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Abstract 

Like language, the human capacity to create music is one of 
the most salient and unique markers that differentiates 
humans from other species (Cross, 2005). In the following 
study, the authors show that people’s ability to perceive 
emotions in infants’ vocalizations (e.g., cooing and babbling) 
is linked to the ability to perceive timbres of musical 
instruments. In one experiment, 180 “synthetic baby sounds” 
were created by rearranging spectral frequencies of cooing, 
babbling, crying, and laughing made by 6 to 9-month-old 
infants. Undergraduate participants (N=145) listened to each 
sound one at a time and rated the emotional quality of the 
“synthetic baby sounds.” The results of the experiment 
showed that five acoustic components of musical timbre (e.g., 
roll off, mel-frequency cepstral coefficient, attack time and 
attack slope) could account for nearly 50% of the variation of 
the emotion ratings made by undergraduate students. The 
results suggest that the same mental processes are probably 
applied for the perception of musical timbres and that of 
infants’ prelinguistic vocalization. 
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Introduction 

Infants use a variety of vocal sounds, such as cooing, 

babbling, crying, and laughing, to express their emotions. 

Infants’ prelinguistic vocal communications are highly 

affective in the sense that they evoke specific emotions—

happiness, frustration, anger, hunger, and/or joy—without 

conveying concrete ideas. In this sense, infants’ vocal 

communication parallels music. Music is highly affective; 

yet it is conceptually limited (Cross, 2005; Ross, 2009).   

The interaction between music and language has attracted 
much attention recently (Chen-Haffteck, 2011; Cross, 2001; 

Masataka, 2007). However, despite their similarities, little 

attention has been paid to the relationship between music 

and prelinguistic vocalizations (Chen-Haffteck, 2011; Cross, 

2001; He, Hotson, & Trainor, 2007; Masataka, 2007).  If 

music and language are highly related, what is the 

relationship between infants’ vocal communications such as 

babbling, and music?  

In the study described below, we analyze acoustic cues of 

infants’ vocalization and demonstrate that emotions created 

by prelinguistic vocalization can be explained to a large 
extent by the acoustic cues of sound that differentiate 

timbres of musical instruments, potentially implicating that 

the same mental processes are applied for the perception of 

musical timbres and that of infants’ vocalizations.  

The paper is organized as follows: we review related 

work examining the link between prelinguistic vocalization 

and music followed by an overview of the experiment. After 

discussing our timbre extraction and sound creation method, 

we introduce one experiment that investigates the 

connection between music and prelinguistic communication.  

Related Work 

Infants begin life with the ability to make different sounds—

first cooing and crying, then babbling. Next they form one 
word, and then two, followed by full sentences and speech. 

In the first ten months, infants progress from simple sounds 

that are not expressed in the phonetic alphabet, to babbling, 

which is an important step in infants learning how to speak 

(Gros-Louis, West, Goldstein, & King, 2006; Oller, 2000).  

Musical instruments and infants’ vocalizations both elicit 

emotional responses, while conveying little information on 

what the sender is trying to express. Music can have a very 

powerful effect on its listeners, as we all have a piece of 

music that will bring back emotions. Music can convey at 

least three universal emotions, happiness, sadness and fear 

(Fritz et al., 2009). These emotions are similar to the 
emotions expressed by infants with their limited sounds 

(Dessureau, Kurowski, & Thompson, 1998; Zeifman, 2001; 

Zeskind & Marshall, 1998). Both infants and music convey 

meaning without the use of words. Infants rely on their 

voices and non-verbal/non-word sounds to communicate 

and it is these sounds that inform the listener of how 

important and of what type of danger the infant is facing, 

such as being too cold, hungry or of being left alone 

(Dessureau et al., 1998; Zeifman 2001; Zeskind & Marshall, 

1998).   

Across cultures, songs sung while playing with babies are 
fast, high in pitch, and contain exaggerated rhythmic 

accents, whereas lullabies are lower, slower and softer.  

Infants will use cues in both music and language to learn the 

rules of a culture. Motherese, a form of speech used by 

adults in interacting with infants, often consists of singing to 

infants using a musical, sing-song voice, that mimics 

babies’ cooing by using a higher pitch. An infant’s caregiver 

will use higher pitch when speaking to an infant, as it helps 

the infant learn and also draws their attention (Fernald 

1989).  

In summary, research shows that there is a close link 

between infants’ vocal communication and music. This link 
is demonstrated through the babbling and cooing sounds 

used by infants’ to communicate, and also by mothers’ use 

of motherese to assist infant’s learning of language in a 

sing-song manner. Infants are able to use the same cues 
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from both music and language to facilitate learning in both 

domains. Given these close connections, it is likely that the 

same mental processes are involved for the perception of 

instrumental sounds and the perception of infants’ 

vocalizations. The beginning stages of this idea are 

investigated in one experiment by examining the emotion 
perception of synthetic baby sounds. 

Overview of the Study 

In the Emotion Rating Experiment described below, we 

tested the general hypothesis that the same mental process is 

involved for the perception of infants’ vocalization and that 

of timbres of musical instruments. More specifically, we 

hypothesize that the acoustic components of timbre will be 

significant predictors of emotion. If this is true, then there 

should be a plausible link between musical timbre and 

prelinguistic vocal timbre, also indicating a link for mental 

processing in the two domains. We employed an audio 
synthesizer program and created 180 different “synthetic 

baby sounds” by combining spectral frequencies of real 

baby sounds. In the experiment, our undergraduate 

participants (N=145) listened to the “synthetic baby sounds” 

one at a time and rated affective qualities of these sounds. 

Later, we extracted “musical timbres” from the synthetic 

baby sounds, and examined the extent to which the 

emotional ratings made by our undergraduate students were 

accounted for by the timbres of the synthetic baby sounds.  

Timbre is an important perceptual feature of both music 

and speech. Timbre is defined as the “acoustic property that 

distinguishes two sounds”—for example, those of the flute 
and the piano—“of identical pitch, duration, and intensity” 

(Hailstone et al., 2009; McAdams & Cunible, 1992). The 

classic definition of timbre states that two different timbres 

result from the sound of different amplitudes (of harmonic 

components) of a complex tone in a steady state” 

(Helmholtz, 1885). Timbre is a sound quality that 

encompasses the aspect of a sound that is used to distinguish 

it from other sounds of the same pitch, duration, and 

loudness. 

The timbre properties of attack time, attack slope, zero-

cross, roll off, brightness, mel-frequency cepstral 
coefficients, roughness, and irregularity are well known in 

music perception research as the main acoustic cues that 

correlate with the perception of timbre of musical 

instruments (Hailstone et al., 2009). Our assumption is that 

if infants’ vocal sounds are perceived in the same manner as 

the timbres of musical instruments are perceived, these same 

acoustic properties can account for the perception of 

emotions in infants’ vocalization. 

Using principal components analysis (PCA), we 

summarized emotional ratings made by our undergraduate 

participants into two principal dimensions, to reduce the 

data, and applied a stepwise regression to evaluate the 
extent to which our predictors—the acoustic timbre 

components—accounted for emotion ratings for synthesized 

baby sounds. 

Below, we briefly describe our timbre extraction method 

and the method of creating “synthetic baby sounds.” 

Timbre Extraction 

This section describes acoustic cues relating to timbre in 

detail, as well as the computational procedure of extracting 

these cues. The purpose of using these acoustic cues is to act 
as predictors in regression analyses that can explain 

perceived emotions of our “synthetic baby sounds.” The 

acoustic cues were chosen based on their use in musical 

timbre (see Lartillot & Toiviainen, 2007).  

Eight acoustic properties of timbre: attack time, attack 

slope, zero-cross, roll off, brightness, mel-frequency 

cepstral coefficients, roughness, and irregularity were 

extracted from all sound stimuli using MIRToolbox in 

Matlab (Lartillot, Toiviainen, & Eerola, 2008). These 

acoustic properties are known to contribute to the perception 

of timbre in music independently of melody and other 
musical cues (Hailstone et al., 2009). The acoustic features 

were extracted from synthesized sounds rated in the 

Emotion Rating Experiment. 

Attack time is the time in seconds it takes for a sound to 

travel from amplitude of zero, to the maximum amplitude of 

a given sound signal, or more simply the temporal duration. 

Some features of timbre such as attack time contribute to the 

perception of emotion in music (Gabrielsson & Juslin, 1996; 

Juslin, 2000; Loughran, Walker, O’Neill & O’Farrell, 

2001); which suggests that features of timbre can at least in 

part determine the emotional content of music (Hailstone et 

al., 2009).  
 

Attack time is computed 

using the equation of a line, y 

= mx + b, it is part of a 

sounds amplitude envelope 

where m is the slope of the 

line and b is the point where 

the line crosses the vertical 

axis (t=0). Figure 1 gives an 

illustration of attack time. 

The horizontal segments 
below the x-axis indicate the 

time it takes in seconds to 

achieve the maximum peak 

of each frame for which the 

attack time was calculated. 

Attack slope is the attack phase of the amplitude envelope 

of a sound, also interpreted as the average slope leading to 

the attack time. This can also be calculated using the 

equation of a line y = mx +b, where m is the slope of the 

line and b is the point where the line crosses the vertical axis 

(t=0), see Figure 2. The red line in Figure 2 indicates the 

slope of the attack. 

 

Figure 1. Attack times of 

an audio file. A through d 

are separate attack times; 

indicateb by the distance 
from the black line, to the 

the red line. 
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Zero-cross is the number 

of times a sound signal 

crosses the x-axis, this 

accounts for noisiness in a 

signal and is calculated 

using the following equation 
where sign is 1 for positive 

arguments and 0 for 

negative arguments. X[n] is 

the time domain signal for 

frame t.  
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Roll off is the amount of high frequencies in a signal, 

which is specified by a cut-off point. The roll-off frequency 
is defined as the frequency where response is reduced by -3 

dB. This is calculated using the following equation where 

Mt is the magnitude of the Fourier transform at frame t and 

frequency bin n. Rt is the cutoff frequency, see Figure 3. 
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Brightness is the amount of energy above a specified 

frequency, typically set at 1500 Hz – this is related to 

spectral centroid. The term brightness is also used in 

discussions of sound timbres, in a rough analogy with visual 

brightness. Timbre researchers consider brightness to be one 

of the strongest perceptual distinctions between sounds. 

Acoustically it is an indication of the amount of high-

frequency content in a sound, and uses a measure such as 

the spectral centroid, see Figure 3. 

 

Roughness is sensory 

dissonance, the perceived 
harshness of a sound; 

this is the opposite of 

consonance (harmony) 

within music or even a 

single tone harmonics. 

Both consonance and 

dissonance are relevant 

to emotion perception 

(Koelsch, 2005). 

Roughness is calculated 

by computing the peaks 
within a sound’s 

spectrum and measuring 

the distance between 

peaks, dissonant sounds have irregularly placed spectral 

peaks as compared to consonant sounds with evenly spaced 

spectral peaks. 

Formally, roughness is calculated using the following 

equation where aj and ak are the amplitudes of the 

components, and g (fcb) is a ‘standard curve.’ This was first 

proposed by (Plomp & Levelt, 1965).  
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Following extraction of the value for roughness from the 

sound stimuli, principal components analysis was used to 

reduce the dimensions of the roughness data.  

Mel-frequency Cepstral Coefficients (mfcc) represent the 

power spectrum of a sound. This power spectrum is based 

on a linear transformation from actual frequency to the Mel-

scale of frequency. The Mel scale is based on a mapping 

between actual frequency and perceived pitch as the human 

auditory system does not perceive pitch in a linear manner. 
Mel-frequency cepstral coefficients are the dominant 

features used in speech recognition as well as some music 

modeling (Logan, 2001). Frequencies in the Mel scale are 

equally spaced, and approximate the human auditory system 

more closely than a linearly spaced frequency bands used in 

a normal cepstrum. Due to large data output, prior to 

analyses mfcc data were reduced using principal 

components analyses to create a workable set of data. A 

cutoff criterion of 80% was used to represent the variability 

in the original mfcc data. Figure 4 shows the numerical Mel-

frequency cepstral coefficient rank values for the 13 mfcc 

components returned. Thirteen components are returned due 
to the concentration of the signal information in only a few 

low-frequency components. 

 

 
Figure 4. Mel-frequency cepstral coefficients (mfcc) of an 
audio file. This figure shows the acoustic component mfcc. 

Each bar represents the numerical (rank coefficient) value 

computed for the thirteen components returned. 

 

Irregularity of a spectrum is the degree of variation 

between peaks of a spectrum (Lartillot et al., 2008). This is 

calculated using the following equation where irregularity is 

the sum of the square of the difference in amplitude between 

adjoining partials in a sound. 
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Figure 2. Attack slope of a 

audio file. The red arrow 

indicates the duration 

(attack time) for which the 

attack slope is calculated. 

 
 

Figure 3. Brightness of an 

audio file. To the right of the 

red dashed line is the amount 

of energy above 1500 Hz, or 

the brightness of the sound. 
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Creating Synthetic Baby Sounds 

We created 180 short, 2 second, synthetic baby sounds from 

ten real infant sounds: five males and five females ranging 

from ages 6 to 9 months making screaming, laughing, 

crying, cooing and babbling sounds. These sounds were 

chosen to create novel stimuli emulating human 

prelinguistic sounds. Among these sounds, four (one 

screaming boy, one crying boy, one screaming girl and one 

crying girl) were audio-recorded directly from two volunteer 

infants in Nacogdoches, Texas using an Olympic Digital 
Voice WS-400S recorder. The sounds of babbling and 

cooing boys and girls were taken from audio-files 

downloaded from a sound effects website 

(http://www.freesounds.org), and the sounds of laughing 

boy and girl were taken from files downloaded from 

YouTube (http://www.youtube.com). 

These infant sounds were decomposed by four laboratory 

assistants into amplitude and spectral frequency components 

by applying fast Fourier transform using a sound editing 

software program (SPEAR, Klingbeil, 2005). Arbitrarily 

chosen spectral frequencies of one sound (e.g., a babbling 
sound of a boy) were mixed with arbitrarily chosen spectral 

frequencies of another sound (e.g., cooing girl) and then 

modified by means of amplitude, or shifting frequencies, to 

convey one of the basic emotions, happy, sad, anger, or fear 

(Ekman, 2002).  

For each sound pair, four sounds were created to sound 

happy, sad, angry, and fearful. In this manner, each sound 

pair (45 pairs in total, all possible pairs of the 10 real 

sounds), was used to create four affective sounds, which 

was decided subjectively by the laboratory assistants. The 

total 180 sound stimuli were normalized and white noise 
was taken out prior to and after creation of each sound 

stimulus. 

Emotion Rating Experiment 
 

The goal of the experiment was to obtain empirical ratings 

of college students examining the emotional quality of the  

synthetic baby sounds that we created. To analyze the link 

between emotion ratings and acoustic cues, a stepwise 

regression analysis was employed. 

 
Participants. A total of 145 undergraduate students (73 

males, 73 females) participated in this experiment for course 

credit. Participants were randomly assigned to one of two 

groups that listened to 90 or 89 sounds of 179 total sounds. 

Stimuli were randomly assigned to one of two groups; no 

participants were in both groups.  

 

Materials. Stimuli were taken from the 180 synthetic baby 

sounds that were created from a group of a total of ten 

recorded real infants’ sounds (see the “Creating Synthetic 

Baby Sounds” section for the details of the sound creation).  

 
Procedure. Participants were presented with 90/89 sounds 

using customized Visual Basic software through JVC Flats 

stereo headphones. Each stimulus’s maximum volume was 

adjusted and normalized. Participants were instructed to 

listen to sound stimuli, and rate each sound on five emotion 

categories, happy, sad, angry, fearful, and disgusting 

(Ekman, 1992; Johnson-Laird & Oatley, 1989). Each scale 

ranged from 1 to 7—1 being strongly disagree (the degree 

to which the stimuli, sounded like one of the five emotions), 
and 7 being strongly agree. Stimuli were presented in a 

random order. 

Results 

This section starts with descriptive statistics of emotion 

ratings followed by the results from stepwise regression 

analysis, which examined the extent to which emotion 

ratings given to the synthetic baby sounds were explained 

by their timbre properties. For the regression analysis, 

average emotion scores were calculated for individual 
synthetic sounds by collapsing over individual participants, 

yielding a 179 sounds x 5 emotion dimension matrix.  By 

applying principal component analysis (PCA), this matrix 

was summarized in a 179 x 2 matrix with the two columns 

corresponding to two principal components identified by the 

PCA procedure. The first two orthogonal components 

explained 88.1% and 7.1% of the variance of the emotion 

rating data, respectively.   

Descriptive Statistics. Behavioral data, Figure 5, shows 

overall observations for each emotion from the emotion 
rating data. From the whiskers of the box plot for the 

emotion data, it is apparent that there is variation within the 

data. The highest rating for the emotion data did not exceed 

a value of 6, on the scale of 1-7. The median of the ratings 

for emotion varied between approximately 2.5 and 4.75 

within the emotion rating data.  

 For all 179 sounds rated, most were rated as angry, 

indicated by the median of the data for anger. The sounds 

were rated least like the emotion happy, as the median for 

this emotion was the lowest for all sounds rated on the five 

emotions.  

 

 
Figure 5. Box plot of observations for emotion ratings. 
Each box in the figure indicates one emotion rated by 

participants. The median is indicated by the red line in the 

center of each box, and the edges indicate the 25th and 75th 

percentiles, the whiskers of each plot indicate the extreme 

data points, and outliers are plotted outside of the whiskers. 
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Regression analysis. A step-wise regression analysis was 

used to analyze the collected rating data and timbre 

components, to determine which component could best 

explain the emotion rating data. Seventeen total predictors 

were used in the stepwise regression to analyze the emotion 

ratings made by participants. These were attack time, attack 
slope, zero-cross, roll off, brightness, mel-frequency 

cepstral coefficients 1-6, roughness 1-4, and irregularity. 

Due to large data output, mfcc data were reduced using 

principal components analyses to create a workable set of 

data. There were originally 13 numerical Mel-frequency 

cepstral coefficient rank values returned. These 13 rank 
values were reduced to 6, accounting for 78% of the total 

mfcc data. Roughness was also reduced in the same way 

using PCA, from 79 components to four components that 

described 80% of the original roughness data. These 

predictors were used to analyze the emotion ratings made by 

participants.  

The results of the regression for the first principal 

component (PCA1) indicated four acoustic features 
significantly predicted emotion ratings; roll off (β = -.386, 

p< .001), mfcc 6 (β =. 218, p< .001), attack time (β =. 248, 

p< .001), and mfcc 3 (β = -.202, p< .002), and attack slope 

(β = .034, p< .034), see Table 1 for percent explained by 

principal component 1. 

 

Table 1: Significant acoustic components for emotion PCA 

1and PCA 2 
 

Predictors PCA 1 PCA 2 

% explained 88% 7.1% 

Attack time .23*** .31*** 

Attack slope .12*  

Irregularity  -.16* 

Mfcc 1  -.24** 
Mfcc 3 -.19**  

Mfcc 6 .22***  

Roughness  .21** 

Zero-cross  .25** 

Roll off -.41***  

* p <.05, ** p < .01, and *** p < .001. 

 

The second principal component (PCA 2) showed that 

five acoustic features significantly predicted emotion 

ratings; mfcc 1 (β = -.244, p< .001), zero cross (β = .250, p< 

.002), attack time (β = .305, p< .000), roughness 2 (β = .208, 

p< .006), and irregularity (β = -.159, p<. 024), (Table 1). 

 
 

 

 

 

 

 

 

 
 

(a) 

 

(b) 

 
Figure 6. R-squared. Emotion judgment principal 

components 1 (PCA 1) and 2 (PCA 2). This figure shows the 

proportion of R-squared contributed for each addition of a 
predictor to the model for principal component I and II from 

the emotion judgments. 

Figure 6 shows the proportion of R-squared contributed 

for each addition of a predictor to the model for PCA 1 – (a) 
and PCA 2 – (b). Looking at the values of R-squared, it is 

apparent that roll-off was best able to describe the emotion 

ratings, accounting for 30% of the emotion ratings for PCA 

1. The second principal component does show several 

significant acoustic cues that predict emotion; however, 

none are as strong as in the first principal component.  

General Discussion 

Music and language are perhaps two of the most cognitively 

complex and emotionally expressive sounds invented by 

humans. Recently, the evolutionary origins of music and 
language have attracted much attention in researchers of a 

broad spectrum (Cross, 2001, 2005; Hauser et al., 2002; 

Kirby, 2007). The present study, examining the relationship 

between infants’ vocalizations—cooing, babbling, crying 

and screaming—and the perception of musical timbres, 

suggests that the link between music and language can go 

even further back to the prelinguistic level of development. 

Our Emotion Rating Experiment indicates that nearly 

50% of emotions created by synthetically produced infant 

sounds can be explained by a small number of acoustic cues 

pertaining to musical timbres. Among those, roll off, which 

quantifies the amount of high frequencies in a signal, turned 
out to be the most important cue. The second most 

important property, mfcc (mel-frequency cepstral 

coefficients), corresponds to perceived pitch in the human 

auditory system, and are the dominant features used in 

speech recognition and music modeling (Logan, 2001). 

Given these findings, we conjecture that high-frequency 

sounds are probably taken as the robust cue of emotion 

attribution, and more fine-grained distinctions of emotion 

are made by extracting speech-related cues.  

The ability to discriminate sounds is said to be present 

even in primitive animals such as carp (Chase, 2001), 
implying that this ability evolved early in history. Some 

animals have sounds and or calls that can convey the 

emotions of finding something of interest or of fear (Hauser, 

1396



Chomsky, & Fitch, 2002). Such abilities were probably 

present even before music was fully developed in the 

current form.  
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