
Eliciting a Sensemaking Process from Verbal Protocols of Reverse Engineers
Adam R. Bryant1,2 (adam.bryant@wpafb.af.mil), Robert F. Mills2 (robert.mills@afit.edu),

Gilbert L. Peterson2 (gilbert.peterson@afit.edu), and Michael R. Grimaila2 (michael.grimaila@afit.edu)
1Cognitive Models and Agents Branch, 711th Human Performance Wing

2Department of Electrical and Computer Engineering, Air Force Institute of Technology
Wright-Patterson AFB, OH 45433 USA

Abstract
A process of sensemaking in reverse engineering was elicited
from verbal protocols of reverse engineers as they investigated
the assembly code of executable programs. Four participants
were observed during task performance and verbal protocols
were collected and analyzed from two of the participants to
determine their problem-solving states and characterize likely
transitions between those states. From this analysis, a high-
level process of sensemaking is described which represents hy-
pothesis generation and information-seeking behaviors in re-
verse engineering within a framework of goal-directed plan-
ning. Future work in validation and application of the process
is discussed.
Keywords: Sensemaking; Information seeking; Human com-
puter interaction; verbal protocol studies.

Introduction
Sensemaking is a term used to describe a broad family of cog-
nitive activities in which a person comes to develop a mental
model to represent the elements of some situation of inter-
est (Klein, Phillips, Rall, & Peluso, 2007; M. R. Endsley,
2000). Whereas situation awareness refers to the ability to at-
tend to relevant information elements in a task as a situation
unfolds (M. Endsley & Rodgers, 1994), sensemaking refers
to the process that enables one to come to an understanding
of the meaning and relevance of the elements that make up
the situation (Klein, Moon, & Hoffman, 2006; M. R. Ends-
ley, 2000). The sensemaking process has been described as
an ongoing integration of knowledge from a mental model of
a situation, available information about the context of a situ-
ation, and perceptual data from the environment (D. M. Rus-
sell, Stefik, Pirolli, & Card, 1993; M. R. Endsley, 2000).

Sensemaking is described as connecting inferences and
observations, integrating knowledge and conjecture, find-
ing explanations for ambiguous data, diagnosing ambiguous
symptoms, and identifying problems (Klein et al., 2007).
Sensemaking also refers to comprehension of the signif-
icance of ambiguous events and data in the environment
(Weick, 1995). The many functions of sensemaking de-
scribe a class of distinct cognitive processes involving inter-
actions between knowledge, information, and actions in an
environment which may encompass a number of different in-
ference and learning behaviors (Menzies, 1996; Josephson,
Chandrasekaran, Smith, & Tanner, 1987). Sensemaking has
been studied in naturalistic settings (Klein et al., 2007), in
computer-human interaction (Pirolli & Card, 2005), in intel-
ligence analysis (Zhang, Soergel, Klavans, & Oard, 2009),
and in organizations (Weick, 1995), but no process-level de-
scription exists to characterize how people make sense of ex-
ecutable programs.

As part of a larger study to understand and model how peo-
ple make sense of programs from executable representations,
we wanted to understand the general interaction process that
is involved as a person works with a debugger to make sense
of a program. While sensemaking might be a general pro-
cess of interacting with an environment to develop a mental
model, we investigated sensemaking in a particular applied
domain (reverse engineering assembly language) because it
provides a restricted set of semantics to ground the investiga-
tion without being a “toy” problem. This was also essential
because understanding sensemaking in that domain was the
major focus of the larger study. So while the term ’sensemak-
ing’ has been used to mean many different things, we were
interested in studying how people connect information from
the task environment with background knowledge in order
to develop and modify a mental model, all with a focus on
applying this process to improve the information processing
automation in software reverse engineering tools.

To understand this element of understanding executable
programs, we undertook a study to collect verbal protocols
from reverse engineers while they analyzed programs from
assembly language representations. Four participants were
observed performing a challenging reverse engineering task,
and verbalizations from two of the participants were tran-
scribed and coded. From the coded data, two participants’
state transitions were extracted to determine a process involv-
ing the state transitions.

First, the methods used in the study are briefly described.
Next, the methods used in the analysis of verbal protocols is
presented. Following that, the process of sensemaking used
in the reverse engineering tasks is described in the context of
complex problem-solving.

Method
The participants were instructed to complete a problem called
Angler that was downloaded from the crackme.de website
(Schneider, T., 2011) in February 20111. Angler is a type of
crackme called a keygen (which stands for key generation),
a type of program that typically presents text fields for the
user to enter a name and a serial number and asks the partic-
ipant to reverse engineer the algorithm which processes the
user’s data. In keygen tasks, people disassemble and reverse
engineer the program to discover a valid key for a given user

1Shortly after obtaining the crackme, the crackme.de website
was taken down from the Internet. The Angler program can
also be obtained from the website of the program’s author at
http://cyclops.ueuo.com.

1386



name or to write an algorithm that, when given a user name,
produces a valid license key that unlocks the functionality of
the program.

The Angler crackme program presents the participant with
a semi-transparent visual window with two entries for text.
It has three buttons, labeled “Check”, “About”, and “Exit.”
When a user submits a name and serial number combination,
the application tests whether it is a valid combination and in-
forms the user.

Selection of Participants
The researcher solicited reverse engineers to participate in a
verbal protocol study through an e-mail invitation to the Air
Force Institute of Technology and to a cross-organizational
reverse engineering working group at Wright-Patterson Air
Force Base. The solicitation requested that participants have
knowledge of reverse engineering and experience using tools
such as OllyDbg, WinDbg, Immunity Debugger, and the IDA
Interactive Disassembler. The solicitation produced four re-
verse engineers from Wright-Patterson Air Force Base who
participated without remuneration.

Data Collection
Video data of the participants’ computer screen was captured
and combined with audio recordings of the participants’ ver-
balizations during the task. The participant computer ran
a Windows XP operating system that was hosted within a
VirtualBox virtual machine, and which was preloaded with
the software tools and documentation identified from a pre-
vious subject matter expert study of the reverse engineering
task. The experimenter viewed the participant’s task envi-
ronment remotely over a virtual network computing (VNC)
connection using the TightVNC server and client software
(TightVNC Software, 2011). The experimenter’s computer
was outfitted with a microphone which was wired into the
participant’s cubicle to enable the combined collection of au-
dio and video data.

Each participant was seated at a small cubicle in an unoc-
cupied, quiet room in front of the participant computer which
contained a mouse, keyboard, monitor, and the microphone.
The participants were instructed as to the different reverse
engineering tools and documentation available, and were per-
mitted as much time as was needed to become familiar with
the task environment. Paper was also available so participants
could make notes, as recommended by Wood (1997).

Each participant was given instructions on how to ver-
balize thoughts during task performance and was instructed
not to try to explain the task or thought processes. The ex-
perimenter stressed this point and demonstrated examples
of poor, acceptable, and high-quality concurrent verbaliza-
tions with a simulated coffee-making task to help the partic-
ipants understand how they should verbalize during task per-
formance. During the performance of each task, the experi-
menter was seated out of the participant’s view in the opposite
cubicle and reminded participants to verbalize when they fell
silent for more than a few seconds using simple prompts such

as “please remember to verbalize during the task” and “re-
member to talk aloud” as discussed in Trickett and Trafton
(2007). Other than those reminders, the experimenter was
silent throughout the task, and took notes about each partici-
pants’ goals, strategies, concepts, and problems in the task.

Audio data of each participant’s concurrent verbaliza-
tions and video data of the experimenter’s computer moni-
tor (showing all actions on the participant’s computer moni-
tor) were recorded using the CamStudio software. After the
task, participants were asked to recall what they thought their
strategies were, what parts of the task they thought were the
most difficult, what would have made the task easier, and
what they felt they needed to pay attention to.

Overview of the Reverse Engineering Task
Participants were to investigate, modify, and re-implement an
algorithm that an executable Windows program called “An-
gler.exe” (Cyclops, 2011) uses to process a user-provided se-
rial number. Participants worked from assembly language
representations of the program provided through the IDA in-
teractive disassembler and the OllyDbg debugger without ac-
cess to source code or debugging symbols.

The code in Angler consists of 15 major subroutines, in-
cluding the subroutine called WinMain which starts the win-
dowing process and other subroutines to present dialog boxes.
The program runs within a single thread of execution in mem-
ory and does not have hidden sections, encrypted code, or
code obfuscations. Angler’s file header contains pointers to
four program sections that are mapped into memory at run
time: the .text, .rdata, .data, and .rsrc sections, which
are typical for portable executable programs compiled to run
on Win32-based operating systems (Eilam, 2005).

Though there are many strategies to approaching the chal-
lenge, successful completion required that participants do the
following:

1. Read and understand the goal of the task
2. Determine that a system function handles input
3. Isolate the input handling function
4. Determine the format for the serial number input
5. “Catch” the input as the program executes
6. Craft data so the program executes the success message
7. Translate the function into pseudocode
8. Write pseudocode for a key generator

An algorithm in the program composed of 27 basic blocks
of assembly instructions processes the user’s serial number.
The algorithm takes the first four characters of the person’s
name and performs a cyclic redundancy check (CRC) to pro-
duce an even-numbered value from that character, finds four
pairs of prime factors that sum to the even-numbered values,
and assembles an eight-value number separated by dashes
(Cyclops, 2011). Through a series of programmatic checks,
the algorithm determines if the user’s serial number matches
the computed serial value. In these checks, the last instruc-
tions in each basic block of code check for a data value from

1387



Verbalization Describes Coded As
Desired future state Make goal representation
Activities to accomplish goal Plan approach
Status of an ongoing activity Carry out plan
Noticing something Sense information
Recognizing relevance Interpret information
More abstract statement Update knowledge
An assumption Create hypothesis
Question about something Create hypothesis

Table 1: Rules Used to Code Segments

the input and then transfer the program’s execution based on
the result of that check. If the reverse engineer does not un-
derstand the meanings of these behaviors, the program ap-
pears to be making a large number of arbitrary numerical
checks in a long sequence of assembly language instructions.

Verbal Protocol Analysis
Participant B’s video and audio data recordings were acciden-
tally destroyed during a problem with saving the video file to
disk and were not able to be recovered or transcribed. Ad-
ditionally, Participant A lacked familiarity with the tools and
the task and was not able to make sense of the program. Al-
though observations of all of the participants provided valu-
able context and examples, only verbal data from Participants
C and D were coded and analyzed to elicit the sensemaking
process.

Concurrent verbal protocols were collected from Partici-
pants C and D following the method outlined in (Ericsson
& Simon, 1980). We reviewed the video and verbal data
from Participants C and D and transcribed it into a spread-
sheet, broken into one verbal segment per row as discussed
in Trickett and Trafton (2007). The participants’ verbaliza-
tions were segmented during transcription in order to take ad-
vantage of other contextual clues from the audio and video.
Verbalizations were segmented based on whether they repre-
sented a single idea, and when a segment contained a shift
from one idea to another, the second idea was recorded in its
own row as its own new segment. Where significant verbal
breaks occurred, the subsequent verbalizations were recorded
on a new row as a separate segment.

After all of the available data was transcribed, it was coded
according to the following taxonomy of sensemaking in re-
verse engineering, established from a previous literature re-
view of sensemaking in reverse engineering in Bryant et al.
Bryant, Mills, Peterson, and Grimaila (2012): Make the goal
representation, Plan an approach, Carry out a plan, Sense
information, Interpret information, Update knowledge, and
Create a hypothesis. This taxonomy of sensemaking steps
is similar to the information-processing loop used in pro-
gramming artificial agents to interface with an environment
(S. Russell & Norvig, 2003), with the addition of a state to
generate goals and state to generate hypotheses.

The data from the two participants were coded according to

the coding rules in Table 1. To ensure that the coding scheme
was appropriate for the data, interrater reliability was com-
puted between two independent coders. One researcher coded
all of the data (592 segments) and afterwards a second coder
independently coded 29.2 percent of the segments (173 se-
quential segments) without having seen the original coder’s
data, and from a starting point randomly selected by the sec-
ond coder. Cohen’s Kappa statistic (Cohen et al., 1960) was
computed to measure interrater reliability for the 29.2 percent
of segments coded by both coders. Cohen’s Kappa measures
the agreement between coders on positive and negative in-
stances while taking into account the likelihood of agreement
based on chance. Cohen’s Kappa is computed as:

κ = (Po−Pc)/(1−Pc)

Po is the proportion of agreements between the coders and
Pc is the proportion of agreement which would be predicted
by chance. Generally, a Cohen’s Kappa value of 0.0 to 0.4
indicates zero to very little agreement, 0.6 to 0.8 indicates
significant agreement, and 0.8 and above represents near per-
fect agreement, though there is disagreement in the literature
about specific ranges of values (Bakeman & Gottman, 1997;
Trickett & Trafton, 2007). After both coders independently
coded the data, the interrater reliability was calculated and
the coders met to discuss disagreements. If codes had weak
interrater reliability (0.4 or below), the categories were re-
moved or changed and the data was recoded. The final in-
terrater reliability for the dual-coded verbalizations was 0.82,
which demonstrates significant to “near perfect” agreement
in all categories (Table 2). Following standard practice, the
remainder of the verbalizations were coded by the researcher
(Trickett & Trafton, 2007).

Computing State Transitions
The state transitions from the two participants’ data were
computed to determine how the reverse engineers made sense
of the programs. Transitions between the states indicated
movement through the problem-solving process

State Category Cohen’s Kappa
a Make goal representation 0.93
b Plan approach 0.82
c Carry out plan 0.78
d Sense information 0.72
e Interpret information 0.75
f Update knowledge 0.81
g Create hypothesis 0.92

Average agreement 0.82

Table 2: Interrater Reliability of Coding Scheme (173 seg-
ments)

As described in Bakeman and Gottman (1997), matrices of
state transition probabilities were computed to determine the
process used in the task. For m states S j and Sk, and n seg-

1388



ments i, the total transitions between each state S j and state
Sk are computed as:

Tr(S j,Sk) =
n

∑
i=1

(Si, j×Si+1,k) : S ∈ (0,1) (1)

The total transitions departing a state S j are computed as:

Tr(S j,out) =
m

∑
k=1

Tr(S j,Sk) (2)

The total transitions entering a state Sk are computed as:

Tr(in,Sk) =
m

∑
j=1

Tr(S j,Sk) (3)

The overall transition probabilities for state S j to Sk are
computed as:

P(Tr(S j,Sk)) =
1
2
(

Tr(S j,Sk)

Tr(S j,out)
+

Tr(S j,Sk)

Tr(in,Sk)
) (4)

Using these equations to compute the state transitions,
the state transition probabilities for the two participants are
shown in Table 3 and Table 4.

a b c d e f g
a 0.17 0.24 0.10 0.10 0.15 0.00 0.04
b 0.14 0.20 0.21 0.21 0.03 0.00 0.12
c 0.10 0.13 0.05 0.33 0.09 0.10 0.00
d 0.10 0.08 0.12 0.37 0.37 0.10 0.14
e 0.00 0.11 0.25 0.22 0.25 0.28 0.18
f 0.05 0.00 0.00 0.10 0.10 0.21 0.29
g 0.23 0.15 0.07 0.10 0.17 0.07 0.38

Table 3: Transition Probability Matrix (Participant C)

a b c d e f g
a 0.21 0.26 0.22 0.15 0.14 0.00 0.04
b 0.18 0.19 0.26 0.18 0.09 0.00 0.11
c 0.08 0.12 0.07 0.22 0.11 0.10 0.13
d 0.08 0.21 0.09 0.45 0.28 0.18 0.18
e 0.18 0.06 0.08 0.22 0.24 0.20 0.03
f 0.13 0.03 0.07 0.12 0.10 0.31 0.16
g 0.25 0.07 0.04 0.15 0.03 0.08 0.10

Table 4: Transition Probability Matrix (Participant D)

The mean transition probabilities were computed as
1/N ∑

N
i P(Tr(S j,Sk)) for N participants. The mean transition

probability was µ = 0.14 and the standard deviation was σ =
0.09. The threshold for significance was set at µ+σ = 0.23.
The significant transitions at the threshold P(Tr) ≥ 0.23 are
shown in Figure 1.

Because only two participants’ verbalizations were coded,
inferences cannot be made about the how the processes from
these two samples apply to the broader population of reverse

engineers or the broader sensemaking process. Nevertheless,
previous studies have used observations and verbal data from
small samples during exploratory research as way to generate
hypotheses which are to be verified with further investiga-
tion and more participants (Newell & Simon, 1972; Trickett
& Trafton, 2007). The verbal protocols from the two partic-
ipants and the observed problem-solving processes from all
four participants are useful to provide a framework for un-
derstanding how reverse engineers make sense of executable
programs.

Discussion

Figure 1 shows a process of how the sensemaking behaviors
were used by reverse engineers attempting to solve the An-
gler task. When the participants were working on problems in
the task, they continually moved through a loop of activities,
which included the establishment of a goal representation, a
plan to achieve the goal, carrying out the actions of the plan,
sensing information from the task environment, interpreting
the information, potentially updating knowledge if the infor-
mation was relevant, and developing hypotheses based on the
new knowledge. The sensemaking loop in Figure 1 shows
this cycle as a Markov model populated with the probabilities
that each state transition would occur.

Figure 1: Sensemaking Processes from the Reverse Engineer-
ing Task

While progressing through this process, the participants
gathered information to help them construct and refine their
mental models of the Angler program. As the participants
worked on the problem, they gained information about com-
ponents such as functions, the program’s execution paths,
data in the program, and sequences of instructions. They
were then able to relate these elements to items in the task
environment.

1389



Plans, Goals, and Actions
Once the participants had verbalized a goal, this often was
immediately followed with the development of a partially-
constructed plan of actions which would enable the attain-
ment of the goal. If the goal was to gather information from
the task environment, the plan involved actions which the per-
son could use to help gather the required information. Like-
wise if the goal was to configure the program or the reverse
engineering tools in a particular way, then the plan involved
sequences of actions which led the person to be able to change
elements in the situation.

In some cases, a participant’s goal did not directly lend it-
self to a plan, so the person deliberated over different ideas
to construct and evaluate an approach that would generate a
usable plan. Sometimes the deliberation was verbalized, and
others it was inferred by the presence of long pauses.

Participants appeared to determine the best actions for their
situation by thinking through hypothesized behaviors and in-
ferred future states of the program. When participants verbal-
ized plans, their plans involved sets of actions in which some
of the actions were sequenced. Sometimes the participants
did not order their actions into a sequence until they were
already taking some initial actions and detecting conflicts in
how those actions would affect the state of the situation.

Other plans the participants expressed included search-
ing information from the reverse engineering tool about text
strings, debugging the program to see how the program’s
memory stack changes, labeling a function so it can be identi-
fied later, inserting a breakpoint after the initialization routine
to “catch” the program, and tracing data as it flows through a
function during simulated program execution.

Information Processing and Interpretation
Participants processed information by actively seeking it out
and by passively noticing information during the performance
of some other action. When participants passively sensed the
information, they executed the Angler program to gather in-
formation about its behaviors or looked through the disassem-
bled code to gather clues that might be useful.

When participants actively sought out information, they set
a goal for the information they were interested in obtaining,
made a plan to acquire that information, and followed the plan
by carrying out actions in the task environment. In one exam-
ple, a participant wrote down the addresses of system calls
and used the search features of the debugger to find each of
the calls.

Participants actively sought out information about the pro-
gram’s behavior by isolating phenomena. To do this, partici-
pants used the debugger to move the program’s execution past
a system call (which performs some action for the program),
and then looked through the current register values and disas-
sembled code in the debugger to determine what had changed
in the state of the program.

In either active or passive information processing, the par-
ticipants seemed to perform some initial processing to deter-

mine whether the information was relevant to one of their
goals, and consequently ignored or attended to the informa-
tion. If participants deemed the information as relevant, they
interpreted it to connect it to concepts they already under-
stood. If the information element and its connected concept
provided the person with a new perspective or more insight
that was relevant to one of their goals, the person verbal-
ized a phrase indicating they had updated their knowledge.
These phrases were typically summarized or distilled state-
ments that captured the essense of how the different concepts
were related.

During coding discussions, the second coder characterized
this process as when the person “compiled” their information
in an analogous manner to how a compiler converts a pro-
gram’s source code into executable code.

Mental Models and Hypotheses
Once participants had added new summarized knowledge to
their mental model of a program, they often came up with a
hypothesis directly afterward. Participants appeared to gen-
erate hypotheses in the task after deducing the logical conclu-
sions of new knowledge they had acquired.

Hypotheses and assumptions were generated mainly af-
ter participants sensed and interpreted information and up-
dated their knowledge with the implications of this informa-
tion. The participants’ hypotheses took the form of verifiable
statements such as: “it looks like GetDialogItem creates a
handle to some part of the dialog that’s open.” In this case,
the participant started a subsequent loop through the sense-
making process with the goal of verifying whether or not the
GetDialogItem function creates such a Window handle.

The hypotheses that resulted from this process were typ-
ically used to generate a new goal, such as to seek out in-
formation from the environment to confirm or refute a fact
or to investigate another line of investigation about how the
program works. However, when participants did not progress
through the process to the development of a hypothesis, they
were not able to generate information-seeking goals and got
“stuck” in the task. In these cases, participants reverted to ex-
ploring instructions or behaviors of the code, since they did
not have specific hypotheses about the Angler program to in-
vestigate.

Conclusions
A process of sensemaking in reverse engineering was de-
scribed and characterized through obervations and analysis
of verbal protocols from participants reverse engineering pro-
grams from assembly language representations. Verbal pro-
tocols were analyzed to extract state transition patterns from
two reverse engineers’ performance, and from that data a pro-
cess of sensemaking was elicited and the steps of that pro-
cess were described in a theory of how people make sense
of executable programs. Participants were observed forming
goals, creating plans to achieve their goals, and carrying out
plans. Participants also sensed information from the task en-
vironment, interpreted the information, updated their mental

1390



model with the information, and generated hypotheses from
that integration which led to new goals.

This research represents a necessary step toward increasing
the autonomy of reverse engineering tools, and can be used to
determine a general theory of sensemaking that can improve
the ways in which people interact with other complex sys-
tems. The work is limited in that it only involved observations
of four participants and collection of verbal protocols from
two participants, and its generality is potentially limited by
the nature of the task; nevertheless the results provide insight
which can be used to develop a more general computational
theory of sensemaking through future empirical study.

Future work is needed to determine the generality of how
people work through this process in similar information-
processing tasks. Future research is also needed in deter-
mining how these processes can be realized as models within
established computational cognitive architectures. Finally,
work is needed in employing these findings to improve hu-
mans’ interactions with complex systems such as reverse en-
gineering tools.

Acknowledgments
The Sensors Directorate at Wright-Patterson Air Force Base
supported this research. The views expressed in this article
are those of the authors and do not reflect the official policy
or position of the United States Air Force, Department of De-
fense, or the United States Government.

References
Bakeman, R., & Gottman, J. M. (1997). Observing inter-

action: An introduction to sequential analysis (2nd ed.).
Cambridge: Cambridge University Press.

Bryant, A., Mills, R., Peterson, G., & Grimaila, M. (2012).
(in press) software reverse engineering as a sensemaking
task. Journal of Information Assurance and Security.

CamStudio Developers. (2011). Camstudio. Available from
http://camstudio.org

Cohen, J., et al. (1960). A coefficient of agreement for nom-
inal scales. Educational and Psychological Measurement,
20(1), 37–46.

Cyclops. (2011). Crackmes by cyclops. Available from
http://cyclops.ueuo.com/crackme.html

Eilam, E. (2005). Reversing: Secrets of Reverse Engineering.
Wiley.

Endsley, M., & Rodgers, M. (1994). Situation awareness
information requirements analysis for en route air traffic
control [Conference proceedings (article)]. In Proceedings
of the Human Factors and Ergonomics Society 38th Annual
Meeting (Vol. 38, pp. 71–75).

Endsley, M. R. (2000). Situation models: An avenue to the
modeling of mental models. In Proceedings of the Human
Factors and Ergonomics Society 44th Annual Meeting.

Ericsson, K., & Simon, H. (1980). Verbal reports as data.
Psychological Review, 87(3), 215.

Hex-Rays. (2011). The IDA Pro Disassembler and Debugger.
Available from http://www.hex-rays.com/idapro/

Immunity, Inc. (2011). Immunity Debugger. Avail-
able from http://www.immunityinc.com/products-
immdbg.shtml

Josephson, J. R., Chandrasekaran, B., Smith, J. W., & Tan-
ner, M. C. (1987). A mechanism for forming composite
explanatory hypotheses. IEEE Transactions on Systems,
Man, and Cybernetics, 17(3), 445–454.

Klein, G., Moon, B., & Hoffman, R. (2006). Making sense of
sensemaking 1: Alternative perspectives. IEEE Intelligent
Systems, 21(4), 70–73.

Klein, G., Phillips, J., Rall, E., & Peluso, D. (2007). A data-
frame theory of sensemaking. In Expertise Out of Context:
Proceedings of the Sixth International Conference on Nat-
uralistic Decision Making (pp. 113–155).

Menzies, T. (1996, September). Applications of abduc-
tion: Knowledge-level modelling. International Journal
of Human-Computer Studies, 45(3), 305–335.

Microsoft, Inc. (2011). WinDbg. Available from
http://msdn.microsoft.com/en-us/library/
ff561300(v=vs.85).aspx

Newell, A., & Simon, H. (1972). Human Problem Solving.
Prentice-Hall Englewood Cliffs, NJ.

OllyDbg. (2011). OllyDbg. Available from
http://www.ollydbg.de/

Pirolli, P., & Card, S. (2005). The sensemaking process and
leverage points for analyst technology as identified through
cognitive task analysis. In Proceedings of the International
Conference on Intelligence Analysis (pp. 2–4).

Russell, D. M., Stefik, M. J., Pirolli, P., & Card, S. K. (1993).
The cost structure of sensemaking. In Proceedings of the
SIGCHI conference on Human factors in computing sys-
tems (CHI93) (pp. 269–276). New York, New York, USA:
ACM Press.

Russell, S., & Norvig, P. (2003). Artificial Intelligence: A
Modern Approach. Pearson Education.

Schneider, T. (2011, jan). crackme.de. Available from
http://crackme.de

TightVNC Software. (2011). TightVNC. Available from
http://www.tightvnc.com

Trickett, S., & Trafton, J. (2007). A primer on verbal protocol
analysis. In D. Schmorrow, J. Cohn, & D. Nicholson (Eds.),
The PSI Handbook of Virtual Environments for Training
and Education: Developments for the Military and Beyond.
Westport, CT Praeger Security International.

Weick, K. (1995). Sensemaking in Organizations. Sage Pub-
lications, Inc.

Wood, L. E. (1997, March). Semi-structured interviewing for
user-centered design. Interactions, 4(2), 48–61.

Zhang, P., Soergel, D., Klavans, J. L., & Oard, D. W. (2009,
June). Extending sense-making models with ideas from
cognition and learning theories. Proceedings of the Ameri-
can Society for Information Science and Technology, 45(1),
23–23.

1391


