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Abstract

The Theory of Visual Attention (TVA; Bundesen, 1990) is a
comprehensive quantitative account of visual attention, which
accounts for many empirical findings and has been
extensively applied to clinical studies of attention. According
to TVA, perceptual processing of objects occurs in parallel
constrained by a limited processing capacity or rate, which is
distributed among target and distractor objects with distractor
objects receiving a smaller proportion of resources due to
attentional filtering. Encoding into a limited visual short-term
memory is implemented as a race model. Given its major
influence it is surprising that few studies have compared TVA
directly to alternative models. Here we insert an algebraically
simpler model of encoding into TVA as an alternative to the
race model and show that this provides a better fit to Shibuya
and Bundesen’s (1988) whole and partial report data, which
have been a keystone test bed for TVA.
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Introduction

The Theory of Visual Attention (TVA;
Bundesen, 1990) incorporates visual perceptual
processing, attentional filtering and encoding into
visual short-term memory (VSTM) in a unified
quantitative model. The model has been extended
to account for results from a wide variety of
experimental paradigms (Logan, 1996; Logan &
Gordon, 2001), and the neural implementation of
TVA (NTVA) has been applied to results from
single cell studies (Bundesen, Habekost, &
Kyllingsbak, 2005). Despite the extensiveness of
the TVA based theoretical framework, we are
aware of only a few recent studies (Dyrholm,
Kyllingsbaek, Espeseth, & Bundesen, 2011;
Kyllingsbaek, Markussen, & Bundesen, 2011;
Petersen & Andersen, 2012) challenging the
specific details of the model using standard model
assessment methods. Of these studies we will
include Petersen and Andersen’s (2012) findings

that the log-logistic psychometric function
inserted into TVA leads to improved performance
in the current study.

Computational models of cognition such as
TVA offer both theoretical and practical
advantages. The theoretical advantages include
the strict quantitative formulation of cognitive
modules, the definition of which can otherwise
prove to be elusive. Computational models can
also be applied to a range of experimental
paradigms and help arrive at a unified
interpretation. This can be of practical use as the
assessment of the function of cognitive modules is
of great importance in clinical psychology and
neuro-pharmacology. In this vein, TVA has been
extensively applied to studies of clinical
populations (Habekost & Starrfelt, 2009) and to
the effect of psychoactive drugs (Finke, et al.,
2010; Vangkilde, Bundesen, & Coull, 2011).
Many of these studies base their assessment on
estimates of the parameters in TVA and therefore
rely on TVA precisely reflecting the actual
computational mechanisms underlying visual
attention. This makes it the more pressing to
assure that this is indeed the case by comparing
the specifics of TVA to competing models.

Whole and partial report tasks have been a
keystone test bed for TVA. In whole report tasks,
a number of objects, typically letters or digits, are
presented to the observer. The task of the
observer is to identify and report the objects
presented. The exposure duration is typically brief
(<200 ms) in order to avoid eye movements so
that the information available can be assumed to
be near constant across the stimuli and throughout
the stimulus duration. Partial report tasks are like
whole report except that in addition to the target
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objects, a number of distractor objects are also
presented. Some characteristic, like color, location
or object category (e.g. letters vs. digits)
distinguishes targets from distractors. The task of
the observer is to report only the target objects
and ignore the distractors.

Performance in whole report tasks is limited by
perception and memory. In order for the target
objects to be correctly reported, they must be
perceived. This depends on stimulus attributes
such as contrast, exposure duration, size,
complexity and the number of stimulus categories
(Pelli, Burns, Farell, & Moore-Page, 2006). Since
these limitations exist also when only a single
object is present the effect of these stimulus
attributes can be studied in single letter
identification experiments (Petersen & Andersen,
2012).

When multiple objects are presented the single
letter psychometric functions cannot explain
performance. Instead, the psychometric function
needs to be adjusted. In TVA the adjustment is
based on the assumption that the sum of
processing resources, defined as the sum of
hazard rates, is constant (Shibuya & Bundesen,
1988).

In partial report tasks, performance depends also
on the ability to filter out the irrelevant distractor
objects through selective attention in order to
avoid their interference with  perceptual
processing and their taking up working memory
capacity. If filtering is perfect, performance in
partial report tasks should match that of whole
report tasks with the same number of target
objects. Shibuya and Bundesen (1988) showed
that this is not the case and that the filtering
process is imperfect. TVA models filtering as a
smaller amount of processing resources being
allocated to distractor objects.

Even when contrast and exposure duration are
more than sufficient for all letters to be correctly
identified according to the adjusted psychometric
functions, observers fail to base their report on
more than about four objects (Sperling, 1960).
This seems to be due to limitations on VSTM
rather than on perception per se. In TVA the
mechanism of encoding is a race, so that objects
are encoded into VSTM when they are

perceptually processed but only if VSTM capacity
is still available, i.e. if it has not already been
occupied by other objects.

TVA is thus able to describe performance in
whole and partial report tasks with a given
number of targets and distractors based on
performance in single object identification in the
form of the psychometric function. It does this
based on assumptions of how multiple targets
affect perceptual processing, the process of
filtering and encoding into a limited VSTM. We
find it difficult to envision a model that would not
partition visual perception, attention and short-
term memory into these components as does TVA
but we find that there is room to examine the
specific implementation of these stages.

In the following we shall examine the encoding
stage of TVA, the race model. We will insert a
different model of the encoding stage into TVA
and compare the two encoding models’ abilities to
describe Shibuya and Bundesen’s (1988) whole
and partial report data. We will do this using
either the exponential psychometric function
conventionally used in TVA or the log-logistic
function that Petersen and Andersen (2012) found
to improve performance.

Methods

Modeling

The psychometric function and distributing
resources

In TVA, perceptual processing of a single object
is typically described by the exponential
psychometric function

F(t)=1-exp(-v,(t-1,)).t>1,
F(t)=0 1> 1,
where F is the probability of correctly identifying
the object, v, is the rate of processing for the target
object, ¢ is the exposure duration and 7, is a short
time interval between stimulus onset and the
beginning of perceptual processing. In terms of
probability theory, the rate, v, is the hazard rate
and v(t-ty)) is the cumulative hazard rate, the
hazard rate integrated over time. When only a
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single target is presented the sum of processing
resources, or hazard rates, C, is allocated to that
target so that v, =C. In whole report, when
multiple targets are presented, the objects are
typically arranged at equal distances from the
fixation point so that it is reasonable to assume
that they receive equal shares of the processing
resources, i.e. v; = C/T, where T is the number of
targets. In partial report, distractor objects are
assumed to receive a proportionally smaller share
of processing resources due to attentional filtering
so that v, = av,. From this, we can deduce that
vi=C/(T+aD) where D is the number of
distractors (Bundesen, 1990).

In a recent study Petersen and Andersen (2012)
showed that other psychometric functions can be
inserted into TVA and that this, in general,
improves the performance of the model. The log-
logistic function gave the best fit of those
functions having two free parameters like the
exponential function. Therefore we will use it
here. The log-logistic can be expressed as

Although the parameters #) and Vv, describe the
shift and the slope of the psychometric function
respectively just as for the exponential function,
their exact meaning is different than for the
exponential function. The shift, 7, is here the 50%
correct threshold. Unlike the exponential function,
the hazard rate is not explicit in the expression for
the log-logistic function but the cumulative hazard
rate, A,, can be derived to be

A, =—log(1-F)= log[l +(é} J

Distributing processing resources according to
TVA with the log-logistic function becomes
simpler if we notice that the assumption of a
constant sum of hazard rates is equivalent to a
constant sum of cumulative hazard rates. When

only a single object is presented the cumulative
hazard rate is thus A; = Cgun. From this the
response probabilities in whole and partial report
can be calculated by setting the cumulative hazard
rate to Ceym/ (T+aD).

Encoding into a limited VSTM

The previous section outlined TVA applied to
the case of whole and partial report when the total
number of objects does not exceed the capacity of
VSTM. In that case we can calculate the
probability of the score, j, which is the number of
correctly reported target objects, as

P<j>=[ ' J[Fm]f'[l—m]”

This expression is derived from the binomial
distribution giving the probability of encoding j
targets. The number of encoded target objects is
termed the score.

When the number of objects exceeds VSTM
capacity selection of the objects to encode is
needed. According to TVA the selection happens
as a race for free slots in VSTM; a race that ends
when all slots are occupied or when perceptual
processing ends. Inserting the race model into
TVA is somewhat algebraically complex but
allows calculating the score probability, i.e. the
probability of correctly reporting a certain number
of target objects. Detailed expressions and
derivations are given in Petersen and Andersen
(2012).

Here we introduce a different model of selection
of objects to be encoded by conditioning on the
total number of objects encoded being no greater
than VSTM capacity, i.e. j+m < K where m is the
number of distractor objects encoded. This
probability is calculated by calculating the score
probabilities forj = /,...,T and m < min(D,K-))

P(j)= ( i ][F(t)]j [1-F()] ™ x
min(D,K-j)

m=0

( b ][G(z)]’”[l—G(r)]”"”
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Conditioning on j+m < K is then implemented
by normalization of the probability mass function
P(j). Here, the psychometric function for
distractor objects is denoted G(f). Note that the
number of encoded distractor objects, m, is
considered an unobservable nuisance parameter,
which is summed out.

For both encoding models, VSTM capacity, K,
is allowed to take non-integer values, which are
implemented as a mixture model where the
VSTM capacity is the ceiling value of K, [k],

with a probability of mod(k,| K |)where | k] is
the floor value of K and| K | with a probability of
1- mod(K,LKJ) .

Model evaluation

As testing ground for comparing the two models
of encoding we choose Shibuya and Bundesen’s
(1988) whole and partial report data that have
been influential in the development of TVA
(Bundesen, 1990). The data set consists of score
counts for two observers each performing 6,480
trials with varying number of target and distractor
elements and exposure durations. The observers
were instructed to report the identity of targets
only when they were reasonably confident in
order to minimize the effect of guessing.

Only very rarely did the observers achieve
scores greater than 4. Following the example of
Bundesen (1990) we have registered these
responses as scores of 4. The encoding models
can be extended to account for these higher scores
by allowing the VSTM capacity to vary between
three integer values rather than just two but this
requires an additional free parameter, which is
difficult to justify by the ability to model only few
of thousands of trials.

Results

Table 1 displays the goodness of fits in terms of
the negative logarithm of the likelihood for the
two models of encoding and the two psychometric
functions fitted to both observers in Shibuya and
Bundesen’s (1988) data. Note that the encoding

models and psychometric functions have the same
number of free parameters.

The goodness of fits in Table 1 confirms that
the log-logistic psychometric function provides a
better fit than the exponential psychometric
function as found by Petersen and Andersen
(2012) and also that the conditioning model offers
an additional, although slight, improvement in the
goodness of fit.

Table 1: Goodness-of-fits

Selection model
Psyt/‘chorpetrlc Race Conditioning
unction
Exponential 1579 1552
Log-logistic 1331 1273

To further examine the fits of the encoding
models Figure 1 displays the cumulative score
proportions, i.e. the proportion of responses to a
given stimulus type with at least j correctly
reported targets along with model fits for both
encoding models with the log-logistic
psychometric function for subject HV. As is
evident from Figure 1, the model fits are very
similar. It takes careful inspection to see that there
are, in fact, systematic differences. The clearest
difference is that when six targets are presented
both encoding models tend to overestimate the
cumulative score proportion but the conditioning
model less so than the race model. Also, when the
number of distractors is no greater than two, both
models tend to underestimate the cumulative
score proportion for exposure durations between
30—70 ms but the conditioning model less so.

For the briefest exposure durations of 10 ms
observers rarely reported any targets. In
Bundesen’s (1990) analysis the few trials in which
they did were discarded so that the score was
assumed to be zero. This might favor the
exponential psychometric function as it constrains
the score to be zero for exposure durations shorter
than 79. We therefore fitted the models to the data
with this data adjustment. The conditional model
still fitted the data better but more so with the
exponential psychometric function than with the
log-logistic.
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Table 2 lists the parameter values for the fits.
Note that the VSTM capacity, K, and filter-
parameter, o, are comparable across both
encoding model and psychometric function. They
seem, however, to vary very little with these
model variations within observers. The temporal
threshold, 7y, and processing capacity, C, are not
comparable across psychometric functions, only
across encoding models. The temporal threshold
seems also to vary very little with encoding model
within observer and psychometric function. For
the log-logistic function the processing capacity,
1.e. the sum of hazard rates, varies over time and
is therefore given for ¢=1. The processing
capacity is slightly, but consistently, greater for
the conditioning model than for the race model.
This difference may seem slightly more
pronounced for the log-logistic psychometric
function (4 s averaged over the two observers)
than for the exponential function (2 s™ averaged
over the two observers) but this might be due to
the difference in magnitude of C as the relative

-—Score =3

T=2,D=2

differences were similar (7% for the log-logistic
model and 5% for the exponential model averaged
over the two observers).

Table 2: Estimated parameters for psychometric
functions (Psy. F.), observer (Obs), and model.

Psy.F. | Obs. Model K o | C ty
MP Race | 3.8 1 0.40 57 | 0.036
Log-log. Cond. | 3.9 | 041 | 61 0.036
Hv Race | 3.3 /0.56| 50| 0.033
Cond. | 3.2 1 0.52 | 53] 0.034
MP Race |3.9/0.39 | 37| 0.010
Exp. Cond. | 4.0 | 0.38 | 38| 0.010
HV Race | 3.3 /0.55 |35 0.010
Cond. | 3.2 1 0.52 |37 0.010
Discussion

The differences that we found between the fits of
the encoding models are consistent. They are,
however, also small. This warrants care in model
selection and this is, in fact, our main point. The
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Figure 1: Cumulative score proportions for Shibuya and Bundesen’s (1988) whole and partial report experiment with
estimates from the conditional (solid line) and race (dashed line) encoding models using the log-logistic psychometric
function. 7 and D at the top of each graph indicate the number of presented target and distractor objects respectively.
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model fits do not provide strong evidence in favor
of one model of selection over another. We find
that this is a strong point as the race model has
remained unchallenged as the model of selection
for two decades of TVA based research.

Parameter estimates varied very little with the
type of psychometric function and encoding
model. The only consistent differences in
parameter estimates between the two encoding
models were in the processing capacity, C. This
difference should however be compared to the
variability within observers estimated by Finke et.
al. (2005) to be as high as 20% although
variability between observers can also be as little
as 10% (Vangkilde, et al., 2011), which is far less
than the differences observed between clinic
populations and normal controls (Starrfelt,
Habekost, & Leff, 2009; Vangkilde, et al., 2011)
yet greater than the differences between the
models tested here. We therefore preliminarily
conclude that parameter estimation is robust to
variations in the type of psychometric function
and encoding model with the caveat that studies
of greater populations than the two observers
studied may reveal greater variability.

Model comparison should be based on the
models’ ability to describe the data, here given by
the goodness-of-fit; model flexibility, here given
by the number of free parameters; but also on
model interpretability. The interpretation of the
race model is straightforward; it explicitly gives a
mechanism for selection of objects to be encoded
into VSTM. On this point the conditioning model
is vague. We do not understand what mechanism,
cognitive or neural, that could implement
selection by conditioning but find that this is an
interesting topic for future studies.
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