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Abstract

Like language, the human capacity to create music is one of
the most salient and unique markers that differentiates
humans from other species (Cross, 2005). In the following
study, the authors show that people’s ability to perceive
emotions in infants’ vocalizations (e.g., cooing and babbling)
is linked to the ability to perceive timbres of musical
instruments. In one experiment, 180 “synthetic baby sounds”
were created by rearranging spectral frequencies of cooing,
babbling, crying, and laughing made by 6 to 9-month-old
infants. Undergraduate participants (N=145) listened to each
sound one at a time and rated the emotional quality of the
“synthetic baby sounds.” The results of the experiment
showed that five acoustic components of musical timbre (e.g.,
roll off, mel-frequency cepstral coefficient, attack time and
attack slope) could account for nearly 50% of the variation of
the emotion ratings made by undergraduate students. The
results suggest that the same mental processes are probably
applied for the perception of musical timbres and that of
infants’ prelinguistic vocalization.
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Introduction

Infants use a variety of vocal sounds, such as cooing,
babbling, crying, and laughing, to express their emotions.
Infants’ prelinguistic vocal communications are highly
affective in the sense that they evoke specific emotions—
happiness, frustration, anger, hunger, and/or joy—without
conveying concrete ideas. In this sense, infants’ vocal
communication parallels music. Music is highly affective;
yet it is conceptually limited (Cross, 2005; Ross, 2009).

The interaction between music and language has attracted
much attention recently (Chen-Haffteck, 2011; Cross, 2001;
Masataka, 2007). However, despite their similarities, little
attention has been paid to the relationship between music
and prelinguistic vocalizations (Chen-Haffteck, 2011; Cross,
2001; He, Hotson, & Trainor, 2007; Masataka, 2007). If
music and language are highly related, what is the
relationship between infants’ vocal communications such as
babbling, and music?

In the study described below, we analyze acoustic cues of
infants’ vocalization and demonstrate that emotions created
by prelinguistic vocalization can be explained to a large
extent by the acoustic cues of sound that differentiate
timbres of musical instruments, potentially implicating that
the same mental processes are applied for the perception of
musical timbres and that of infants’ vocalizations.

The paper is organized as follows: we review related
work examining the link between prelinguistic vocalization

and music followed by an overview of the experiment. After
discussing our timbre extraction and sound creation method,
we introduce one experiment that investigates the
connection between music and prelinguistic communication.

Related Work

Infants begin life with the ability to make different sounds—
first cooing and crying, then babbling. Next they form one
word, and then two, followed by full sentences and speech.
In the first ten months, infants progress from simple sounds
that are not expressed in the phonetic alphabet, to babbling,
which is an important step in infants learning how to speak
(Gros-Louis, West, Goldstein, & King, 2006; Oller, 2000).

Musical instruments and infants’ vocalizations both elicit
emotional responses, while conveying little information on
what the sender is trying to express. Music can have a very
powerful effect on its listeners, as we all have a piece of
music that will bring back emotions. Music can convey at
least three universal emotions, happiness, sadness and fear
(Fritz et al., 2009). These emotions are similar to the
emotions expressed by infants with their limited sounds
(Dessureau, Kurowski, & Thompson, 1998; Zeifman, 2001;
Zeskind & Marshall, 1998). Both infants and music convey
meaning without the use of words. Infants rely on their
voices and non-verbal/non-word sounds to communicate
and it is these sounds that inform the listener of how
important and of what type of danger the infant is facing,
such as being too cold, hungry or of being left alone
(Dessureau et al., 1998; Zeifman 2001; Zeskind & Marshall,
1998).

Across cultures, songs sung while playing with babies are
fast, high in pitch, and contain exaggerated rhythmic
accents, whereas lullabies are lower, slower and softer.
Infants will use cues in both music and language to learn the
rules of a culture. Motherese, a form of speech used by
adults in interacting with infants, often consists of singing to
infants using a musical, sing-song voice, that mimics
babies’ cooing by using a higher pitch. An infant’s caregiver
will use higher pitch when speaking to an infant, as it helps
the infant learn and also draws their attention (Fernald
1989).

In summary, research shows that there is a close link
between infants’ vocal communication and music. This link
is demonstrated through the babbling and cooing sounds
used by infants’ to communicate, and also by mothers’ use
of motherese to assist infant’s learning of language in a
sing-song manner. Infants are able to use the same cues

1392


mailto:mybrd@neo.tamu.edu
mailto:casadyb@neo.tamu.edu
mailto:takashi-yamauchi@tamu.edu

from both music and language to facilitate learning in both
domains. Given these close connections, it is likely that the
same mental processes are involved for the perception of
instrumental sounds and the perception of infants’
vocalizations. The beginning stages of this idea are
investigated in one experiment by examining the emotion
perception of synthetic baby sounds.

Overview of the Study

In the Emotion Rating Experiment described below, we
tested the general hypothesis that the same mental process is
involved for the perception of infants’ vocalization and that
of timbres of musical instruments. More specifically, we
hypothesize that the acoustic components of timbre will be
significant predictors of emotion. If this is true, then there
should be a plausible link between musical timbre and
prelinguistic vocal timbre, also indicating a link for mental
processing in the two domains. We employed an audio
synthesizer program and created 180 different “synthetic
baby sounds” by combining spectral frequencies of real
baby sounds. In the experiment, our undergraduate
participants (N=145) listened to the “synthetic baby sounds”
one at a time and rated affective qualities of these sounds.
Later, we extracted “musical timbres” from the synthetic
baby sounds, and examined the extent to which the
emotional ratings made by our undergraduate students were
accounted for by the timbres of the synthetic baby sounds.

Timbre is an important perceptual feature of both music
and speech. Timbre is defined as the “acoustic property that
distinguishes two sounds”—for example, those of the flute
and the piano—*"of identical pitch, duration, and intensity”
(Hailstone et al., 2009; McAdams & Cunible, 1992). The
classic definition of timbre states that two different timbres
result from the sound of different amplitudes (of harmonic
components) of a complex tone in a steady state”
(Helmholtz, 1885). Timbre is a sound quality that
encompasses the aspect of a sound that is used to distinguish
it from other sounds of the same pitch, duration, and
loudness.

The timbre properties of attack time, attack slope, zero-
cross, roll off, brightness, mel-frequency cepstral
coefficients, roughness, and irregularity are well known in
music perception research as the main acoustic cues that
correlate with the perception of timbre of musical
instruments (Hailstone et al., 2009). Our assumption is that
if infants’ vocal sounds are perceived in the same manner as
the timbres of musical instruments are perceived, these same
acoustic properties can account for the perception of
emotions in infants’ vocalization.

Using principal components analysis (PCA), we
summarized emotional ratings made by our undergraduate
participants into two principal dimensions, to reduce the
data, and applied a stepwise regression to evaluate the
extent to which our predictors—the acoustic timbre
components—accounted for emotion ratings for synthesized
baby sounds.

Below, we briefly describe our timbre extraction method
and the method of creating “synthetic baby sounds.”

Timbre Extraction

This section describes acoustic cues relating to timbre in
detail, as well as the computational procedure of extracting
these cues. The purpose of using these acoustic cues is to act
as predictors in regression analyses that can explain
perceived emotions of our “synthetic baby sounds.” The
acoustic cues were chosen based on their use in musical
timbre (see Lartillot & Toiviainen, 2007).

Eight acoustic properties of timbre: attack time, attack
slope, zero-cross, roll off, brightness, mel-frequency
cepstral coefficients, roughness, and irregularity were
extracted from all sound stimuli using MIRToolbox in
Matlab (Lartillot, Toiviainen, & Eerola, 2008). These
acoustic properties are known to contribute to the perception
of timbre in music independently of melody and other
musical cues (Hailstone et al., 2009). The acoustic features
were extracted from synthesized sounds rated in the
Emotion Rating Experiment.

Attack time is the time in seconds it takes for a sound to
travel from amplitude of zero, to the maximum amplitude of
a given sound signal, or more simply the temporal duration.
Some features of timbre such as attack time contribute to the
perception of emotion in music (Gabrielsson & Juslin, 1996;
Juslin, 2000; Loughran, Walker, O’Neill & O’Farrell,
2001); which suggests that features of timbre can at least in
part determine the emotional content of music (Hailstone et
al., 2009).
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Figure 1. Attack timesof ~ The  horizontal  segments
an audio file. Athroughd  below the x-axis indicate the
are separate attack times; time it takes in seconds to
indicateb by the distance achieve the maximum peak
from the black line, tothe  of each frame for which the
the red line. attack time was calculated.
Attack slope is the attack phase of the amplitude envelope
of a sound, also interpreted as the average slope leading to
the attack time. This can also be calculated using the
equation of a line y = mx +b, where m is the slope of the
line and b is the point where the line crosses the vertical axis
(t=0), see Figure 2. The red line in Figure 2 indicates the
slope of the attack.
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' Zero-cross is the number
of times a sound signal
crosses the x-axis, this
accounts for noisiness in a
signal and is calculated
using the following equation
where sign is 1 for positive
arguments and 0 for
negative arguments. X[n] is
the time domain signal for
frame t.
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Figure 2. Attack slope of a
audio file. The red arrow
indicates the  duration
(attack time) for which the

attack slope is calculated.
N

2, =2 Isign(x[n]) - sign(sin-)
n=1
Roll off is the amount of high frequencies in a signal,
which is specified by a cut-off point. The roll-off frequency
is defined as the frequency where response is reduced by -3
dB. This is calculated using the following equation where
Mt is the magnitude of the Fourier transform at frame t and
frequency bin n. Rt is the cutoff frequency, see Figure 3.

R R
> M, [n]=0.85*> M,[n]
n=1 n=1

Brightness is the amount of energy above a specified
frequency, typically set at 1500 Hz - this is related to
spectral centroid. The term brightness is also used in
discussions of sound timbres, in a rough analogy with visual
brightness. Timbre researchers consider brightness to be one
of the strongest perceptual distinctions between sounds.
Acoustically it is an indication of the amount of high-
frequency content in a sound, and uses a measure such as
the spectral centroid, see Figure 3.

Roughness is sensory
dissonance, the perceived
harshness of a sound;
this is the opposite of
consonance  (harmony)
within music or even a
single tone harmonics.
Both  consonance and
dissonance are relevant
to emotion perception
(Koelsch, 2005).
Roughness is calculated
by computing the peaks
within a sound’s
spectrum and measuring
the distance between
peaks, dissonant sounds have irregularly placed spectral
peaks as compared to consonant sounds with evenly spaced
spectral peaks.

Formally, roughness is calculated using the following
equation where a and a, are the amplitudes of the
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Figure 3. Brightness of an
audio file. To the right of the
red dashed line is the amount
of energy above 1500 Hz, or
the brightness of the sound.

components, and g (f,,) is a ‘standard curve.” This was first
proposed by (Plomp & Levelt, 1965).
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Following extraction of the value for roughness from the
sound stimuli, principal components analysis was used to
reduce the dimensions of the roughness data.

Mel-frequency Cepstral Coefficients (mfcc) represent the
power spectrum of a sound. This power spectrum is based
on a linear transformation from actual frequency to the Mel-
scale of frequency. The Mel scale is based on a mapping
between actual frequency and perceived pitch as the human
auditory system does not perceive pitch in a linear manner.
Mel-frequency cepstral coefficients are the dominant
features used in speech recognition as well as some music
modeling (Logan, 2001). Frequencies in the Mel scale are
equally spaced, and approximate the human auditory system
more closely than a linearly spaced frequency bands used in
a normal cepstrum. Due to large data output, prior to
analyses mfcc data were reduced using principal
components analyses to create a workable set of data. A
cutoff criterion of 80% was used to represent the variability
in the original mfcc data. Figure 4 shows the numerical Mel-
frequency cepstral coefficient rank values for the 13 mfcc
components returned. Thirteen components are returned due
to the concentration of the signal information in only a few
low-frequency components.

Magnitude
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Figure 4. Mel-frequency cepstral coefficients (mfcc) of an
audio file. This figure shows the acoustic component mfcc.
Each bar represents the numerical (rank coefficient) value
computed for the thirteen components returned.

Irregularity of a spectrum is the degree of variation
between peaks of a spectrum (Lartillot et al., 2008). This is
calculated using the following equation where irregularity is
the sum of the square of the difference in amplitude between
adjoining partials in a sound.
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Creating Synthetic Baby Sounds

We created 180 short, 2 second, synthetic baby sounds from
ten real infant sounds: five males and five females ranging
from ages 6 to 9 months making screaming, laughing,
crying, cooing and babbling sounds. These sounds were
chosen to create novel stimuli emulating human
prelinguistic sounds. Among these sounds, four (one
screaming boy, one crying boy, one screaming girl and one
crying girl) were audio-recorded directly from two volunteer
infants in Nacogdoches, Texas using an Olympic Digital
Voice WS-400S recorder. The sounds of babbling and
cooing boys and girls were taken from audio-files
downloaded from a  sound  effects  website
(http://www.freesounds.org), and the sounds of laughing
boy and girl were taken from files downloaded from
YouTube (http://www.youtube.com).

These infant sounds were decomposed by four laboratory
assistants into amplitude and spectral frequency components
by applying fast Fourier transform using a sound editing
software program (SPEAR, Klingbeil, 2005). Arbitrarily
chosen spectral frequencies of one sound (e.g., a babbling
sound of a boy) were mixed with arbitrarily chosen spectral
frequencies of another sound (e.g., cooing girl) and then
modified by means of amplitude, or shifting frequencies, to
convey one of the basic emotions, happy, sad, anger, or fear
(Ekman, 2002).

For each sound pair, four sounds were created to sound
happy, sad, angry, and fearful. In this manner, each sound
pair (45 pairs in total, all possible pairs of the 10 real
sounds), was used to create four affective sounds, which
was decided subjectively by the laboratory assistants. The
total 180 sound stimuli were normalized and white noise
was taken out prior to and after creation of each sound
stimulus.

Emotion Rating Experiment

The goal of the experiment was to obtain empirical ratings
of college students examining the emotional quality of the
synthetic baby sounds that we created. To analyze the link
between emotion ratings and acoustic cues, a stepwise
regression analysis was employed.

Participants. A total of 145 undergraduate students (73
males, 73 females) participated in this experiment for course
credit. Participants were randomly assigned to one of two
groups that listened to 90 or 89 sounds of 179 total sounds.
Stimuli were randomly assigned to one of two groups; no
participants were in both groups.

Materials. Stimuli were taken from the 180 synthetic baby
sounds that were created from a group of a total of ten
recorded real infants’ sounds (see the “Creating Synthetic
Baby Sounds” section for the details of the sound creation).

Procedure. Participants were presented with 90/89 sounds
using customized Visual Basic software through JVC Flats
stereo headphones. Each stimulus’s maximum volume was

adjusted and normalized. Participants were instructed to
listen to sound stimuli, and rate each sound on five emotion
categories, happy, sad, angry, fearful, and disgusting
(Ekman, 1992; Johnson-Laird & Oatley, 1989). Each scale
ranged from 1 to 7—1 being strongly disagree (the degree
to which the stimuli, sounded like one of the five emotions),
and 7 being strongly agree. Stimuli were presented in a
random order.

Results

This section starts with descriptive statistics of emotion
ratings followed by the results from stepwise regression
analysis, which examined the extent to which emotion
ratings given to the synthetic baby sounds were explained
by their timbre properties. For the regression analysis,
average emotion scores were calculated for individual
synthetic sounds by collapsing over individual participants,
yielding a 179 sounds x 5 emotion dimension matrix. By
applying principal component analysis (PCA), this matrix
was summarized in a 179 x 2 matrix with the two columns
corresponding to two principal components identified by the
PCA procedure. The first two orthogonal components
explained 88.1% and 7.1% of the variance of the emotion
rating data, respectively.

Descriptive Statistics. Behavioral data, Figure 5, shows
overall observations for each emotion from the emotion
rating data. From the whiskers of the box plot for the
emotion data, it is apparent that there is variation within the
data. The highest rating for the emotion data did not exceed
a value of 6, on the scale of 1-7. The median of the ratings
for emotion varied between approximately 2.5 and 4.75
within the emotion rating data.

For all 179 sounds rated, most were rated as angry,
indicated by the median of the data for anger. The sounds
were rated least like the emotion happy, as the median for
this emotion was the lowest for all sounds rated on the five
emotions.
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Figure 5. Box plot of observations for emotion ratings.
Each box in the figure indicates one emotion rated by
participants. The median is indicated by the red line in the
center of each box, and the edges indicate the 25" and 75"
percentiles, the whiskers of each plot indicate the extreme
data points, and outliers are plotted outside of the whiskers.
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Regression analysis. A step-wise regression analysis was
used to analyze the collected rating data and timbre
components, to determine which component could best
explain the emotion rating data. Seventeen total predictors
were used in the stepwise regression to analyze the emotion
ratings made by participants. These were attack time, attack
slope, zero-cross, roll off, brightness, mel-frequency
cepstral coefficients 1-6, roughness 1-4, and irregularity.
Due to large data output, mfcc data were reduced using
principal components analyses to create a workable set of
data. There were originally 13 numerical Mel-frequency
cepstral coefficient rank values returned. These 13 rank
values were reduced to 6, accounting for 78% of the total
mfcc data. Roughness was also reduced in the same way
using PCA, from 79 components to four components that
described 80% of the original roughness data. These
predictors were used to analyze the emotion ratings made by
participants.

The results of the regression for the first principal
component (PCA1) indicated four acoustic features
significantly predicted emotion ratings; roll off (5 = -.386,
p< .001), mfcc 6 (B =. 218, p< .001), attack time (B =. 248,
p< .001), and mfcc 3 (B = -.202, p< .002), and attack slope
(6 = .034, p< .034), see Table 1 for percent explained by
principal component 1.

Table 1: Significant acoustic components for emotion PCA

land PCA 2
Predictors PCA 1 PCA 2
% explained 88% 7.1%
Attack time 23F** Y adade
Attack slope 2%
Irregularity -.16*
Mfcc 1 -.24%*
Mfcc 3 -.19**
Mfcc 6 22%**
Roughness 21%*
Zero-cross 25**
Roll off - 41x**

*p <.05, **p<.01, and *** p <.001.

The second principal component (PCA 2) showed that
five acoustic features significantly predicted emotion
ratings; mfcc 1 (8 = -.244, p< .001), zero cross (f = .250, p<
.002), attack time (8 = .305, p< .000), roughness 2 ( = .208,
p< .006), and irregularity (8 = -.159, p<. 024), (Table 1).
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Figure 6. R-squared. Emotion judgment principal

components 1 (PCA 1) and 2 (PCA 2). This figure shows the
proportion of R-squared contributed for each addition of a
predictor to the model for principal component | and Il from
the emotion judgments.

Figure 6 shows the proportion of R-squared contributed
for each addition of a predictor to the model for PCA 1 — (a)
and PCA 2 — (b). Looking at the values of R-squared, it is
apparent that roll-off was best able to describe the emotion
ratings, accounting for 30% of the emotion ratings for PCA
1. The second principal component does show several
significant acoustic cues that predict emotion; however,
none are as strong as in the first principal component.

General Discussion

Music and language are perhaps two of the most cognitively
complex and emotionally expressive sounds invented by
humans. Recently, the evolutionary origins of music and
language have attracted much attention in researchers of a
broad spectrum (Cross, 2001, 2005; Hauser et al., 2002;
Kirby, 2007). The present study, examining the relationship
between infants’ vocalizations—cooing, babbling, crying
and screaming—and the perception of musical timbres,
suggests that the link between music and language can go
even further back to the prelinguistic level of development.

Our Emotion Rating Experiment indicates that nearly
50% of emotions created by synthetically produced infant
sounds can be explained by a small number of acoustic cues
pertaining to musical timbres. Among those, roll off, which
quantifies the amount of high frequencies in a signal, turned
out to be the most important cue. The second most
important  property, mfcc  (mel-frequency  cepstral
coefficients), corresponds to perceived pitch in the human
auditory system, and are the dominant features used in
speech recognition and music modeling (Logan, 2001).
Given these findings, we conjecture that high-frequency
sounds are probably taken as the robust cue of emotion
attribution, and more fine-grained distinctions of emotion
are made by extracting speech-related cues.

The ability to discriminate sounds is said to be present
even in primitive animals such as carp (Chase, 2001),
implying that this ability evolved early in history. Some
animals have sounds and or calls that can convey the
emotions of finding something of interest or of fear (Hauser,

1396



Chomsky, & Fitch, 2002). Such abilities were probably
present even before music was fully developed in the
current form.
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