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Abstract

Worked examples have been found to be effective tools in
reducing cognitive load and supporting learning. Erroneous
examples are worked examples that include incorrect steps
and are intended to help students learn how to identify
important principles and errors to avoid. The current study
examines whether using erroneous examples in an online
intelligent tutoring system can help middle-school children
learn decimals beyond simple problem solving with
feedback. Results showed that although students did not
differ between the two conditions on an immediate posttest,
students in the erroneous examples group performed better
on a delayed posttest. This suggests that working with
errors, and thus processing the decimal problems at a
deeper level, helped students retain more about decimals
and build upon that understanding over time.

Keywords: erroneous examples, math learning, computer-
based tutors

Worked Examples and Math Learning

One effective method that has been applied to
mathematics education to increase learning is worked-out-
examples (also called worked examples). Worked
examples consist of a problem formation, the steps taken
to reach the solution, and the final solution (Cooper and
Sweller, 1987; McLaren, Lim, and Koedinger, 2008;
Renkl, 2005, 2010; Renkl and Atkinson, 2010; Zhu and
Simon, 1987). Worked examples may be effective
because they facilitate learning by helping to manage
intrinsic processing levels (i.e. cognitive processing
required to learn the material presented in a lesson);
decreasing extraneous processing (i.e., cognitive
processing that does not support the instructional goal);
and by encouraging generative processing (i.e., cognitive
processing that enables deeper learning). According to the
cognitive theory of multimedia learning (Mayer, 2009)

and cognitive load theory from which it is derived
(Moreno and Park, 2010) learners have a limited
processing capacity in working memory and every
learning task has an intrinsic level of processing required
to understand and learn the task. During problem solving
such as mathematics, students use strategies such as
means-ends analyses to solve problems, comparing the
state of the problem to the goal state and trying to reduce
the differences (Renkl and Atkinson, 2010). Over time
they develop procedural and schematic knowledge that
facilitates problem solving. Worked examples can
decrease both intrinsic and extraneous cognitive
processing during learning by showing the students the
solution procedures to follow. The freed up cognitive
resources can then be applied to understanding and
eventually to automatizing the different steps in the
problem’s procedure.

A study by Cooper and Sweller (1987) compared
learning by doing/traditional problem solving and
learning from worked examples. The results showed that
participants in the learning by examples group could
answer transfer problems much faster than students who
learned by doing although the later group actually had
more practice in solving problems.

An important issue with worked examples is that
although students may have freed up cognitive resources,
this does not mean that the freed cognitive capacity will
be used for generative processing (also called germane
processing) which requires deeper processing of the
material (Renkl and Atkinson, 2010). Students may need
further assistance in fully absorbing and learning solution
methods or principles. Self-explanation is one way to
achieve this. Chi et al. (1989) found that good problem
solvers are more likely to generate self-explanation
statements while thinking out loud when reading a lesson
on physics. In addition, other research has shown the
importance of explicitly prompting for self-explanation
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(Hausman and Chi, 2002). Explanations can therefore be
used to encourage further processing of the material and
increase learning.

Erroneous Examples and Learning

One other proposed way to encourage deeper processing
while using worked examples is to present students with
incorrect (or erroneous) examples. Erroneous examples
may encourage students to use more explanations since
they must identify and explain to themselves why the
solution is incorrect and how it can be corrected.
Erroneous examples may also help students focus on each
step of a solution method separately to identify where the
error occurred. However erroneous examples could also
place additional processing demands on learners,
overloading working memory. The student may have to
simultaneously represent both the correct and incorrect
solution steps while searching for what is wrong in the
worked example (Grosse and Renkl, 2007). Therefore,
learners with low prior knowledge may be more likely to
be adversely affected by incorrect examples because they
would be unable to hold large chunks of new information
in memory while also looking for an error. Grosse and
Renkl (2007) suggest relieving this processing demand by
highlighting the error. Reiss, Hellmich, and Thomas
(2002) found that learners only had a .35 probability of
identifying a math false argument as being false while
correct arguments had a .67 probability of being identified
as correct.

Yet research has shown that erroneous examples can
facilitate learning of mathematics. In a study by Kawasaki
(2010), 170 5™ grade students were presented with either
a correct or incorrect solution to a math problem by one
of the participants. The teacher then explained the correct
solution either contrasting the two procedures for the
incorrect or displaying the correct. Students who had used
similar incorrect solutions benefitted the most from the
instruction with the incorrect example. Tsovaltzi et al.
(2010) found mixed results for whether erroneous
examples facilitated learning of fractions. For 6" graders
they found that including erroneous example, especially
with help, increased metacognitive skills such as
answering conceptual questions. With 9" and 10 graders,
on standard problem solving tests, students in the
erroneous examples with help condition outperformed
students in the erroneous examples without help and the
no erroneous examples groups. They propose that this
was due to the low prior knowledge level of the students.

Grosse and Renkl (2007) also found an effect of prior
knowledge on the effectiveness of erroneous examples.
College level students were taught a lesson on probability.
In their first experiment half of the conditions were
presented with correct solutions only while the other half
were presented with both correct and incorrect solutions.
For groups with both incorrect and correct solutions, half

of the participants had the error highlighted while the
other half did not. The study found an interaction between
the prior knowledge of the individual and the inclusion of
incorrect solutions. High prior knowledge students
benefitted from having both correct and incorrect
solutions and scored higher on far transfer problems that
did not have solution structures similar to the problems
presented during the lesson. In contrast, low prior
knowledge students did worse on a far transfer test when
given both correct and incorrect solutions. For
highlighting the error, high prior knowledge students did
not benefit from having errors highlighted (presumably
because they were already able to identify the error on
their own). Low prior knowledge individuals did
significantly better when the errors were highlighted than
when they were not. Grosse and Renkl’s (2007) second
study replicated the prior knowledge incorrect solution
interaction but also found that including errors changes
the sort of self-explanation statements students made.
Students made more elaborations that were error related
such as identifying the error or the reasons for the error,
however, students in this group also made less principle-
based self-explanation. Principle-based explanations have
been proven to foster learning outcomes (Renkl, 1997).

In a recent study by Isotani et al. (2011) an online
tutoring system with erroneous examples was used to
teach decimals to middle school students. Six commonly
held misconceptions dealing with decimals were
identified, such as decimals being treated as negative
numbers or students treating the two sides of a decimal as
separate numbers. Participants were separated into three
conditions: problem solving, worked examples, and
erroneous examples. During the problem solving
condition students had to at least attempt to answer a
problem once and were given feedback in the form of
green or red lettering as to whether their answer was
correct. If the student supplied an incorrect answer they
could choose to have the correct answer displayed. In the
worked example condition students were given a word
problem in which the correct answer was given. The
students were then asked to complete two sentences that
described how the problem was solved and what
knowledge about decimals was needed to answer the
problem. Students would select responses for the two
blanks in the sentence and then receive feedback from the
tutor as to whether their created explanation was correct.
The erroneous examples problems were similar to the
worked examples except that an incorrect solution was
presented. It was the job of the students to fill in the blank
to generate two sentences: the first identifies the particular
decimal misconception while the second sentence
prompts the student to explain how the individual in the
problem could correctly solve the problem.

The results uncovered no significant differences among
the three groups for either immediate posttest or the
delayed posttest and unlike Grosse and Renkl (2007) there
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was no interaction between high and low prior knowledge
and condition. One possible reason for no significant
differences among the three groups is the amount of
cognitive load that the sentence completion task required
of the participants. Instead of focusing on the math, the
students may have been devoting their cognitive
processing to selecting the correct sentence portions and
reading their completed sentence.

Present Study

For the current study we have streamlined the materials
from Isotani et al. (2011) to increase the focus on finding
and fixing errors in erroneous examples. In particular, we
simplified that design to compare problem solving to
erroneous examples. This study focused on whether
erroneous examples could encourage more generative
processing than problem solving, even though both
conditions encourage at least some problem solving (for
erroneous examples: finding and fixing errors). The two
groups were presented with isomorphic problems, but
with different ways of interacting with those problems.
The erroneous examples subjects were presented with an
incorrect solution, were prompted to explain and correct
the error and reflect on the correct answer, and received
feedback on their responses. The problem solving
subjects were asked to solve the same problems, reflect on
the correct answers, and received feedback on their work.
The additional steps in the erroneous examples condition
of explaining and correcting the error/misconception
made in each problem was intended to improve learning
outcomes by encouraging learners to engage in generative
processing concerning decimal principles. The problems
were also simplified from Isotani et al. (2011) by

Joagpe Beas 36115 of ehileaest sioes, TIve S0 st o € om B 67 1L, 111e socond can I1eh 3,5 L, ane e Sin can 19k 8413 L Jorges limesd asks bis e pick e
SNl €1, W <112 SRl Jor g chosiei

Jeage gl i Incarnnct answes; | choskd pick e BFL
g 1y e T a1 4 B

Joayye 44 v

L J—
2 5 13 shieter aekmals o larger

1 a7

q 5

(E) eherter dacimals aea smaler
i er il wa Smalee
Harger paimals ane £35 fian 2

Whaie i iable aivewing e sice of sincih copn Ry st e s o1l e
mambier 5 go fram groatest fe loass, op fo betioms,

(AT N 8l Bovcirmse
[] E o1 T turdredihe b moa than B burdredihe and 1 burdredh
[l 5

[l [

providing more complete explanations for the students to
choose from. Previous research on self-explanation
prompts by Johnson and Mayer (2010), demonstrated that
providing the explanation statements, rather than having
learners generate their own, facilitated learning from an
educational game. By providing the students with
possible complete explanations to choose from rather than
parts of sentences, processing demands should decrease.

Participants. Participants consisted of 208 (Male = 101,
Female = 107) middle-school students from Pittsburgh,
PA. Of those students, 105 were in the 6" grade while 103
were in 7" grade. Ages ranged from 11 to 13 (M= 11.99,
SD =.722).

Materials. The computer-based materials consisted of 6
components, three tests (pretest, posttest, and delayed
posttest), two surveys (demographic/math experience and
evaluation), and the intervention problems. For the pretest
and two posttests, three separate but isomorphic tests
were constructed. Question types including placing
decimals on a number line, putting a group of three or
four decimal numbers in order, providing the next two
numbers in a sequence, and answering true/false
statements. All three tests contained 46 problems with a
total of 50 points possible. For the demographic survey,
along with basic information about age and grade level,
students were asked about their experience with decimals
and computers. They were also asked a few self-efficacy
questions such as, “I am good in math at school”, with 5-
point Likert answers, ranging from “Strongly Agree” to
“Strongly Disagree.” For the evaluation survey, students
were
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Figure 1: Side-by-side comparison of the isomorphic questions from the two intervention conditions. An erroneous
example problem is on the left and the equivalent problem to solve is on the right.
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asked how they felt about the intervention using a 5-point
Likert scale ranging form. Questions included items such
as, “I would like to do more lessons like this.”

During the intervention students completed a total of 36
problems, with interaction and feedback implemented by
intelligent tutoring software (Aleven et al, 2009). The
problems were arranged in four groups of three (with each
group targeted at one of four misconception types)
making a total of 12 groups. For the erroneous condition,
students would first receive two problems dealing with a
misconception such as “shorter decimals are smaller.”
The third problem was then a problem to solve (with
feedback) related to the misconception (i.e. putting
decimals of different lengths in order from largest to
smallest). The erroneous problems contained up to 5
components (not including the problem statement) for the
students to interact with (see Figure 1 for a comparison
between the two interventions). In the top left box
students read the error made by the individual in the word
problem. After pressing a “Next” button students were
asked to identify what the subject had done wrong from a
list of 3-4 options, one of which was the misconception
exhibited by that student. In the left middle panel students
were then asked to correct the mistake. This involved
either placing the decimal correctly on a number line,
changing a decimal addition, correctly ordering a list of
decimals (largest to smallest or smallest to largest), or
correctly completing a sequence of decimals. In the right
middle panel participants explained why the new answer
was correct. Finally, in the bottom left panel the students
were asked to give advice to the fictional student that had
gotten the answer incorrect. For every panel that required
the student to make a selection feedback was provided
(green = correct; red = incorrect). Students also received
text feedback from a message window that was placed at
the bottom right corner of the intervention. Messages
include encouragement for students to try incorrect steps
again or feedback for students to continue on to the next
step or problem.

In the problem-solving version of the intervention,
students were given the same problems as in the
erroneous examples condition except they were asked to
provide the solutions themselves. These problems were
also arranged in groups of three with a simple correct /
incorrect feedback for the third problem in each sequence.
On the first two problems of the problem solving
condition, after solving the problem students were asked
how they would explain their solution to another student.
These options included the correct procedure along with
misconception distracters. Students in this group also
received feedback from a message window in the bottom
right panel as well as green / red feedback on their
solution and multiple-choice selections.

Procedure. Students were randomly assigned to one of
the two conditions (PS = 108; ErrEx= 100). Students in
both conditions were given a total of five 43-minute
sessions to complete the entire intervention. The students
were randomly assigned to either the problem solving or
the erroneous worked example condition. Students were
also randomly assigned to receive one of the six possible
pretest / posttest / delay-posttest orderings (ABC, ACB,
BAC, BCA, CAB, CBA). On the second day the students
answered the demographic and math/computer experience
questionnaire before starting the intervention. The
students were given two days to complete the problem
solving/worked example problems. Upon completion they
were given the intervention assessment questionnaire.
The next day students were given the immediate posttest.
Finally, during the following week, students were given
the delayed posttest.

Results

Due to an error in data recording for four of the problems,
the data for those problems was removed from the pretest,
posttest, and delayed posttest scores making the total
possible score out of 46. To first examine whether the
problem solving (PS) and erroneous examples (ErrEx)
condition performed similarly on the pretest an
independent sample t-test was conducted. It was found
that the ErrEx group performed significantly better on the
pretest than the PS group, t (206) = 3.045, p =.003 (See
Table 1 for means and standard deviations). An ANOVA
revealed that there was no significant difference between
the test orders, F (5,202) = 1.293, MSE =.057, p = .268.

In general students significantly improved their test
performance after the intervention, regardless of
condition, t(207) = -8.058, p <.001, with a mean increase
of 9%. Students continued to significantly improve
between the immediate and delayed posttest, t(207) = -
8.230, p <.001, with a mean increase of 6%. Overall
students increased their performance an average of 15%
between the pretest and the delayed posttest, yielding a
medium-to-large effect, d =.75.

To examine whether one condition increased learning
more than the other gain scores were calculated between
the pretest and posttest, pretest and delayed posttest, and
posttest and delayed posttest. An ANCOVA with pretest
as a covariate revealed that for the pretest-to-immediate-
posttest gain did not differ significantly for the two
groups, F (1,205) = .768, MSE = 34.97, p = .382. There
were significant differences between the two conditions
for pretest-to-delayed-posttest gains, F (1,205) = 9.896,
MSE = 349.08, p = .002, and between immediate posttest
and delayed posttest, F (1,205) = 7.027, MSE =
163.07, p =.009, with participants in the ErrEx condition
having higher gain scores. That is, although participants
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Table 1: Test performance for the two conditions

Groups
Erroneous

Problem Solving Examples
Test score M SD M SD
Pretest 24.68 (9.42) 28.69 (9.58)
Posttest 29.07 (9.48) 32.58 (8.95)
Delayed
Posttest 31.06 (9.20) 36.23 (7.47)

in the ErrEx condition may not have scored higher on the
immediate posttest, they showed superior gains when
tested after the week delay.

To determine whether the intervention had a different
effect for students with high prior knowledge versus those
with low prior knowledge, similar to Grosse and Renkl’s
(2007),we conducted an additional analysis. Participants
were first classified as high verses low by using a median
split on the pretest scores (8-25 points for low and 26-45
points for high). This divided the groups so that there
were 107 students classified as low prior knowledge and
101 as high prior knowledge. For high prior knowledge
individuals an ANCOVA with pretest as a covariate
revealed the participants did not differ for pretest to
immediate posttest gains, F (1,98) =.122, MSE = 3.76, p
=.728, or posttest test to delayed posttest gains, F (1,98)
=2.01, MSE = 46.15, p =.160 (see Table 2 for means and
standard deviations). There was a significant difference
with ErrEx showing greater gains between the pretest and
delayed posttest, F (1,98) = 4.75, MSE = 76.27, p = .032.
For low prior knowledge individuals there was still not
significant difference between pretest and posttest gains,
F (1,104) = .489, MSE = 28.49, p = .486. However there
the ErrEx condition did have significantly higher gains
between the pretest and delayed posttest, F (1,104) =
5.21, MSE = 265.73 p = .025, and the posttest and delayed
posttest, F (1,104) = 5.02, MSE = 120.21, p = .027. Thus,
the pretest-to-delayed posttest gain was greater for the
ErrEx condition for both low and high prior knowledge
learners.

Discussion

The results of this study show that although using
erroneous examples did not facilitate learning gains for an
immediate pretest, students in the erroneous group had
significantly higher gains on the delayed posttest. These
results suggest that students taught with erroneous
examples may have had a deeper learning experience, one
that helped them build upon their initial understanding of
decimals to gain a deeper understanding by the time they
took the delayed posttest.

Previous research by Grosse and Renkl’s (2007) found
that prior knowledge interacted with incorrect examples;
higher prior knowledge students performed better when
presented with incorrect solutions. For our study,
however, no significant interaction was found between
prior knowledge and condition. The data showed that both
low and high prior knowledge individuals did better in the
erroneous examples condition than the problem solving
condition. This might have occurred because the
erroneous example students, both low and high prior
knowledge, were enticed to engage in more generative
processing than the problem solving students, through the
prompted explanation and correction of errors.

One limitation of our study is that we did not include a
correct worked examples condition. The reasons for this
were straightforward. First, in the present study we
wanted to compare the most common ecological control
condition — that of students solving problems — to the
much less typical learning experience of working with
erroneous examples. Second, as we revised the
instructional materials from the Isotani et al (2011) study,
we realized that erroneous examples and problem solving
were more comparable from a cognitive load perspective.
As designed, they both require active problem solving —
in the case of erroneous examples, the correction step; in
the case of problem solving, generating the solution from
the given problem — something worked examples does not
require. Renkl and Atkinson (2010) mention a reversal of
the worked examples effect when students already have
sufficient knowledge. Studying just the examples without
any sort of active problem solving may become redundant
for the students therefore decreasing the amount of mental
effort they put into the lesson. Nevertheless, to compare
other possible instructional approaches, in a future study
we intend to include a worked examples condition.

Table 2: Test performance for low/high prior knowledge individuals for the two conditions

Low Prior Knowledge

High Prior Knowledge

PS ErrEx PS ErrEx
Test Score M (SD) M (SD) M (SD) M (SD)
Pretest 17.73 (3.89) 19.25 (4.01) 34.40 (5.36) 36.11 (5.03)
Posttest 24.24 (8.82) 26.80 (8.06) 35.84 (5.33) 37.13 (6.75)
Delayed Posttest 26.30 (8.55) 31.07 (7.47) 37.71(5.96) 40.29 (4.34)

1264



In summary, our study provides evidence that
presenting students with errors that they are prompted to
analyze, explain, and correct can facilitate learning
decimals from a computer-based tutor.
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