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Abstract

Higher-order relations are important for various cognitive
tasks, such as analogical transfer. The current study tested
people’s ability to learn new relational categories, using a
learning test of pure higher-order relations. Each stimulus
consisted of 4 objects varying on 3 dimensions. Each
category was defined by three binary relations between pairs
of objects, producing six logically different conditions. Every
category was composed of the same number of relations, but
differed in the manner that the relations were linked (i.e., by
operating on shared objects). Various learning models were
compared and the significance of their performance on the
experimental task is discussed. The current findings may
advance understanding of the cognitive mechanisms involved
in relational learning and the manner in which people
naturally represent higher-order relational structures.
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Introduction

The ability to generalize and transfer knowledge from a
given problem to an analogous task has been of great
interest to cognitive scientists and has led to an extensive
amount of research. The large body of work on analogical
transfer has converged on the idea that transfer is driven by
discovering the common relational structure between two
analogous scenarios (Gentner, 1983; Gick & Holyoak,
1983). Penn, Holyoak, and Povinelli (2008) posit higher-
order relations are critical for most other higher cognitive
processes as well, including inference, causal reasoning, and
theory of mind. Nevertheless, there is little understanding of
the cognitive mechanisms that subserve learning and
recognition of higher-order relations.

The purpose of the current study is to explore how people
learn different higher-order relations. We define a higher-
order relation to be a system of first-order (i.e., primitive)
relations operating on a common set of objects. Different
higher-order relations differ in how the first-order relations
are linked together by shared role-fillers. We report an
experiment using a relational category-learning task, in
which each subject learned a category defined by a higher-
order relation, by learning to distinguish category members
from non-members. The category in each experimental
condition was defined by three binary relations among four
objects. In the spirit of Shepard, Hovland, & Jenkins’ (1961)
classic study on learning feature-based categories, we
conduct an exhaustive comparison of the six logically
different categories of this type.

The dominant view of how people acquire relational
concepts is schema refinement (e.g., Doumas, Hummel, &
Sandhofer, 2008), but the present results highlight a number

of conceptual problems with this approach. As an
alternative, we introduce schema elaboration as a
mechanism that is more psychologically plausible and better
able to match human performance. We consider four
variants of schema elaboration, motivated by different
theoretical perspectives, and compare their ability to predict
the relative learnability of different higher-order relations.

Structure-Mapping Theory

Since its initial proposal (Gentner, 1983), structure-mapping
theory has provided a great deal of insight into the process
of analogical learning and transfer. Structure-mapping
theory posits that analogy involves aligning the relational
structures of two scenarios. A relational structure is
composed of multiple first-order relations that are linked
together in a specific manner (i.e., the manner in which they
operate on shared objects). Consider the classic solar
system-atom analogy (Figure 1): Planets revolve around the
sun, and planets are smaller than the sun; electrons revolve
around the nucleus, and electrons are smaller than the
nucleus. Although the same first-order relations are present
in both scenarios (i.e., smaller than and revolves around),
the analogy only works because the first-order relations
share objects in the same way, such that their first roles are
filled by the same object (i.e., planet and electron). In
structure-mapping theory, this property is formally known
as parallel connectivity (Gentner, 1983).

Thus, analogy can be viewed as the recognition that two
scenarios are instances of the same higher-order relation,
that is, first-order relations connected in the same manner.
When the same first-order relations are present in two or
more scenarios, but are shared differently between objects,
different higher-order relations are formed. Hence, to
successfully transfer between two analogous scenarios,
people must learn the exact manner in which the first-order
relations are connected to form a specific higher-order
relation.
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Figure 1. Diagram of solar-system—atom analogy.

1434



Schema Refinement

Formation of an analogy has been proposed to lead to
induction of a schema, an abstract representation that
captures the relational structure common to both analogues
(Gick & Holyoak, 1983; Hummel & Holyoak, 2003;
Kuehne, Forbus, Gentner, & Quinn, 2000). Subsequent
analogy between a schema and a new episode can result in a
new schema (replacing or supplementing the original
schema) that contains only the structure that is common to
the original schema and the new episode. This process is
referred to as schema refinement, and it has been proposed
to operate by a mechanism of intersection discovery
(Doumas et al., 2008). An analogy between two episodes
may lead to a “dirty” schema that includes idiosyncratic
properties common to both episodes but not universal to
other instances of the abstract concept being acquired
(Doumas et al., 2008; Hummel & Holyoak, 2003). Through
comparison to successive instances of the abstract concept
(as they are encountered), the schema can be refined to
contain only information that belongs to the concept.

As a model of relational learning, schema refinement has
several shortcomings. First, because refinement models only
allow for a schema to decrease in size, the model cannot add
new information. Consequently, upon its first encounter
with a member of a relational category, the model must
retain all information contained in the exemplar, as it may
be necessary in defining the category. Contrary to the
results presented below, this assumption leads to a
prediction of no false alarms during learning of a relational
category. A false alarm can only occur when a subject’s
current schema is missing relational constraints for what
constitutes category membership. Under an idealized model
of pure schema refinement, there is no way for the model to
delete relations that are present in all category members.

A related assumption of schema refinement is that the
model can start off with and maintain highly complex
schemas. Given the processing constraints of working
memory (Baddeley, 2003), such an assumption seems
psychologically implausible. Instead, subjects should be
expected to quickly forget a large amount of the information
that was initially processed. When the number of objects
and predicates contained within a higher-order relation
exceeds the processing capacity of working memory,
schema refinement may not accurately reflect how the
concept is acquired., Thus, we propose that a more complete
model of relational learning must incorporate forgetting,
and, consequently, the ability to add information to the
schema rather than only simplifying it.

Schema Elaboration

When a learning model contains processing constraints
similar to those of working memory, the ability to elaborate
upon a schema (i.e., to add new information) may be better
suited than schema refinement alone for the acquisition of
higher-order relations. We propose that in cases where a
schema is insufficiently complex (i.e., is missing
appropriate relational constraints), people are capable of

updating their schema by adding new relations. We refer to
this process as schema elaboration.

Because the pure schema refinement model is unable to
add new information, the model has no room for error if true
relational constraints are mistakenly discarded. This makes
schema refinement an unrealistically rigid learning model.
The schema elaboration model described in detail below is
more flexible, as it is able to reincorporate information that
it has mistakenly discarded or forgotten.

Experiment

The current study investigated people’s ability to learn
arbitrary new higher-order relations. The study used a
standard category-learning paradigm, with an A/not-A
design in which subjects were asked to decide whether each
stimulus did or did not belong to the category. The category
to be learned was manipulated between subjects. The
category structures all contained the same number and types
of first-order relations but differed in how those relations
were connected (i.e., in the higher-order relation they
formed). We aimed to test models of relational concept
acquisition by assessing how this manipulation of higher-
order structure affects learning.

Figure 2 shows an example stimulus. Each stimulus
comprised four objects, known in the literature as Shepard
circles, arranged in a square configuration. The objects
varied along three separable dimensions: brightness, size,
and radius tilt. Each dimension had four levels, assigned
without replacement to the four objects on each trial.

Each dimension defines a comparative binary relation
among the objects (i.e., brighter, larger, steeper). The
category to be learned by each subject was defined by three
such relations, one on each dimension. Thus, a stimulus was
a member of the category if it satisfied all three of these
relations (e.g., upper-right object must be larger than upper-
left object, lower-left object must be brighter than lower-
right object, and lower-right object must have its radius
more tilted than upper-left object). The category structures
varied in how the relations were connected to each other, in
terms of the objects they were defined on. For example, any
two relations could operate on the same pair of objects, on
disjoint objects, or on one shared object with one unique
object for each relation. This design leads to six
topologically  unique  category  structures, shown
schematically in Figure 3. The manner in which these
topological structures were instantiated (i.e., the roles of the
four spatial locations) was counterbalanced across subjects
within each condition.
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Figure 2. Example stimulus from main task.
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Method

137 undergraduates were randomly assigned to six (between
subjects) conditions, differing in the category structure to be
learned. Subjects were given a cover story in which the
stimuli were optical key cards for a building; their task was
to learn which key cards would open a door.

To familiarize subjects with each of the first-order
relations, they were given three training tasks prior to the
main task, one for each first-order relation (i.e., brighter,
larger, and steeper). The training tasks were the same as the
main task, except that each stimulus contained only two
objects instead of four, and each category was defined by
only one relation (e.g., right object must be darker than left
object). Each training task ended once the subject answered
eight consecutive correct responses. The order of training
tasks was counterbalanced.

All four tasks followed the same procedure. On each
trial, a stimulus was sampled randomly, subject to equal
probability of choosing a stimulus in or out of the category.
The subject responded by pressing Y or N (indicating the
key card does or does not open the door), and then the
correct answer was displayed. The instructions for each
task indicated the categories were different (i.e., each task
was about a different door of the building) and included a
random, positive example (i.e., a key card that opens the
current door). The full experiment (i.e., training and main
tasks combined) was programed to end after 55 minutes.
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Figure 3. Diagram of each category condition. Lines
connecting objects indicate first-order relations.

Models

Before presenting the results, we describe a series of models
that were compared to the data. These models were
designed to test the need for augmenting theories of schema
refinement with mechanisms of forgetting and schema
elaboration. Only the main task was modeled.

Control Models

Three control models—pure refinement, refinement with
forgetting, and refinement with forgetting and elaboration—
were formulated to provide a baseline for the more
sophisticated elaboration models discussed below.

All of the models operate by maintaining a schema from
trial to trial that contains some set of relations among the
objects within the stimuli. Each stimulus is classified as in
the category if it satisfies all relations currently in the

schema.  The schema is initialized as a complete
representation (i.e., all 18 binary relations) of the example
stimulus provided in the instructions for the main task.

The pure refinement (PR) model learns only following a
miss, meaning a trial on which the stimulus belongs in the
category but is mistakenly classified as a nonmember. This
can occur when the schema includes relational constraints
that are not part of the true category rule. Feedback after a
miss causes the schema to be updated (refined) by
intersection discovery, discarding all relational constraints
the stimulus violates. All other relations in the schema are
retained. This learning process will continue until all
incorrect relational constraints are removed, at which point
the schema will necessarily coincide with the true category
rule.

The refinement-with-forgetting (RF) model incorporates
processing constraints meant to mimic those of working
memory. Soft capacity limitations result in the model losing
(i.e., forgetting) relational constraints prior to each trial.
Each relation has an independent probability p of being
forgotten, which depends on the total number of relations
currently in the schema (7):

p=1—é(l—e”/L)’ (1)

where L is a processing-capacity parameter. This
formulation has the property that the expected number of
retained relations equals L * (1 — exp(-7/L)), that is,
exponential approach to some limiting capacity L.

The random elaboration model (RE) includes refinement,
forgetting, and elaboration. The interplay between
refinement and elaboration leads the model to add and
remove constraints one at a time until the schema converges
on the true category structure. The forgetting mechanism in
the model allows for false alarms, as true relational
constraints can be lost, making the schema under-
constrained. Indeed, a subject may commit a false alarm if
his or her working schema lacks a relational constraint that
is part of the category rule.

According to the elaboration assumption, false alarms
lead to the appendage of a new relation, which the stimulus
satisfies but was not part of the initial hypothesis. This
mechanism allows the schema to increase in size and
complexity. Unlike with misses, after receiving feedback of
a false alarm the subject does not know which relational
constraints must be added (i.e., which relation in the
stimulus constitutes a violation of the rule). Therefore, the
model identifies all relations in the stimulus that are absent
from the schema, and treats each as a candidate to be added.
For simplicity, we assume exactly one relation is added to
the schema following any false alarm. In the RE model, this
choice is made at random among the candidates.

The PR model is an ideal observer for the present task,
and hence performance was expected to be high for all
conditions. In the RF model, once a true relational constraint
is forgotten, it has no way of being reincorporated into the
schema; hence all relations will eventually be lost and the
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model should asymptote chance performance. In the RE
model, elaboration and forgetting can combine to produce
intermediate levels of performance (depending on the
capacity parameter L). However, it was expected that none
of the three control models would predict any learning
differences among the different category conditions.
Indeed, all relations are treated independently (except for a
global effect of schema size on the forgetting probability),
and hence the manner in which relations are linked through
operating on shared objects should have no effect on model
performance.

The Search for Relational Constraints

The RE model assumes schema elaboration involves
random selection of a candidate relation that is in the
stimulus but not in the schema. Alternatively, the selection
could be preferential, sensitive to higher-order structure.
Different assumptions about preferences guiding the
relations that are added lead to different models of
preferential elaboration, each making unique predictions
about the relative learnability of the category structures in
the current study. Here we consider four possibilities,
motivated by different theoretical perspectives in the
literature. Importantly, each model is inspired by the
corresponding theoretical perspective but is not meant to be
a formal implementation of that theory.

Each of the four models presented below works in the
following manner. Following a false alarm, each candidate
relation for addition to the schema is assigned a score that
determines its probability of being selected. The probability
each candidate is selected is given by
e”

E Iecps' (2)

where s is the score for the candidate, s' ranges over all
candidates, and ¢ is a parameter determining the degree of
stochasticity in the decision process. The models differ in
how the scores are determined by higher-order structure.

Conceptual Coherence

Murphy and Medin (1985) proposed that people’s lay
theories about the world make categories conceptually
coherent. One reason for this may be that a theory provides
a conceptual filter through which relational information can
be processed and organized around. Furthermore, research
has shown that features that are central to a concept more
strongly influence the concept’s conceptual coherence
(Sloman, Love, & Ahn, 1998). Taken together, these ideas
suggest that a category composed of a central object that
participates in all three relations will be more conceptually
coherent than other category structures, as the category
representation can be organized around the central object,
providing a critical conceptual reference point. Thus,
performance should be higher for conditions 2, 4, and 6 than
for other category structures. To formalize this principle, the
score (s) for each candidate relation was defined as the sum,

over the two objects that relation operates on, of how many
relations already in the schema each object participates in.
This assumption leads the conceptual coherence (CC) model
to prefer relations built on already more central objects, thus
favoring categories with a centralized structure.

Economy of Objects

Due to the processing constraints of working memory
(Baddeley, 2003), it may be easier to discover an analogy
that requires mapping fewer objects between scenarios.
Therefore, when elaborating a schema, subjects may be
inclined to select relations that minimize the total number of
objects involved. This hypothesis predicts that learning will
be superior for category structures involving a smaller
number of objects, such as condition 6 and to a lesser extent
3 and 4. This principle was formalized in the economy of
objects (EO) model, by defining the score for each
candidate relation as the number of its objects (0, 1, or 2)
that participate in other relations already in the schema.

Plurality of Objects

In contrast to the EO model, cognitive load theory (van
Merriénboer & Sweller, 2005) suggests that objects that do
not participate in any of the category’s relations will act as
extraneous distractors. Therefore, subjects’ attention may
be drawn to such objects, making them more likely to add
relations on new objects when elaborating the schema.
Because people often struggle to recognize surface features
as irrelevant information (Cooper & Sweller, 1987),
irrelevant objects may place an unnecessary amount of
strain on working memory, while concurrently obscuring
the category’s higher-order structure. Consequently,
category structures that contain the greatest number of
irrelevant objects (condition 6, followed by 3 & 4) would be
most difficult to learn. This principle was formalized in the
plurality of objects (PO) model, by defining the score for
each candidate relation as the number of its objects (0, 1, or
2) that do not participate in any relations currently in the
schema. This scoring rule is opposite that used in the EO
model, and the two models are equivalent under a
substitution ¢ ——@.

Relational Chaining

Lastly, learning may be better for category structures
composed of relations that are chained together (e.g.,
condition 1), as people may be intuitively inclined to link
known relational structure to new objects. Such a
preference might arise from a causal learning perspective, in
which subjects seek to discover causal chains among the
objects. For example, upon learning that object A must be
bigger than object B, people may be inclined to test whether
object B must be brighter than object C. Thus, structures
composed of relations that can be more readily chained
together may be easier to acquire. This principle was
formalized in the relational chaining (RC) model, by
defining the score for each candidate as
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where ¢pin and cpax are the counts of relations currently in
the schema in which the candidate’s two objects participate.
This rule was designed to implement a lexicographic
preference for small values of ¢y, followed by small values
of Cmax — Cmin- As a special case, the score for relations with
Cmin = Cmax = 0 was set to zero, to implement a preference
not to add isolated relations. Thus, the ideal candidate is one
that extends an existing chain: ¢y = 0, Cpax = 1.

Summary of Models

The preceding subsections fully specify the models tested.
The categorization response is determined by whether the
stimulus satisfies all relations currently in the schema.
Refinement follows misses, by intersecting the schema with
the stimulus. Forgetting precedes each trial, following
Equation 1. Elaboration follows a false alarm, adding a
single relation from the stimulus, chosen by Equation 2 (or
randomly, in the RE model). The models differ in whether
they include forgetting and elaboration, and in the
preferences guiding elaboration.

Experiment and Model Results

Subjects varied in how much time they took to learn the
training tasks, and hence in how much time they had for the
main task. To reduce statistical noise and ensure all subjects
had enough time to learn their condition’s category
structure, a selection criterion was used to exclude subjects
who spent over 35 minutes on the training tasks (leaving
less than 20 minutes for the main task). Because this
criterion is based on events prior to the experimental
manipulation, it introduces no bias in estimating differences
among conditions. The selection left 104 subjects in the
analysis. Of these subjects, the fewest number of trials
completed on the main task was 245.

An ANOVA comparing average proportion correct on the
first 245 trials across conditions revealed a non-significant
trend, F' (5, 98) = 1.83, p = .114, MSE = .004. Because of
the complexity of the main task, 245 trials may be
insufficient for learning. Therefore, we repeated the
analysis while excluding the 6 additional subjects who had
completed the fewest trials. The remaining 98 subjects all
completed over 350 trials. An ANOVA on these subjects’
performance on the first 350 trials indicates a significant
main effect of category structure, F (5, 92) = 2.76, p = .023,
MSE = .012. Figure 4 shows the mean performances by
condition, compared to model predictions. Importantly, the
ordering among conditions remained unchanged from the
initial analysis, and means were nearly unchanged. Finally,
the 6 excluded subjects were re-included, with their
proportions correct defined based on the number of trials
actually completed. The analysis again revealed a
significant effect of condition, F (5, 98) = 2.75, p = .023,
MSE = .012. Again, the ordering of performance between

conditions was unchanged, and condition means were nearly
identical to the previous analyses.

Figure 4 shows the behavioral results and the simulated
predictions of all models. Model parameters (as applicable)
were the same for all models and were chosen by hand, with
L=9and ¢=10.

Evaluation of the models in sequence provides support for
each of our theoretical proposals (see Table 1). As
predicted, the PR model far outperformed the subjects,
suggesting the need for some sort of forgetting mechanism
in addition to schema refinement. However, the RF model
performed nearly at chance, because it eventually forgot all
relations, suggesting a further need for some sort of schema
elaboration mechanism. The RE model can match subjects’
intermediate performance level, but it fails to predict
differences among conditions. The last four models predict
condition differences because they are sensitive to higher-
order structure. However, the differences are all weaker
than in the empirical data. The predicted condition
differences are greater when L is increased to produce levels
of performance (Figure 5, with L = 40), but still none of the
models reproduces the correct ordering among conditions.
Therefore, further work is required to understand exactly
how higher-order structure affects relational learning.

BD = Behavioral Data
PR = Pure Refinement
100 RF = Refinement w/Forgetting
RE = Random Elaboration
CC = Conceptual Coherence
EO = Economy of Objects
PO = Plurality of Objects
RC = Relational Chaining

LL HI Mk M O BE ML S

BD PR RF RE CC EO PO

“ Condition 1
“ Condition 2
Condition 3
“ Condition 4
Condition 5

Condition 6

Mean Percent Correct

50

Figure 4. Mean performance for subjects and models.

CC = Conceptual Coherence & Condition 1

EO = Economy of Objects o

100 PO = Plurality of Objects ® Condition 2
RC = Relational Chaining Condition 3

& Condition 4

Condition 5

Condition 6

Mean Percent Correct

ML Bk NL ML
EO PO RC

Figure 5. Predictions of structure-sensitive models at higher
levels of performance, to accentuate condition differences.
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Table 1. Strengths (+) and weaknesses (—) of the simulated
models.

Model
PR RF RE CC EO PO RC

Performs within the

. - - 4+ 4+ + o+ o+
range of subject data

Predicts differences
across conditions

Predicted differences
match subjects

Discussion

Although previous research has not directly addressed how
readily people learn different types of higher-order relations,
the acquisition of such concepts is integral to the
development of expert representations (Chi, Feltovich, &
Glazer, 1981). The current behavioral data suggest that
acquisition of higher-order relations is indeed affected by
the manner in which the elementary relations within a
relational structure are connected. Subjects’ performance
was best for conditions in which relations could be chained
together and where single objects participated in multiple
relations (i.e., Conditions 1, 4, and 3).

Although schema refinement has been the dominant
model of relational learning (e.g., Doumas et al., 2008), the
PR model incorrectly predicts no learning differences across
the different category conditions. Further, the model’s
performance differed dramatically from that of subjects. As
expected, when processing constraints were introduced, the
RF model failed to retain any of the relational constraints in
the category, performing at chance in all conditions. Taken
together, these results suggest that schema refinement alone
is an insufficient explanation of human relational learning.

The predictions from the elaboration models allow us to
address several important issues. That the elaboration
models make predictions within the range of the subjects’
performance supports the proposal that people employ
elaboration mechanisms (in addition to schema refinement)
when acquiring higher-order concepts. Additionally, the
differences that were found across conditions in the
behavioral data provide support for the idea that people
indeed have preferences for seeking out certain types of
higher-order relations, as formalized in the four structure-
sensitive elaboration models.

However, the condition differences predicted by these
models were weaker then those exhibited by subjects, and
none of the models reproduces the correct ordering across
conditions. Thus, it remains an open question as to the
specific mechanisms that drive people’s search for higher-
order relations.

Understanding what drives the differences among the
present experimental conditions may provide important
theoretical insight into the mechanisms of relational
learning, as well as the manner in which people acquire

more abstract, higher-order concepts. Such results may also
have practical applicability for areas where the recognition
of higher-order structures is important for deep learning,
such as education, problem solving, and decision-making.

Acknowledgements

This research was supported by AFOSR grant FA9550-10-
1-0177.

References

Baddeley, A. D. (2003). Working memory: Looking back
and looking forward. Nature Reviews: Neuroscience, 4,
829-839.

Chi, M. T. H., Feltovich, P., & Glaser, R. (1981).
Categorization and representation of physics problems by
experts and novices. Cognitive Science, 5, 121-152.

Cooper, G., & Sweller, J. (1987). Effects of schema
acquisition and rule automation on mathematical
problem-solving transfer. Journal of FEducational
Psychology, 79, 347-362.

Doumas, L. A. A., Hummel, J. E., & Sandhofer, C. M.
(2008). A theory of the discovery and predication of
relational concepts. Psychological Review, 115, 1-43.

Gentner, D. (1983). Structure-mapping: A theoretical
framework for analogy. Cognitive Science, 7, 155-170.

Gick, M. L., & Holyoak, K. J. (1983). Schema induction
and analogical transfer. Cognitive Psychology, 15, 1-38.

Hummel, J. E., & Holyoak, K. J. (2003). A symbolic-
connectionist theory of relational inference and
generalization. Psychological Review, 110, 220-264.

Kuehne, S., Forbus, K., Gentner, D., & Quinn, B. (2000).
SEQL: Category learning as progressive abstraction using
structure mapping. Proceedings of the 22nd Annual
Meeting of the Cognitive Science Society, 770-775.

Murphy, G. L., & Medin, D. L. (1985). The role of theories
in conceptual coherence. Psychological Review, 92, 289-
316.

Penn, D. C., Holyoak, K J.,, & Povinelli D. J.
(2008). Darwin’s mistake: Explaining the discontinuity
between human and nonhuman minds. Behavioral and
Brain Sciences, 31, 109-178.

Shepard, R. N, Hovland, C. 1., & Jenkins, H.M. (1961).
Learning and memorization of classifications.
Psychological Monographs: General and Applied, 75,
Whole No. 517.

Sloman, S. A., Love, B. C., & Ahn, W. K. (1998). Feature
centrality and conceptual coherence. Cognitive Science,
22, 189-228.

van Merriénboer, J., & Sweller, J. (2005). Cognitive load
theory and complex learning: Recent developments and
future directions. Educational Psychology Review, 17,
147-177.

1439



