several important issues. That the elaboration 
models make predictions within the range of the subjects’ 
performance supports the proposal that people employ 
elaboration mechanisms (in addition to schema refinement) 
when acquiring higher-order concepts. Additionally, the 
differences that were found across conditions in the 
behavioral data provide support for the idea that people 
indeed have preferences for seeking out certain types of 
higher-order relations, as formalized in the four structure-
sensitive elaboration models.  

However, the condition differences predicted by these 
models were weaker then those exhibited by subjects, and 
none of the models reproduces the correct ordering across 
conditions. Thus, it remains an open question as to the 
specific mechanisms that drive people’s search for higher-
order relations.  

Understanding what drives the differences among the 
present experimental conditions may provide important 
theoretical   insight   into   the    mechanisms   of    relational 
learning, as well as the manner in which people acquire 

more abstract, higher-order concepts. Such results may also 
have practical applicability for areas where the recognition 
of higher-order structures is important for deep learning, 
such as education, problem solving, and decision-making. 
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