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Abstract

The term cognitive reserve (CR) is used to describe the lack
of direct relationship between the severity of brain damage, or
pathology and subsequent levels of observed impairments. It
has been suggested by Stern (2009), that CR may reflect
differences in (a) pre-existing levels of some reserve capacity
of the brain (the passive form); or, (b) differences in the
underlying functional architectures supporting cognitive
processes (the active form). In this paper, we explore two
implementations of cognitive reserve that seek to target both
these forms, extending recent work using dynamical systems
framework (Baughman & Thomas, 2008; van der Maas et al.,
2006). We examine how variability in cognitive reserve may
modulate the effects of damage, at different levels of
intelligence. The resulting simulations showed that level of
intelligence does not differentially modulate the pattern of
cognitive change following complete destruction of a single
cognitive process, but that the effects of damage are
proportionate across each level of intelligence. Following the
two implementations of cognitive reserve that we tested, we
found: (1) higher levels of connectivity within a given
architecture resulted in greater spread of damage and lower
endstate performance; and, (2) functional architectures that
are characterized by greater specialization of function, rather
than distributed function, differentially protected against the
effects of damage, with these models also exhibiting better
recovery.

Keywords: Cognitive reserve; intelligence; ageing; damage;
recovery; dynamical systems; functional architecture.

Introduction

The term cognitive reserve (CR) is often used in relation to
the pattern of general cognitive decline found in normally
ageing adults, and to the more extreme forms of cognitive
breakdown seen following brain damage (e.g., stroke), or
disease (e.g., dementia and Alzheimer’s). In healthy ageing
adults, the term is used to refer to the variability observed
between individuals of the same age. In clinical samples, the
term refers to the observation that levels of brain damage, or
pathology have no clear relationship to the severity of
subsequent impairments. This is to say, two individuals with
similar levels of brain damage may exhibit different
cognitive profiles (e.g., the impairments for one individual
may be subtle, while for the other they may be much more
pronounced). The lack of direct relationship between the
degree of pathology, or brain damage and clinical
manifestation, has led to the suggestion that individuals
differ with respect to their pre-existing levels of cognitive
reserve (Stern, 2002; Stern, 2009).

A number of studies have reported mixed findings
concerning the extent to which factors such as ones levels of
intelligence, educational attainment, occupation and activity
are associated with reduced risk of dementia, stroke, and
lower levels of general decline (Kaplan et al., 2009;
Koenen et al., 2009; Nithianantharajah & Hannan, 2009;
Tucker-Drob, Johnson, & Jones, 2009; Whalley, Deary,
Appleton, & Starr, 2004; Zahodne et al., 2011). However,
these studies have not yielded causal accounts detailing how
variability in CR may directly influence cognitive
performance. Theoretical accounts of CR have however
distinguished two broad forms (Stern, 2009). The passive
model posits that CR may be delivered through differences
in pre-existing reserve levels of some capacity of the brain
(e.g., this might be number of neurons, or number of
connections). Under this view, damage to a cognitive
system with lower pre-existing levels of capacity, will lead
to poorer outcomes, compared to cognitive systems where
these levels are higher. The active model describes that
differences in CR may be explained by differences in
functional architectures underlying cognition. Under this
view, it is hypothesized that some functional architectures
are more efficient, and thus more resilient to the effects of
damage, than others (Stern, 2009). Computational
approaches provide an ideal platform from which to
examine these issues because they provide an explicit
framework for testing how various neurocomputational
properties may directly lead to changes in a cognitive
system. Here, we describe one approach using dynamical
systems theory which aims to capture a broad pattern of
development across a range of cognitive profiles and which
allows for the consequences of damage to be assessed at the
level of the whole cognitive system and across time.

Computational approaches to the study of ageing
and damage

Computational studies to ageing, and to damage in ageing
systems, have mostly focused on the effects of variation to
three main parameter manipulations: (1) reducing the slope
of gradients in activation functions (Li, Von Oertzen, &
Lindenberger, 2006); (2) reducing the connectivity between
processes (Alstott, Breakspear, Hagmann, Cammoun, &
Sporns, 2009); and, (3) removal, or deletion of processing
units to simulate neuronal death (Rubinov, MclIntosh,
Valenzuela, & Breakspear, 2009). The effects of these
parameter manipulations can be subtle and varied. However,
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their effects are generally that they show reduced levels of
performance, require that networks need more time to learn
(akin to older adults needing more time to learn, compared
to younger adults) and result in a more protracted process of
recovery, following damage. Individual differences in
ageing and damage within a cognitive system with more CR
might thus be explained by: (a) steeper gradients in the
activation functions; (b) a greater number of pre-existing
levels of connections (or, weights) between processing
units; or, (c) lower rates of cell death.

Thomas (2008) recently examined issues concerning
ageing and cognitive reserve within a connectionist model
of English past tense learning. In these simulations, aging
was implemented separately via: (1) a reduction of gradient
in processing units; and, (2) a reduction (loss) of
connections. CR was implemented via manipulating the
number of hidden units within the model. Specifically, low
cognitive reserve models were assigned 50 hidden units (a
level just sufficient to allow the model to learn) and high
cognitive reserve models were assigned 100 hidden units.
Damage, applied at various different timepoints, was
implemented by probabilistically removing 50% of the
connection weights in the network. This work is notable in
that it provides an explicit test of one role of CR in
modulating the effects of damage within a cognitive
domain. There are relatively few studies that have sought to
develop on this approach. Furthermore, most computational
approaches to date appear to have targeted the capacity
reserve (passive) form of CR proposed by Stern. We argue
that a better understanding is needed for how the use of
different functional architectures may modulate the effects
of damage.

In this paper we examine the effects of damage within
ageing dynamical systems models. Our central goal is to test
two implementations of CR. We implement passive and
active forms of CR proposed by Stern (2009). In the first
instance, we assess the effects of varying the degree of
connectivity between processes in a given architecture. In
the second instance, we examine how the use of different
functional architectures may modulate the effects of
damage. Our target architectures are the Fully distributed,
Hemispheric, Central processor, Bi-directional and Uni-
directional architectures, represented in Figure 1. We further
aim to examine how intelligence levels may modulate the
patterns of damage, given the different implementations of
CR.

Dynamical systems theory

Dynamical systems theory (DST) provides one way of
addressing these questions as it offers a framework for
exploring the interaction between multiple component
processes in a cognitive system. This then allows the
possibility of tracing the consequence of changes to a given
system over time. By specifying the relationship between
component processes, we may stipulate exactly what the
functional architecture is, and then test how the effects of
ageing and damage unfold in a particular architecture. We
base our approach, on the ‘mutualism model’ of intelligence

first proposed by van der Maas and colleagues (2006) and
which was subsequently extended by Baughman and
Thomas (2008) to explore the effects of early focal
impairments to a process within a range of different
functional architectures.
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Figure 1: Five alternative model architectures. Note, this
figure is illustrative of the architectural design. The actual
models contained 16 processes each, and 17 in the case of

the Central processor model.

The mutualism model

van der Maas et al. (2006) offered a fully connected
dynamical systems model of the development of intelligence
that simulates cognitive development for a number of
components (depicted by Model 1, of Figure 1). The model
provides a number of parameters that influence development
for each individual processes, but where development of the
model, as a whole, is influenced dynamically by all
processes within the model. A key feature of their model, is
that the processes which are connected to each other within
a system interact with one another and influence each other,
in a mutually beneficial way throughout development.
Hence, the model is called the ‘mutualism’ model. Equation
1 gives the dynamics of the mutualism model.

dx; 1—x;
E ax ( )+aZMU ]x /Ki

]$l.
Equation 1. The mutualism model (van der Maas (2006)

The mutualism equation is derived from population
dynamics and the Lotka-Volterra equation. Briefly, the
equation states that at each point in time (f) the change in
the performance level x of a given process i (dx;) is a
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product of the sum of the interaction weights of each
process j to which it is functionally connected (M;xx;),
multiplied by the rate of growth of process i (a;), multiplied
by the current level of performance of process x;, divided by
the asymptote level for that process (X;). Changes in x; at
each time step are thereby constrained by the performance
(and thus the individual properties) of all other processes to
which it is connected.

Extending the mutualism model, Baughman and Thomas
(2008) showed that following impairments to a single
process, early on in development, architectures
characterized by greater connectivity between processes
offered greater compensation and showed reduced levels of
spread of damage. Additionally, they showed that
compensation and spread were further modulated by where
in the cognitive system impairments were applied.
Baughman and Thomas distinguished peripheral processes
from those that occupied key positions within a given
architecture. For example, while in the Fully distributed
model all processes are equal (and so impairment to one
process is equivalent to damage to any other process), this is
not the same for the Hemispheric and Central processor
architectures. Both these models contain peripheral
processes (e.g., processes in one hemisphere which do not
directly influence processes in the other hemisphere) and
key processes (e.g., processes within one hemisphere share a
direct connection to processes in the other hemisphere).
Figure 1 illustrates the distinction between peripheral and
key processes. The effects of damage to peripheral versus
key processes within different functional architectures
remains largely untested. As such, it is not obvious whether
the same architectures that offer advantages following
damage to processes early in development, will also offer
advantages to damage later in development.

Simulations

In both the Normal and Damaged models, Ageing and IQ
were implemented by manipulating values of the capacity
for each process (K).

Ageing: General cognitive decline was simulated by
applying a fixed level of decay (0.075%) to the capacity (K)
of each process from 400 timesteps onwards. For the present
simulations, we did not examine the consequences of
variability in the rate, or the onset of decay.

1Q: To create Low IQ, Average 1Q and High 1Q models,
models were calibrated to begin with different starting
values of K (Low 1Q=2, Average 1Q=3, and High 1Q=4).
Cognitive Reserve: For the passive form of CR, we tested
three levels of Connection strength between processes (M).
However, because the boundaries of values that this
parameter accepts without exhibiting catastrophic effects are
limited, the range we implemented was small. We used
M=0.049, M=0.050, and M=0.051, to simulate Low,
Average and High Connectivity, respectively. For the active
form of CR, we compared the effects of damage in Fully
distributed, Hemispheric, Central processor, Bi-directional,
and Uni-directional architectures (see Figure 1).

Damage: In the damaged models, a single process was
removed from the cognitive system to simulate total
destruction of that process. Damage was applied separately
to a peripheral process in each architecture, then to the key
processes in the Hemispheric and Central Processor
architectures. We held constant the level of damage (one
process was damaged in under all architectures) and the
onset of damage. Damage was applied to either a peripheral
or a key process at timepoint 550, just over half-way
through the models ‘lifetime’. The damaged process was
thus removed from the network and the relevant connections
to and from it, also removed. All other parameters specified
in the mutualism model, namely those relating to the growth
rates of processes (a), and the initial starting states of each
process (x) were also held constant and did not vary in these
simulations (x=0.05, a=6.0). Finally, because one of our
primary concerns was examining specific levels of 1Q, we
were not concerned with population variability. Thus, we
did not require the models to be run for many
pseudosubjects and only a single model was run for each
architecture in Figure 1 for 1000 time steps. The full set of
models that we tested totaled 108. These were comprised of:
(i) Normal ageing models at 3 levels of IQ (Low, Average
and High) within 3 levels of Connectivity (Low, Average
and High) and 5 Architectures (Fully distributed,
Hemispheric, Central processor, Bi-directional, and Uni-
directional); (ii) Peripherally-damaged ageing models (as
Normal, but with one process damaged); and, (iii) Key-
damage ageing models (IQ: Low, Average and High x
Connectivity (Low, Average and High) x 2 Architectures
(Hemispheric, Central processor). Figure 2 shows the
trajectories for Normal and Damaged models for the Fully
distributed, Central processor and  Uni-directional
architectures, at Average 1Q, Average Connectivity levels.
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Figure 2: Trajectories of Normal and Damaged models
for the Fully distributed (Tile 1), Central Processor (Tile 2:
damage to peripheral process; Tile 3: damage to key
process), and Uni-directional (Tile 4) architectures at
Average Connectivity (M=0.05) and Average 1Q (K=3)
levels. Tiles depict processes in the Normal models (a) with
a grey line, and the damaged (b) and affected processes (c)
in the Damaged models, with dashed and solid black lines,
respectively.
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Measures

Asymptote levels in the architectures differ as a
consequence of the number of processes that are connected
within it. As such, comparisons between the absolute levels
reached by two architectures would be misleading. Instead,
we use each Normal model as the benchmark for which to
compare the performance of its damaged counterpart. This
allows for relative comparisons across the different
architectures. The two key metrics we use to assess the
effects of damage are: (1) Area - the extent to which the
trajectories of processes in the Damaged model resembles
those in the Normal model (we compute the area under the
curve, for each Damaged processes, and this is turned into a
proportion of the area of the processes in the Normal
model); and, (2) Endstate level — the extent to which the
endstate levels of the Damage model reaches the functional
endstate of the Normal model. Thus, area gives a measure of
models attempt to compensate for damage, and endstate
provides a measure of the models ability to recover.

Results

Table 1 provides the Area data for Normal and Damaged
models, at each level of intelligence and each level of
Connectivity. The table shows effects of manipulations to
1Q and Connectivity, across each of the architectures tested.
The uppermost part of the table provides the data for
comparisons for Normal versus Peripherally-Damaged
models, the lowermost part of the table shows these
comparisons for Normal versus Key-Damaged processes, in
the Hemispheric and Central Processor models.

Intelligence

As expected, varying the level of intelligence (IQ) in a
model had direct effects on the overall level of
performances reached. Table 1 shows that for each
architecture higher IQ models performed better compared to
lower 1Q models (e.g., the level of performances reached in
the Uni-dimensional architecture at each level of IQ, under
Low Connectivity, are 11769.8, 17654.6 and 23539.5,
respectively). However, the results of the simulations
showed that IQ level did not modulate the effects of damage
within architecture, at the various levels of CR. That is,
within a given level of Connectivity, the effect of damage
was proportionate at each level of 1Q. For example, in the
Low Connectivity Fully distributed model, the proportion of
area reached by the Damaged models in Low IQ, Average
IQ and High IQ models were all 80.2% of Normal levels.

Cognitive reserve as differences in connectivity

Varying CR, when implemented as level of Connectivity,
showed small, but consistent effects on level of performance
reached (e.g., the levels reached in the Normal Hemispheric
model at each level of Connectivity, under High IQ, are
35425.8, 35852.7 and 362900.0. However, greater levels of
CR did not protect models from the effects of damage. In

fact, the reverse was found to be the case. Increased
connectivity between processes resulted in higher
proportion of spread of damage and poorer endstate
recovery. This outcome was true for all architectures, but
most apparent in the Fully distributed model. Figure 3
shows the proportion of area and endstate levels reached for
each architecture, at each level of Connectivity, following
peripheral damage.
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Figure 3: Proportion of Area and Endstate obtained in
peripherally-damaged models by level of Connectivity.

Figure 4 shows that these effects are further exaggerated
by damage to the key processes, in the Hemispheric and
Central processor models. This figure shows that following
damage to the key process, the Hemispheric model reached
levels of recovery that were similar to the peripherally-
damaged model (the greatest difference between key and
peripherally-damaged process endstate was 1%). In the
Central  processor model, endstates differed by
approximately 9%. The figure also shows that in the Central
Processor model, key damage resulted in both lower
recovery (Endstate) and more protracted form of recovery
(Area).
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Figure 4: Proportion of Area and Endstate obtained in
key-damaged models by level of Connectivity.
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Table 1. Calculations of area under the curve for trajectories from the Normal and Damaged models

Fully Distributed Hemispheric Central Processor Bi-Directional UniDirectional
Connectivity Connectivity Connectivity Connectivity Connectivity
Normal models Low  Average High Low  Average High Low  Average High Low  Average High Low  Average High
Low 42237.8 44772.1 47629.9 177129 179263 18145.0 206109 20929.6 21258.5 12409.1 12436.7 124644 11769.8 11782.1 11794.6
1Q Average 63356.7 67158.1 714448 26569.3 26889.5 27217.5 30916.3 313944 31887.8 18613.7 18655.1 18696.6 17654.6 176732 17691.8
High 84475.6 89544.1 95259.7 354258 35852.7 362900  41221.8 418592 42517.0 248182 248734 249288 23539.5 235643 23589.1
mean 63356.7 67158.1 714448 26569.3 26889.5 27217.5 30916.3 313944 31887.8 18613.7 18655.1 18696.6 17654.6 176732 17691.8
Damaged Peripheral Low Average High Low  Average High Low  Average High Low  Average High Low Average High
Low 33881.7 35499.0 372788 161270 163064 16489.9 18718.7 18984.4 19258.0 11559.8 11583.9 11608.1 109994 11010.2 11021.1
1Q Average 50822.6 532484 55918.1 24190.5 24459.6 24734.8 28078.1 28476.6 28887.0 17339.7 173759 174122 16499.1 165154 16531.6
High 677634 709979 74557.5 322539 32612.8 32979.8 374374 37968.8 38516.0 23119.7 23167.8 232162  21998.8 22020.5 22042.2
mean 50822.6 532484 55918.1 24190.5 24459.6 24734.8 28078.1 28476.6 28887.0 17339.7 173759 174122 16499.1 165154 16531.6
Connectivity Connectivity
Damaged Key Low Average High Low Average High
Low 14669.3 148274 14988.8 17187.1 17378.1 175735
1Q Average 22070.7 22308.5 22551.6 25780.6 26067.1 26360.2
High 29490.6 29808.5 30133.5 34374.1 347562 351469
mean 220769 223148 22558.0 25780.6 26067.1 26360.2
Cognitive reserve as differences in functional
architecture
Implementing CR, as different functional architectures, did .
Conclusions

modulate the effects of damage. However, it was not those
architectures characterized by more connectivity between
processes that proved most resilient to damage. Indeed, it
was those architectures comprised of more limited
connectivity where the effects of damage were minimized
and the endstate levels of recovery most complete. In the
architectures tested here, this was the Uni-directional
architecture. Damage to any process in this architecture had
effects on processes downstream of the damaged process.
But these effects became increasingly small, over the
remainder of the models lifetime. Figure 5 shows Area (left)
and Endstate levels (right), respectively, for each of the
architectures tested.

100
95
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B Key

Figure 5: Comparisons of functional architectures by
proportion of Area (left) and Endstate (right) obtained in
peripherally-damaged and key-damaged models.

Previous simulation studies have showed that following
early forms of focal impairment, architectures characterized
by greater levels of connectivity offer superior levels of
protection compared to those with more limited connectivity
(see Baughman & Thomas, 2008). However, in the
simulations reported here, where permanent damage
occurred to a system late on in its development, it was those
models characterized by less connectivity (i.e., more
specialized in function) that offered greatest resilience to
damage. Examples of those offering the greatest protection
are the Bi-directional and Uni-directional models, with the
Fully distributed architecture offering the least protection
following damage. These results indicate that throughout the
process of development, similar events that impair just a
limited number of processes to a system may have very
different consequences for its outcome. These results are
consistent with the notion that different functional
architectures may underlie different stages of development
(Fransson, Aden, Blennow, & Lagercrantz, 2011), possibly
through a process of emergent specialization (Karmiloff-
Smith, 2009). Future work is needed to investigate how the
parameters we held constant (such as rate of decline,
cognitive growth, and the severity and onset of damage)
might provide a more complete account of the factors that
contribute to real-world variability in ageing.
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