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Abstract 

The term cognitive reserve (CR) is used to describe the lack 
of direct relationship between the severity of brain damage, or 
pathology and subsequent levels of observed impairments. It 
has been suggested by Stern (2009), that CR may reflect 
differences in (a) pre-existing levels of some reserve capacity 
of the brain (the passive form); or, (b) differences in the 
underlying functional architectures supporting cognitive 
processes (the active form). In this paper, we explore two 
implementations of cognitive reserve that seek to target both 
these forms, extending recent work using dynamical systems 
framework  (Baughman & Thomas, 2008; van der Maas et al., 
2006). We examine how variability in cognitive reserve may 
modulate the effects of damage, at different levels of 
intelligence. The resulting simulations showed that level of 
intelligence does not differentially modulate the pattern of 
cognitive change following complete destruction of a single 
cognitive process, but that the effects of damage are 
proportionate across each level of intelligence. Following the 
two implementations of cognitive reserve that we tested, we 
found: (1) higher levels of connectivity within a given 
architecture resulted in greater spread of damage and lower 
endstate performance; and, (2) functional architectures that 
are characterized by greater specialization of function, rather 
than distributed function, differentially protected against the 
effects of damage, with these models also exhibiting better 
recovery. 

Keywords: Cognitive reserve; intelligence; ageing; damage; 
recovery; dynamical systems; functional architecture. 

Introduction 
The term cognitive reserve (CR) is often used in relation to 
the pattern of general cognitive decline found in normally 
ageing adults, and to the more extreme forms of cognitive 
breakdown seen following brain damage (e.g., stroke), or 
disease (e.g., dementia and Alzheimer’s). In healthy ageing 
adults, the term is used to refer to the variability observed 
between individuals of the same age. In clinical samples, the 
term refers to the observation that levels of brain damage, or 
pathology have no clear relationship to the severity of 
subsequent impairments. This is to say, two individuals with 
similar levels of brain damage may exhibit different 
cognitive profiles (e.g., the impairments for one individual 
may be subtle, while for the other they may be much more 
pronounced). The lack of direct relationship between the 
degree of pathology, or brain damage and clinical 
manifestation, has led to the suggestion that individuals 
differ with respect to their pre-existing levels of cognitive 
reserve  (Stern, 2002; Stern, 2009).  

A number of studies have reported mixed findings 
concerning the extent to which factors such as ones levels of 
intelligence, educational attainment, occupation and activity 
are associated with reduced risk of dementia, stroke, and 
lower levels of general decline  (Kaplan et al., 2009; 
Koenen et al., 2009; Nithianantharajah & Hannan, 2009; 
Tucker-Drob, Johnson, & Jones, 2009; Whalley, Deary, 
Appleton, & Starr, 2004; Zahodne et al., 2011). However, 
these studies have not yielded causal accounts detailing how 
variability in CR may directly influence cognitive 
performance. Theoretical accounts of CR have however 
distinguished two broad forms (Stern, 2009). The passive 
model posits that CR may be delivered through differences 
in pre-existing reserve levels of some capacity of the brain 
(e.g., this might be number of neurons, or number of 
connections). Under this view, damage to a cognitive 
system with lower pre-existing levels of capacity, will lead 
to poorer outcomes, compared to cognitive systems where 
these levels are higher. The active model describes that 
differences in CR may be explained by differences in 
functional architectures underlying cognition. Under this 
view, it is hypothesized that some functional architectures 
are more efficient, and thus more resilient to the effects of 
damage, than others (Stern, 2009). Computational 
approaches provide an ideal platform from which to 
examine these issues because they provide an explicit 
framework for testing how various neurocomputational 
properties may directly lead to changes in a cognitive 
system. Here, we describe one approach using dynamical 
systems theory which aims to capture a broad pattern of 
development across a range of cognitive profiles and which 
allows for the consequences of damage to be assessed at the 
level of the whole cognitive system and across time. 

Computational approaches to the study of ageing 
and damage 
Computational studies to ageing, and to damage in ageing 
systems, have mostly focused on the effects of variation to 
three main parameter manipulations: (1) reducing the slope 
of gradients in activation functions  (Li, Von Oertzen, & 
Lindenberger, 2006); (2) reducing the connectivity between 
processes  (Alstott, Breakspear, Hagmann, Cammoun, & 
Sporns, 2009); and, (3) removal, or deletion of processing 
units to simulate neuronal death  (Rubinov, McIntosh, 
Valenzuela, & Breakspear, 2009). The effects of these 
parameter manipulations can be subtle and varied. However, 
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their effects are generally that they show reduced levels of 
performance, require that networks need more time to learn 
(akin to older adults needing more time to learn, compared 
to younger adults) and result in a more protracted process of 
recovery, following damage. Individual differences in 
ageing and damage within a cognitive system with more CR 
might thus be explained by: (a) steeper gradients in the 
activation functions; (b) a greater number of pre-existing 
levels of connections (or, weights) between processing 
units; or, (c) lower rates of cell death. 

Thomas (2008) recently examined issues concerning 
ageing and cognitive reserve within a connectionist model 
of English past tense learning. In these simulations, aging 
was implemented separately via: (1) a reduction of gradient 
in processing units; and, (2) a reduction (loss) of 
connections. CR was implemented via manipulating the 
number of hidden units within the model. Specifically, low 
cognitive reserve models were assigned 50 hidden units (a 
level just sufficient to allow the model to learn) and high 
cognitive reserve models were assigned 100 hidden units. 
Damage, applied at various different timepoints, was 
implemented by probabilistically removing 50% of the 
connection weights in the network. This work is notable in 
that it provides an explicit test of one role of CR in 
modulating the effects of damage within a cognitive 
domain. There are relatively few studies that have sought to 
develop on this approach. Furthermore, most computational 
approaches to date appear to have targeted the capacity 
reserve (passive) form of CR proposed by Stern. We argue 
that a better understanding is needed for how the use of 
different functional architectures may modulate the effects 
of damage.  

In this paper we examine the effects of damage within 
ageing dynamical systems models. Our central goal is to test 
two implementations of CR. We implement passive and 
active forms of CR proposed by Stern (2009). In the first 
instance, we assess the effects of varying the degree of 
connectivity between processes in a given architecture. In 
the second instance, we examine how the use of different 
functional architectures may modulate the effects of 
damage. Our target architectures are the Fully distributed, 
Hemispheric, Central processor, Bi-directional and Uni-
directional architectures, represented in Figure 1. We further 
aim to examine how intelligence levels may modulate the 
patterns of damage, given the different implementations of 
CR. 

Dynamical systems theory 
Dynamical systems theory (DST) provides one way of 
addressing these questions as it offers a framework for 
exploring the interaction between multiple component 
processes in a cognitive system. This then allows the 
possibility of tracing the consequence of changes to a given 
system over time. By specifying the relationship between 
component processes, we may stipulate exactly what the 
functional architecture is, and then test how the effects of 
ageing and damage unfold in a particular architecture. We 
base our approach, on the ‘mutualism model’ of intelligence 

first proposed by van der Maas and colleagues (2006) and 
which was subsequently extended by Baughman and 
Thomas (2008) to explore the effects of early focal 
impairments to a process within a range of different 
functional architectures.  

 

 
Figure 1: Five alternative model architectures. Note, this 

figure is illustrative of the architectural design. The actual 
models contained 16 processes each, and 17 in the case of 

the Central processor model. 
 

The mutualism model 
van der Maas et al. (2006) offered a fully connected 
dynamical systems model of the development of intelligence 
that simulates cognitive development for a number of 
components (depicted by Model 1, of Figure 1). The model 
provides a number of parameters that influence development 
for each individual processes, but where development of the 
model, as a whole, is influenced dynamically by all 
processes within the model. A key feature of their model, is 
that the processes which are connected to each other within 
a system interact with one another and influence each other, 
in a mutually beneficial way throughout development. 
Hence, the model is called the ‘mutualism’ model. Equation 
1 gives the dynamics of the mutualism model. 
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Equation 1. The mutualism model (van der Maas (2006) 

 
The mutualism equation is derived from population 
dynamics and the Lotka-Volterra equation. Briefly, the 
equation states that at each point in time (t) the change in 
the performance level x of a given process i (dxi) is a 
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product of the sum of the interaction weights of each 
process j to which it is functionally connected (Mijxjxi), 
multiplied by the rate of growth of process i (ai), multiplied 
by the current level of performance of process xi, divided by 
the asymptote level for that process (Ki). Changes in xi at 
each time step are thereby constrained by the performance 
(and thus the individual properties) of all other processes to 
which it is connected.  

Extending the mutualism model, Baughman and Thomas 
(2008) showed that following impairments to a single 
process, early on in development, architectures 
characterized by greater connectivity between processes 
offered greater compensation and showed reduced levels of 
spread of damage. Additionally, they showed that 
compensation and spread were further modulated by where 
in the cognitive system impairments were applied. 
Baughman and Thomas distinguished peripheral processes 
from those that occupied key positions within a given 
architecture. For example, while in the Fully distributed 
model all processes are equal (and so impairment to one 
process is equivalent to damage to any other process), this is 
not the same for the Hemispheric and Central processor 
architectures. Both these models contain peripheral 
processes (e.g., processes in one hemisphere which do not 
directly influence processes in the other hemisphere) and 
key processes (e.g., processes within one hemisphere share a 
direct connection to processes in the other hemisphere). 
Figure 1 illustrates the distinction between peripheral and 
key processes. The effects of damage to peripheral versus 
key processes within different functional architectures 
remains largely untested. As such, it is not obvious whether 
the same architectures that offer advantages following 
damage to processes early in development, will also offer 
advantages to damage later in development.  

Simulations 
In both the Normal and Damaged models, Ageing and IQ 
were implemented by manipulating values of the capacity 
for each process (K).  
Ageing: General cognitive decline was simulated by 
applying a fixed level of decay (0.075%) to the capacity (K) 
of each process from 400 timesteps onwards. For the present 
simulations, we did not examine the consequences of 
variability in the rate, or the onset of decay. 
IQ: To create Low IQ, Average IQ and High IQ models, 
models were calibrated to begin with different starting 
values of K (Low IQ=2, Average IQ=3, and High IQ=4).  
Cognitive Reserve: For the passive form of CR, we tested 
three levels of Connection strength between processes (M). 
However, because the boundaries of values that this 
parameter accepts without exhibiting catastrophic effects are 
limited, the range we implemented was small. We used 
M=0.049, M=0.050, and M=0.051, to simulate Low, 
Average and High Connectivity, respectively. For the active 
form of CR, we compared the effects of damage in Fully 
distributed, Hemispheric, Central processor, Bi-directional, 
and Uni-directional architectures (see Figure 1).  

Damage: In the damaged models, a single process was 
removed from the cognitive system to simulate total 
destruction of that process. Damage was applied separately 
to a peripheral process in each architecture, then to the key 
processes in the Hemispheric and Central Processor 
architectures. We held constant the level of damage (one 
process was damaged in under all architectures) and the 
onset of damage. Damage was applied to either a peripheral 
or a key process at timepoint 550, just over half-way 
through the models ‘lifetime’. The damaged process was 
thus removed from the network and the relevant connections 
to and from it, also removed. All other parameters specified 
in the mutualism model, namely those relating to the growth 
rates of processes (a), and the initial starting states of each 
process (x) were also held constant and did not vary in these 
simulations (x=0.05, a=6.0). Finally, because one of our 
primary concerns was examining specific levels of IQ, we 
were not concerned with population variability. Thus, we 
did not require the models to be run for many 
pseudosubjects and only a single model was run for each 
architecture in Figure 1 for 1000 time steps. The full set of 
models that we tested totaled 108. These were comprised of: 
(i) Normal ageing models at 3 levels of IQ (Low, Average 
and High) within 3 levels of Connectivity (Low, Average 
and High) and 5 Architectures (Fully distributed, 
Hemispheric, Central processor, Bi-directional, and Uni-
directional); (ii) Peripherally-damaged ageing models (as 
Normal, but with one process damaged); and, (iii) Key-
damage ageing models (IQ: Low, Average and High x 
Connectivity (Low, Average and High) x 2 Architectures 
(Hemispheric, Central processor). Figure 2 shows the 
trajectories for Normal and Damaged models for the Fully 
distributed, Central processor and Uni-directional 
architectures, at Average IQ, Average Connectivity levels. 
 

 
Figure 2: Trajectories of Normal and Damaged models 

for the Fully distributed (Tile 1), Central Processor  (Tile 2: 
damage to peripheral process; Tile 3: damage to key 
process), and Uni-directional (Tile 4) architectures at 

Average Connectivity (M=0.05) and Average IQ (K=3) 
levels. Tiles depict processes in the Normal models (a) with 
a grey line, and the damaged (b) and affected processes (c) 
in the Damaged models, with dashed and solid black lines, 

respectively. 
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Measures 
Asymptote levels in the architectures differ as a 
consequence of the number of processes that are connected 
within it. As such, comparisons between the absolute levels 
reached by two architectures would be misleading. Instead, 
we use each Normal model as the benchmark for which to 
compare the performance of its damaged counterpart. This 
allows for relative comparisons across the different 
architectures. The two key metrics we use to assess the 
effects of damage are: (1) Area - the extent to which the 
trajectories of processes in the Damaged model resembles 
those in the Normal model (we compute the area under the 
curve, for each Damaged processes, and this is turned into a 
proportion of the area of the processes in the Normal 
model); and, (2) Endstate level – the extent to which the 
endstate levels of the Damage model reaches the functional 
endstate of the Normal model. Thus, area gives a measure of 
models attempt to compensate for damage, and endstate 
provides a measure of the models ability to recover. 

Results 
Table 1 provides the Area data for Normal and Damaged 
models, at each level of intelligence and each level of 
Connectivity. The table shows effects of manipulations to 
IQ and Connectivity, across each of the architectures tested. 
The uppermost part of the table provides the data for 
comparisons for Normal versus Peripherally-Damaged 
models, the lowermost part of the table shows these 
comparisons for Normal versus Key-Damaged processes, in 
the Hemispheric and Central Processor models. 

Intelligence 
As expected, varying the level of intelligence (IQ) in a 
model had direct effects on the overall level of 
performances reached. Table 1 shows that for each 
architecture higher IQ models performed better compared to 
lower IQ models (e.g., the level of performances reached in 
the Uni-dimensional architecture at each level of IQ, under 
Low Connectivity, are 11769.8, 17654.6 and 23539.5, 
respectively). However, the results of the simulations 
showed that IQ level did not modulate the effects of damage 
within architecture, at the various levels of CR. That is, 
within a given level of Connectivity, the effect of damage 
was proportionate at each level of IQ. For example, in the 
Low Connectivity Fully distributed model, the proportion of 
area reached by the Damaged models in Low IQ, Average 
IQ and High IQ models were all 80.2% of Normal levels.  

 

Cognitive reserve as differences in connectivity 
Varying CR, when implemented as level of Connectivity, 
showed small, but consistent effects on level of performance 
reached (e.g., the levels reached in the Normal Hemispheric 
model at each level of Connectivity, under High IQ, are 
35425.8, 35852.7 and 362900.0. However, greater levels of 
CR did not protect models from the effects of damage. In 

fact, the reverse was found to be the case. Increased 
connectivity between processes resulted in higher 
proportion of spread of damage and poorer endstate 
recovery. This outcome was true for all architectures, but 
most apparent in the Fully distributed model. Figure 3 
shows the proportion of area and endstate levels reached for 
each architecture, at each level of Connectivity, following 
peripheral damage.  
 
 

 
 

Figure 3: Proportion of Area and Endstate obtained in 
peripherally-damaged models by level of Connectivity. 
 
Figure 4 shows that these effects are further exaggerated 

by damage to the key processes, in the Hemispheric and 
Central processor models. This figure shows that following 
damage to the key process, the Hemispheric model reached 
levels of recovery that were similar to the peripherally-
damaged model (the greatest difference between key and 
peripherally-damaged process endstate was 1%). In the 
Central processor model, endstates differed by 
approximately 9%. The figure also shows that in the Central 
Processor model, key damage resulted in both lower 
recovery (Endstate) and more protracted form of recovery 
(Area). 

 

               
 
 

Figure 4: Proportion of Area and Endstate obtained in 
key-damaged models by level of Connectivity. 
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Cognitive reserve as differences in functional 
architecture 
Implementing CR, as different functional architectures, did 
modulate the effects of damage. However, it was not those 
architectures characterized by more connectivity between 
processes that proved most resilient to damage. Indeed, it 
was those architectures comprised of more limited 
connectivity where the effects of damage were minimized 
and the endstate levels of recovery most complete. In the 
architectures tested here, this was the Uni-directional 
architecture. Damage to any process in this architecture had 
effects on processes downstream of the damaged process.  
But these effects became increasingly small, over the 
remainder of the models lifetime. Figure 5 shows Area (left) 
and Endstate levels (right), respectively, for each of the 
architectures tested.  

 

 
 

Figure 5: Comparisons of functional architectures by 
proportion of Area (left) and Endstate (right) obtained in 

peripherally-damaged and key-damaged models. 

 

 

 

Conclusions 
Previous simulation studies have showed that following 
early forms of focal impairment, architectures characterized 
by greater levels of connectivity offer superior levels of 
protection compared to those with more limited connectivity 
(see Baughman & Thomas, 2008). However, in the 
simulations reported here, where permanent damage 
occurred to a system late on in its development, it was those 
models characterized by less connectivity (i.e., more 
specialized in function) that offered greatest resilience to 
damage. Examples of those offering the greatest protection 
are the Bi-directional and Uni-directional models, with the 
Fully distributed architecture offering the least protection 
following damage. These results indicate that throughout the 
process of development, similar events that impair just a 
limited number of processes to a system may have very 
different consequences for its outcome. These results are 
consistent with the notion that different functional 
architectures may underlie different stages of development  
(Fransson, Aden, Blennow, & Lagercrantz, 2011), possibly 
through a process of emergent specialization (Karmiloff-
Smith, 2009). Future work is needed to investigate how the 
parameters we held constant (such as rate of decline, 
cognitive growth, and the severity and onset of damage) 
might provide a more complete account of the factors that 
contribute to real-world variability in ageing.  
 
 
 
 
 
 
 

Low Average High Low Average High Low Average High Low Average High Low Average High
Low 42237.8 44772.1 47629.9 17712.9 17926.3 18145.0 20610.9 20929.6 21258.5 12409.1 12436.7 12464.4 11769.8 11782.1 11794.6

IQ Average 63356.7 67158.1 71444.8 26569.3 26889.5 27217.5 30916.3 31394.4 31887.8 18613.7 18655.1 18696.6 17654.6 17673.2 17691.8
High 84475.6 89544.1 95259.7 35425.8 35852.7 36290.0 41221.8 41859.2 42517.0 24818.2 24873.4 24928.8 23539.5 23564.3 23589.1
mean 63356.7 67158.1 71444.8 26569.3 26889.5 27217.5 30916.3 31394.4 31887.8 18613.7 18655.1 18696.6 17654.6 17673.2 17691.8

Low Average High Low Average High Low Average High Low Average High Low Average High
Low 33881.7 35499.0 37278.8 16127.0 16306.4 16489.9 18718.7 18984.4 19258.0 11559.8 11583.9 11608.1 10999.4 11010.2 11021.1

IQ Average 50822.6 53248.4 55918.1 24190.5 24459.6 24734.8 28078.1 28476.6 28887.0 17339.7 17375.9 17412.2 16499.1 16515.4 16531.6
High 67763.4 70997.9 74557.5 32253.9 32612.8 32979.8 37437.4 37968.8 38516.0 23119.7 23167.8 23216.2 21998.8 22020.5 22042.2
mean 50822.6 53248.4 55918.1 24190.5 24459.6 24734.8 28078.1 28476.6 28887.0 17339.7 17375.9 17412.2 16499.1 16515.4 16531.6

Low Average High Low Average High
Low 14669.3 14827.4 14988.8 17187.1 17378.1 17573.5

IQ Average 22070.7 22308.5 22551.6 25780.6 26067.1 26360.2
High 29490.6 29808.5 30133.5 34374.1 34756.2 35146.9
mean 22076.9 22314.8 22558.0 25780.6 26067.1 26360.2

ConnectivityConnectivity

Normal models

Damaged Peripheral

Damaged Key

Connectivity Connectivity Connectivity
Fully Distributed Hemispheric Central Processor Bi-Directional UniDirectional

Connectivity Connectivity

Table 1. Calculations of area under the curve for trajectories from the Normal and Damaged models 
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