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Abstract 

The Theory of Visual Attention (TVA; Bundesen, 1990) is a 
comprehensive quantitative account of visual attention, which 
accounts for many empirical findings and has been 
extensively applied to clinical studies of attention. According 
to TVA, perceptual processing of objects occurs in parallel 
constrained by a limited processing capacity or rate, which is 
distributed among target and distractor objects with distractor 
objects receiving a smaller proportion of resources due to 
attentional filtering. Encoding into a limited visual short-term 
memory is implemented as a race model. Given its major 
influence it is surprising that few studies have compared TVA 
directly to alternative models. Here we insert an algebraically 
simpler model of encoding into TVA as an alternative to the 
race model and show that this provides a better fit to Shibuya 
and Bundesen’s (1988) whole and partial report data, which 
have been a keystone test bed for TVA.  
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Introduction 
The Theory of Visual Attention (TVA; 

Bundesen, 1990) incorporates visual perceptual 
processing, attentional filtering and encoding into 
visual short-term memory (VSTM) in a unified 
quantitative model. The model has been extended 
to account for results from a wide variety of 
experimental paradigms (Logan, 1996; Logan & 
Gordon, 2001), and the neural implementation of 
TVA (NTVA) has been applied to results from 
single cell studies (Bundesen, Habekost, & 
Kyllingsbæk, 2005). Despite the extensiveness of 
the TVA based theoretical framework, we are 
aware of only a few recent studies (Dyrholm, 
Kyllingsbæk, Espeseth, & Bundesen, 2011; 
Kyllingsbaek, Markussen, & Bundesen, 2011; 
Petersen & Andersen, 2012) challenging the 
specific details of the model using standard model 
assessment methods. Of these studies we will 
include Petersen and Andersen’s (2012) findings 

that the log-logistic psychometric function 
inserted into TVA leads to improved performance 
in the current study. 

Computational models of cognition such as 
TVA offer both theoretical and practical 
advantages. The theoretical advantages include 
the strict quantitative formulation of cognitive 
modules, the definition of which can otherwise 
prove to be elusive. Computational models can 
also be applied to a range of experimental 
paradigms and help arrive at a unified 
interpretation. This can be of practical use as the 
assessment of the function of cognitive modules is 
of great importance in clinical psychology and 
neuro-pharmacology. In this vein, TVA has been 
extensively applied to studies of clinical 
populations (Habekost & Starrfelt, 2009) and to 
the effect of psychoactive drugs (Finke, et al., 
2010; Vangkilde, Bundesen, & Coull, 2011). 
Many of these studies base their assessment on 
estimates of the parameters in TVA and therefore 
rely on TVA precisely reflecting the actual 
computational mechanisms underlying visual 
attention. This makes it the more pressing to 
assure that this is indeed the case by comparing 
the specifics of TVA to competing models.  

Whole and partial report tasks have been a 
keystone test bed for TVA. In whole report tasks, 
a number of objects, typically letters or digits, are 
presented to the observer.  The task of the 
observer is to identify and report the objects 
presented. The exposure duration is typically brief 
(<200 ms) in order to avoid eye movements so 
that the information available can be assumed to 
be near constant across the stimuli and throughout 
the stimulus duration. Partial report tasks are like 
whole report except that in addition to the target 
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objects, a number of distractor objects are also 
presented. Some characteristic, like color, location 
or object category (e.g. letters vs. digits) 
distinguishes targets from distractors. The task of 
the observer is to report only the target objects 
and ignore the distractors.  

Performance in whole report tasks is limited by 
perception and memory. In order for the target 
objects to be correctly reported, they must be 
perceived. This depends on stimulus attributes 
such as contrast, exposure duration, size, 
complexity and the number of stimulus categories 
(Pelli, Burns, Farell, & Moore-Page, 2006). Since 
these limitations exist also when only a single 
object is present the effect of these stimulus 
attributes can be studied in single letter 
identification experiments (Petersen & Andersen, 
2012).  

When multiple objects are presented the single 
letter psychometric functions cannot explain 
performance. Instead, the psychometric function 
needs to be adjusted. In TVA the adjustment is 
based on the assumption that the sum of 
processing resources, defined as the sum of 
hazard rates, is constant (Shibuya & Bundesen, 
1988).  

In partial report tasks, performance depends also 
on the ability to filter out the irrelevant distractor 
objects through selective attention in order to 
avoid their interference with perceptual 
processing and their taking up working memory 
capacity. If filtering is perfect, performance in 
partial report tasks should match that of whole 
report tasks with the same number of target 
objects. Shibuya and Bundesen (1988) showed 
that this is not the case and that the filtering 
process is imperfect. TVA models filtering as a 
smaller amount of processing resources being 
allocated to distractor objects. 

Even when contrast and exposure duration are 
more than sufficient for all letters to be correctly 
identified according to the adjusted psychometric 
functions, observers fail to base their report on 
more than about four objects (Sperling, 1960). 
This seems to be due to limitations on VSTM 
rather than on perception per se.  In TVA the 
mechanism of encoding is a race, so that objects 
are encoded into VSTM when they are 

perceptually processed but only if VSTM capacity 
is still available, i.e. if it has not already been 
occupied by other objects. 

TVA is thus able to describe performance in 
whole and partial report tasks with a given 
number of targets and distractors based on 
performance in single object identification in the 
form of the psychometric function. It does this 
based on assumptions of how multiple targets 
affect perceptual processing, the process of 
filtering and encoding into a limited VSTM. We 
find it difficult to envision a model that would not 
partition visual perception, attention and short-
term memory into these components as does TVA 
but we find that there is room to examine the 
specific implementation of these stages. 

In the following we shall examine the encoding 
stage of TVA, the race model. We will insert a 
different model of the encoding stage into TVA 
and compare the two encoding models’ abilities to 
describe Shibuya and Bundesen’s (1988) whole 
and partial report data. We will do this using 
either the exponential psychometric function 
conventionally used in TVA or the log-logistic 
function that Petersen and Andersen (2012) found 
to improve performance. 

Methods 

Modeling 
The psychometric function and distributing 
resources 
In TVA, perceptual processing of a single object 
is typically described by the exponential 
psychometric function 
 

F t( ) = 1− exp −vt t − t0( )( ) , t > t0
F t( ) = 0 , t > t0

 

 
where F is the probability of correctly identifying 
the object, vt is the rate of processing for the target 
object, t is the exposure duration and t0 is a short 
time interval between stimulus onset and the 
beginning of perceptual processing. In terms of 
probability theory, the rate, vt, is the hazard rate 
and vt(t-t0) is the cumulative hazard rate, the 
hazard rate integrated over time. When only a 
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single target is presented the sum of processing 
resources, or hazard rates, C, is allocated to that 
target so that νt = C. In whole report, when 
multiple targets are presented, the objects are 
typically arranged at equal distances from the 
fixation point so that it is reasonable to assume 
that they receive equal shares of the processing 
resources, i.e. νt = C/T, where T is the number of 
targets. In partial report, distractor objects are 
assumed to receive a proportionally smaller share 
of processing resources due to attentional filtering 
so that νd = ανt. From this, we can deduce that 
νt = C / (T+αD) where D is the number of 
distractors (Bundesen, 1990). 

In a recent study Petersen and Andersen (2012) 
showed that other psychometric functions can be 
inserted into TVA and that this, in general, 
improves the performance of the model. The log-
logistic function gave the best fit of those 
functions having two free parameters like the 
exponential function. Therefore we will use it 
here. The log-logistic can be expressed as 

 

F t( ) = 1

1+ t
t0

⎛
⎝⎜

⎞
⎠⎟

−vt
 

 
Although the parameters t0 and νt describe the 
shift and the slope of the psychometric function 
respectively just as for the exponential function, 
their exact meaning is different than for the 
exponential function. The shift, t0, is here the 50% 
correct threshold. Unlike the exponential function, 
the hazard rate is not explicit in the expression for 
the log-logistic function but the cumulative hazard 
rate, Λt, can be derived to be 

 

Λt = − log 1− F( ) = log 1+ t
t0

⎛
⎝⎜

⎞
⎠⎟

νt⎛

⎝
⎜

⎞

⎠
⎟  

 
Distributing processing resources according to 

TVA with the log-logistic function becomes 
simpler if we notice that the assumption of a 
constant sum of hazard rates is equivalent to a 
constant sum of cumulative hazard rates. When 

only a single object is presented the cumulative 
hazard rate is thus Λt = Ccum. From this the 
response probabilities in whole and partial report 
can be calculated by setting the cumulative hazard 
rate to Ccum / (T+αD). 

 
Encoding into a limited VSTM 

The previous section outlined TVA applied to 
the case of whole and partial report when the total 
number of objects does not exceed the capacity of 
VSTM. In that case we can calculate the 
probability of the score, j, which is the number of 
correctly reported target objects, as 

 

P j( ) = T
j

⎛

⎝
⎜

⎞

⎠
⎟ F(t)[ ] j 1− F(t)[ ]T − j  

 
This expression is derived from the binomial 

distribution giving the probability of encoding j 
targets. The number of encoded target objects is 
termed the score.  

When the number of objects exceeds VSTM 
capacity selection of the objects to encode is 
needed. According to TVA the selection happens 
as a race for free slots in VSTM; a race that ends 
when all slots are occupied or when perceptual 
processing ends. Inserting the race model into 
TVA is somewhat algebraically complex but 
allows calculating the score probability, i.e. the 
probability of correctly reporting a certain number 
of target objects. Detailed expressions and 
derivations are given in Petersen and Andersen 
(2012).  

Here we introduce a different model of selection 
of objects to be encoded by conditioning on the 
total number of objects encoded being no greater 
than VSTM capacity, i.e. j+m ≤ K where m is the 
number of distractor objects encoded. This 
probability is calculated by calculating the score 
probabilities for j = 1,…,T and m ≤ min(D,K-j) 

 

P j( ) = T
j

⎛

⎝
⎜

⎞

⎠
⎟ F(t)[ ] j 1− F(t)[ ]T − j ×

D
m

⎛
⎝⎜

⎞
⎠⎟
G(t)[ ]m 1−G(t)[ ]D−m

m=0

min D,K− j( )

∑
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Conditioning on j+m ≤ K is then implemented 

by normalization of the probability mass function 
P(j). Here, the psychometric function for 
distractor objects is denoted G(t). Note that the 
number of encoded distractor objects, m, is 
considered an unobservable nuisance parameter, 
which is summed out.  

 For both encoding models, VSTM capacity, K, 
is allowed to take non-integer values, which are 
implemented as a mixture model where the 
VSTM capacity is the ceiling value of K, K⎡⎢ ⎤⎥ , 
with a probability of mod K , K⎢⎣ ⎥⎦( )where K⎢⎣ ⎥⎦  is 
the floor value of K and K⎢⎣ ⎥⎦  with a probability of 
1 − mod K , K⎢⎣ ⎥⎦( ) . 

Model evaluation 
As testing ground for comparing the two models 

of encoding we choose Shibuya and Bundesen’s 
(1988) whole and partial report data that have 
been influential in the development of TVA 
(Bundesen, 1990). The data set consists of score 
counts for two observers each performing 6,480 
trials with varying number of target and distractor 
elements and exposure durations. The observers 
were instructed to report the identity of targets 
only when they were reasonably confident in 
order to minimize the effect of guessing.  

Only very rarely did the observers achieve 
scores greater than 4. Following the example of 
Bundesen (1990) we have registered these 
responses as scores of 4. The encoding models 
can be extended to account for these higher scores 
by allowing the VSTM capacity to vary between 
three integer values rather than just two but this 
requires an additional free parameter, which is 
difficult to justify by the ability to model only few 
of thousands of trials. 

Results 
Table 1 displays the goodness of fits in terms of 

the negative logarithm of the likelihood for the 
two models of encoding and the two psychometric 
functions fitted to both observers in Shibuya and 
Bundesen’s (1988) data. Note that the encoding 

models and psychometric functions have the same 
number of free parameters.  

 The goodness of fits in Table 1 confirms that 
the log-logistic psychometric function provides a 
better fit than the exponential psychometric 
function as found by Petersen and Andersen 
(2012) and also that the conditioning model offers 
an additional, although slight, improvement in the 
goodness of fit. 

 
Table 1: Goodness-of-fits 

 Selection model 
Psychometric 

function Race Conditioning 

Exponential 1579 1552 
Log-logistic 1331 1273 

 
 To further examine the fits of the encoding 

models Figure 1 displays the cumulative score 
proportions, i.e. the proportion of responses to a 
given stimulus type with at least j correctly 
reported targets along with model fits for both 
encoding models with the log-logistic 
psychometric function for subject HV. As is 
evident from Figure 1, the model fits are very 
similar. It takes careful inspection to see that there 
are, in fact, systematic differences. The clearest 
difference is that when six targets are presented 
both encoding models tend to overestimate the 
cumulative score proportion but the conditioning 
model less so than the race model. Also, when the 
number of distractors is no greater than two, both 
models tend to underestimate the cumulative 
score proportion for exposure durations between 
30–70 ms but the conditioning model less so.  

For the briefest exposure durations of 10 ms 
observers rarely reported any targets. In 
Bundesen’s (1990) analysis the few trials in which 
they did were discarded so that the score was 
assumed to be zero. This might favor the 
exponential psychometric function as it constrains 
the score to be zero for exposure durations shorter 
than t0. We therefore fitted the models to the data 
with this data adjustment. The conditional model 
still fitted the data better but more so with the 
exponential psychometric function than with the 
log-logistic.  
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 Table 2 lists the parameter values for the fits. 
Note that the VSTM capacity, K, and filter-
parameter, α, are comparable across both 
encoding model and psychometric function. They 
seem, however, to vary very little with these 
model variations within observers. The temporal 
threshold, t0, and processing capacity, C, are not 
comparable across psychometric functions, only 
across encoding models. The temporal threshold 
seems also to vary very little with encoding model 
within observer and psychometric function. For 
the log-logistic function the processing capacity, 
i.e. the sum of hazard rates, varies over time and 
is therefore given for t = t0. The processing 
capacity is slightly, but consistently, greater for 
the conditioning model than for the race model. 
This difference may seem slightly more 
pronounced for the log-logistic psychometric 
function (4 s-1 averaged over the two observers) 
than for the exponential function (2 s-1 averaged 
over the two observers) but this might be due to 
the difference in magnitude of C as the relative 

differences were similar (7% for the log-logistic 
model and 5% for the exponential model averaged 
over the two observers). 
 

Table 2: Estimated parameters for psychometric 
functions (Psy. F.), observer (Obs), and model. 

Discussion 
The differences that we found between the fits of 
the encoding models are consistent. They are, 
however, also small. This warrants care in model 
selection and this is, in fact, our main point. The 

Psy. F. Obs. Model K α C t0 

Race 3.8 0.40 57 0.036 MP Cond. 3.9 0.41 61 0.036 
Race 3.3 0.56 50 0.033 Log-log. 

HV Cond. 3.2 0.52 53 0.034 
Race 3.9 0.39 37 0.010 MP Cond. 4.0 0.38 38 0.010 
Race 3.3 0.55 35 0.010 Exp. 

HV Cond. 3.2 0.52 37 0.010 

Figure 1: Cumulative score proportions for Shibuya and Bundesen’s (1988) whole and partial report experiment with 
estimates from the conditional (solid line) and race (dashed line) encoding models using the log-logistic psychometric 
function. T and D at the top of each graph indicate the number of presented target and distractor objects respectively. 
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model fits do not provide strong evidence in favor 
of one model of selection over another. We find 
that this is a strong point as the race model has 
remained unchallenged as the model of selection 
for two decades of TVA based research.  

Parameter estimates varied very little with the 
type of psychometric function and encoding 
model. The only consistent differences in 
parameter estimates between the two encoding 
models were in the processing capacity, C. This 
difference should however be compared to the 
variability within observers estimated by Finke et. 
al. (2005) to be as high as 20% although 
variability between observers can also be as little 
as 10% (Vangkilde, et al., 2011), which is far less 
than the differences observed between clinic  
populations and normal controls (Starrfelt, 
Habekost, & Leff, 2009; Vangkilde, et al., 2011) 
yet greater than the differences between the 
models tested here. We therefore preliminarily 
conclude that parameter estimation is robust to 
variations in the type of psychometric function 
and encoding model with the caveat that studies 
of greater populations than the two observers 
studied may reveal greater variability. 

Model comparison should be based on the 
models’ ability to describe the data, here given by 
the goodness-of-fit; model flexibility, here given 
by the number of free parameters; but also on 
model interpretability. The interpretation of the 
race model is straightforward; it explicitly gives a 
mechanism for selection of objects to be encoded 
into VSTM. On this point the conditioning model 
is vague. We do not understand what mechanism, 
cognitive or neural, that could implement 
selection by conditioning but find that this is an 
interesting topic for future studies.  
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