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Abstract

Bayesian orthodoxy posits a tight relationship between con-
ditional probability and updating. Namely, the probability of
an event A after learning an event B should equal the condi-
tional probability of A given B prior to learning B. We ex-
amine whether ordinary judgment conforms to the orthodox
view. In three experiments we found substantial differences
between the conditional probability of an event A supposing an
event B compared to the probability of A after having learned
B. Specifically, supposing B appears to have less impact on the
credibility of A than learning that B is true. Thus, Bayesian up-
dating seems not to describe the relation between the probabil-
ity distribution that arises from learning an event B compared
to merely supposing it.
Keywords: belief updating, reasoning, probability

Introduction
Let Pr 1 represent the beliefs of an idealized agent who is con-
sidering at time 1 the credibilities of events over an outcome
space Ω (finite, for simplicity). Suppose that for some event
B ⊆ Ω with Pr 1(B) > 0 experience intervenes at time 2 to
convince the agent that B is (definitely) true. What new dis-
tribution Pr 2 should embody the agent’s revised beliefs? The
Bayesian response (Hacking, 2001, Ch. 15) is that Pr 2 should
be the result of conditioning1 Pr 1 on B, that is:

(1) BAYESIAN UPDATING:

If B ⊆ Ω is learned between times 1 and 2 (and noth-
ing else relevant is learned) then for all events A ⊆ Ω,
Pr 2(A) = Pr 1(A | B) (provided that Pr 1(B) > 0).

It is easy to check that Pr 2 as defined by (1) is a genuine prob-
ability distribution and that Pr 2(B) = 1 (as expected). Also,
(1) is a consequence of compelling axioms on belief change
(Gardenfors, 1988, §5.2), and its violation exposes the agent
to sure-loss betting contracts (Harman, 1999, §4.12).

1By conditioning we refer to simple or strict Bayesian updating,
rather than associative learning.

Such normative virtues suggest a psychological question.
One way of formulating (1) is that supposing an event B
should have the same impact on the credibility of an event A
as learning B. Is this true for typical assessments of chance?
For example, is the judged probability of a Democratic vic-
tory in 2012 supposing that Hilary Clinton is the vice pres-
idential candidate the same as the judged probability of a
Democratic victory in 2012 after learning that Clinton, as a
matter of fact, is the vice presidential candidate?

The foregoing question is orthogonal to the provenance of
conditional probability in the mind, that is, to the way such
probabilities are mentally computed. Thus, even if people
fail to respect the standard definition:

Pr(A | B) def=
Pr(A∩B)

Pr(B)

it is still possible for (1) to hold.2 All that matters is whether
the same degree of confidence in event A is reached when
supposing event B compared to learning it. On the other hand,
recent literature on conditional reasoning has suggested a dif-
ference between supposing vs. learning the antecedent of a
conditional (Oaksford & Chater, 2007). We investigated the
difference between learning and supposing in three experi-
ments.

Experiment 1
Participants

Forty undergraduates (27 female, mean age 19.4 yrs, SD =
1.3) from Princeton University participated in exchange for
course credit.

2An earlier study focussed on the fidelity of the standard defini-
tion (above) to the numbers people report as conditional probabili-
ties (Zhao, Shah, & Osherson, 2009).
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Materials
Five decks of cards served as stimuli, each with 20 cards.
Each card presented an animal and a colored square on one
side and was blank on the other side. The animal was marked
on the bottom half of the card and could be either a dog or
a duck. The colored square was marked on the top half and
could be either green or yellow. Thus, each deck contained
four types of cards: green dog, green duck, yellow dog, and
yellow duck. Table 1 summarizes the respective frequencies
of the types of cards for each deck.

Table 1: Number of cards in each deck used in Experiment 1.

Deck Green Dog Green Duck Yellow Dog Yellow Duck
1 5 4 6 5
2 9 2 6 3
3 4 8 2 6
4 7 8 2 3
5 3 3 6 8

Procedure
There were two conditions in the experiment: learn and sup-
pose, each with 20 participants. In both conditions, the five
decks were presented to the participant in random order. For
each deck, the experimenter first showed the cards to the par-
ticipant, with the animals and colors in plain view. Cards
were presented briefly (around 0.5 second apiece) to prevent
counting. After all cards in the deck were presented, the par-
ticipant shuffled the deck, drew one card at random, and put
it on the table blank side up. Thus, neither the participant nor
the experimenter knew what the card was.

The procedure then differed between the two conditions. In
the learn condition, the experimenter covered the card drawn
from the deck, turned the card over while still covered, and
then revealed one half of the card to the participant. Whether
the animal or the color was thereby revealed was randomly
determined. If the revealed half was an animal then the par-
ticipant estimated the probability that the unrevealed half was
a certain color; whether they were asked for the probabil-
ity of “green” versus “yellow” was determined randomly. If
the revealed half was a color then the participant estimated
the probability that the unrevealed half was a certain animal;
whether they were asked for the probability of “dog” ver-
sus “duck” was determined randomly. The covered half was
never revealed to the participant. This procedure was repeated
for all five decks.

The suppose procedure was identical to the foregoing up to
placing one card from the shuffled deck face down on the ta-
ble. In the suppose procedure, neither side of the card was
revealed, and the experimenter proceeded instead to ask a
question of the form: “What is the probability that so-and-so
appears on the card supposing that such-and-such appears?”
The content of the question (so-and-so and such-and-such)
was determined by yoking each suppose participant to the
immediately preceding participant, who was in the learn con-

dition. Specifically, if for decks 1 through 5 the learn partic-
ipant was asked for the probabilities of A1 . . .A5 upon learn-
ing B1 . . .B5 then the suppose participant was asked for the
conditional probabilities Pr(A1 | B1) . . .Pr(A5 | B5) in the or-
der corresponding to the presentation of the five decks to the
learn participant.

Thus, the first participant was assigned to the learn condi-
tion, the second to the suppose condition (and yoked to the
first participant), and likewise for succeeding pairs of partici-
pants. The crucial difference was that participants in the learn
condition estimated A after learning B, whereas participants
in the suppose condition estimated A while supposing B.

Results and Discussion

We computed three statistics over the five probabilities that a
given participant produced, namely, (a) the average of the five
raw responses, (b) the average absolute deviation from 0.5,
and (c) the average absolute deviation of a response from the
objective probability of the event under consideration (where
the objective probability was derived from the composition of
the deck employed in that trial). Statistic (b) quantifies con-
fidence inasmuch as extreme probabilities signify presumed
knowledge about an event whereas 0.5 represents ignorance.
The statistics produced by the two groups were then com-
pared via paired t-tests. There were thus 20 pairs, defined by
yoking each suppose participant to his/her learn participant.

As seen in row (a) of Table 2, the average responses across
the 20 learn-suppose pairs were virtually identical [t(19) =
0.60, p = 0.56, d = 0.13]. Row (b) shows, however, that the
absolute deviation from 0.5 was reliably greater for the sup-
pose group compared to learn group [t(19) = 2.61, p = 0.02,
d = 0.58]. The absolute deviation from objective probability
also differed reliably between the learn and suppose condi-
tions [t(19) = 4.15, p < 0.001, d = 0.93] with more accurate
responses from the learn participants; see row (c). Moreover,
in 16 of the 20 pairs, learn participants were more accurate
than suppose participants (p = 0.01 by binomial test).

Table 2: Comparison of learn and suppose groups in Experi-
ment 1

Statistic Learn Suppose p
(a) Raw estimate of Pr(A|B) 0.50(0.10) 0.49(0.12) 0.56
(b) Abs. dev. from 0.5 0.14(0.05) 0.19(0.06) 0.02
(c) Abs. dev. from Pr(A|B) 0.09(0.05) 0.16(0.08) 0.00

Means for the two groups, relative to various statistics. Standard
deviations are given in parentheses; p-values reflect paired t-tests
(N = 20). (Abs. dev. = Absolute deviation)

The results of Experiment 1 thus suggest limitations to the
Bayesian model of updating, at the descriptive level. To check
the robustness of our findings, we repeated Experiment 1 with
new decks, involving different frequencies of the four events.
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Experiment 2
Participants
A new group of forty undergraduates (26 female, mean age
19.5 yrs, SD = 1.8) from Princeton University participated in
exchange for course credit.

Materials and procedure
The procedure was identical to Experiment 1 except for the
use of five different decks shown in Table 3.

Table 3: Number of cards in each deck used in Experiment 2.

Deck Green Dog Green Duck Yellow Dog Yellow Duck
1 9 2 1 8
2 2 8 9 1
3 7 1 3 9
4 3 8 7 2
5 8 3 2 7

Results and Discussion
We computed the same statistics as in Experiment 1; see Ta-
ble 4. As before, there was virtually no difference in the
average responses of the suppose versus learn groups. And
once again, suppose participants were less accurate than learn
participants in terms of absolute deviation from the objective
value; 16 of the twenty learn/suppose pairs showed this pat-
tern (p = 0.01 by binomial test). This time, however, learn
rather than suppose participants issued more extreme proba-
bilities; see row (b) of Table 4.

Table 4: Comparison of learn and suppose groups in Experi-
ment 2

Statistic Learn Suppose p
(a) Raw estimate of Pr(A|B) 0.50(0.14) 0.48(0.10) 0.53
(b) Abs. dev. from 0.5 0.23(0.05) 0.18(0.06) 0.00
(c) Abs. dev. from Pr(A|B) 0.13(0.04) 0.21(0.08) 0.00

Means for the two groups, relative to various statistics. Standard
deviations are given in parentheses; p-values reflect paired t-tests
(N = 20). (Abs. dev. = Absolute deviation)

Why did suppose participants issue more extreme probabil-
ities than learn participants in Experiment 1 while the reverse
is true in Experiment 2? Tables 1 and 3 report the objective
distributions of the cards in the two experiments, and reveal
greater extremeness for the second experiment compared to
the first. So, the switch in extremeness might be a corollary to
the greater accuracy of the learn compared to suppose groups.

In sum, the results of Experiment 2 reveal once again a
gap between learning and supposing that is not foreseen by
Bayesian updating.

Experiment 3
In Experiments 1 and 2, probabilities were grounded in fre-
quencies and therefore extensional. The third experiment was

designed to evaluate the impact of learning versus suppos-
ing in an intensional setting involving probabilities of non-
repeatable events. In particular, participants in the third ex-
periment specified their confidence (as a probability) that Bill
Clinton won/lost a specified state given that he won/lost an-
other state in the 1992 presidential election.

Participants
A new group of sixty undergraduates (41 female, mean age
20.4 yrs, SD = 1.9) from Princeton University participated in
exchange for course credit.

Materials
A deck of 50 cards served as stimuli. One side of a given card
was marked with a U.S. state, the other side left blank.

Procedure
As in the previous experiments, there was a learn and a sup-
pose condition, each with 20 participants. In both conditions,
the participant examined the deck then shuffled it and placed
two cards face down on the table (without looking at them).
Despite the appearance of randomness, the experimenter ex-
amined but then ignored the contents of the cards, and instead
asked about two states from a pre-selected list. The list con-
sisted of 20 swing states (electoral outcome not easily pre-
dictable); the two swing states figuring in a given trial were
drawn randomly from the list.3

In the learn condition the experimenter picked up one
of the two drawn cards and looked at its underside (pre-
venting the participant from seeing the content). The state
was announced (actually, the announced state was prese-
lected from the list of 20 swing states), and then the elec-
toral outcome for that state was determined by consult-
ing a website. Specifically, with the participant watching,
the experimenter discovered the outcome for that state via
http://uselectionatlas.org/RESULTS/, and showed the
result to the participant. Note that the participant was only
shown whether Clinton won or lost the specified state; infor-
mation about other states was masked. The experimenter then
examined the underside of the remaining card, announced
this second state (actually, preselected from the list of swing
states), and asked the participant to estimate the probability of
Clinton winning or losing that state. The framing of the ques-
tion in terms of winning or losing was consistent with the out-
come for the first state. For example, if Clinton won the first
state then the participant estimated the probability of Clinton
winning the second state, and likewise for losing. The two
cards were then put aside, never revealed to the participant.
This procedure was performed five times per participant.

In the suppose condition, each participant was yoked to the
immediately preceding learn participant. To start the trial,
the experimenter announced that it was a winning (or los-
ing) round, meaning that the participants were to estimate the

3The swing states were taken to be AL, AZ, GA, ID, IN, KS, KY,
LA, MI, MN, MO, MS, MT, NC, ND, NM, OH, TN, VA, WV.
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probability that Clinton won (or lost) the second state, sup-
posing that he won (or lost) the first state. The choice of fram-
ing (win/lose) appeared to be random, but in fact matched the
questions in the learn condition. To finish the trial, the par-
ticipant shuffled the deck and placed two cards face down on
the table (without looking). The experimenter pretended to
look at the undersides of the two cards and asked the partici-
pant to estimate the probability of Clinton winning (or losing)
the second state supposing that he won (or lost) the first state.
The two states were yoked to those in the learn condition.
The two cards were then set aside, never revealed to the par-
ticipant. This procedure was performed five times (yoked to
the preceding learn participant).

A third group (N = 20) served as a control condition in
which just Pr(A) was estimated (no conditioning event B was
evoked). In this condition, each participant was yoked to the
preceding suppose and learn participants, and gave probabil-
ities to the five states that were target events A. For each trial,
the experimenter announced that it was a winning (or losing)
round, meaning that the probability to be estimated was that
Clinton won (or lost) the state in question. The framing was
yoked to the questions in the suppose and learn conditions.
The participant then shuffled the deck and placed one card
face down on the table. The experimenter pretended to look
at the card and asked the participant to estimate the probabil-
ity of Clinton winning (or losing) the state. The procedure
was performed for each of the five states.

Results and Discussion
As seen in row (a) of Table 5, the average responses of the
learn participants were reliably higher than those of the sup-
pose participants [t(19) = 4.41, p < 0.001, d = 0.99]. Row
(b) shows that the learn group offered more extreme prob-
abilities than the suppose group [t(19) = 3.11, p < 0.01,
d = 0.69].

Table 5: Comparison of learn and suppose groups in Experi-
ment 3

Statistic Learn Suppose p
(a) Raw estimate of Pr(A|B) 0.64(0.09) 0.53(0.10) 0.00
(b) Abs. dev. from 0.5 0.21(0.06) 0.15(0.06) 0.00
(c) Quadratic penalty 0.18(0.08) 0.25(0.08) 0.02

Means for the two groups are presented, relative to various statis-
tics. Standard deviations are given in parentheses; p-values re-
flect paired t-tests (N = 20). (Abs. dev. = Absolute deviation)

To quantify the accuracy of the probability assigned to
event A upon learning or supposing B, we computed the
quadratic penalty for Pr(A). To illustrate, the quadratic
penalty for Pr(wins Virginia) is (1 − Pr(wins Virginia))2

in the event that Clinton won Virginia, and it is (0 −
Pr(wins Virginia))2 in case he lost. (Note that the condition-
ing event B was true in every case.) Thus, low penalty signi-
fies accuracy of a stochastic forecast whereas high penalty
signifies inaccuracy; assigning the noncommittal probabil-

ity 0.5 guarantees a penalty of 0.25, indicating ignorance.
The quadratic penalty was introduced by Brier (1950); see
Predd et al. (2009) for a justification of its use in measur-
ing accuracy. For every participant, we computed her aver-
age quadratic penalty over the five trials. Row (c) of Table
5 shows that learners were closer to the truth than supposers
were [t(19) = 2.57, p = 0.02, d = 0.58]. This holds for 17
of the 20 pairs of participants (p = 0.01 by binomial test).
It is striking that the mean quadratic penalty for the suppose
group is almost exactly 0.25, the accuracy level guaranteed
by issuing 0.5 probabilities.

We note that a majority (60%) of the pairs figuring in the
experiment had consistent outcomes in the election (Clin-
ton winning both or losing both). For the learn condition,
the average probabilities assigned to consistent and incon-
sistent pairs were 0.72 and 0.50, respectively, whereas they
were 0.55 and 0.48 for the suppose condition. A two-way
ANOVA reveals a reliable interaction, the difference between
the learn probabilities exceeding that for the suppose proba-
bilities [F(1,19) = 17.7, p < .001]. Since a majority of pairs
were consistent (as noted above), these facts explain the lower
quadratic penalty for learn participants, and highlight their
greater sensitivity to the conditioning event B.

Finally, in the control condition, the average raw estimate
of Pr(A) was 0.51 (SD = 0.13). This is close to the 0.53
estimate of Pr(A | B) in the suppose group [t(19) = 0.51,
p = 0.61, d = 0.12] but reliably different from the 0.64 es-
timate of the learn group [t(19) = 4.09, p < 0.001, d =
0.91]. The quadratic penalty for the control condition was
0.29 (SD = 0.09), reliably different from learn [t(19) = 4.18,
p < .001, d = 0.94] but not suppose [t(19) = 1.50, p = 0.15,
d = 0.34]. These results indicate once again that the condi-
tioning event B had greater impact on the judgements of the
learn participants compared to suppose.

General Discussion
Bayesian updating (1) seems not to describe the relation be-
tween the probability distribution that arises from learning an
event B compared to merely supposing it. For, in our three
experiments, the probabilities that issue from learning B are
more accurate than those resulting from conditioning, and
they also differ in their deviation from 0.5. In Experiment 3,
moreover, the average probabilities in the two groups differed
significantly.

In the latter experiment, learn participants seem to have
made greater use of the conditioning event B than did suppose
participants. This is revealed by the greater difference in up-
dated compared to prior probabilities for A in the learn com-
pared to the suppose conditions. Specifically, learn estimates
were reliably higher than the prior, suggesting that learn par-
ticipants interpreted a win [loss] of one swing state to increase
the chance of a win [loss] of another. In contrast, suppose par-
ticipants’ estimates of Pr(A | B) were almost identical to the
control group’s Pr(A).

Insensitivity to B may reflect a deficit of imagination, the
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suppose participants being unable to simulate the effect of
genuinely believing B. In fact, Bayesian updating imposes a
heavy burden on the reasoner’s ability to foresee the impact of
experience. Suppose that lions are discovered roaming your
neighborhood; can you anticipate the probabilities you would
attach to other events if such startling circumstances actually
came to pass? Analogous difficulties arise when attempting
to predict future affective states (Wilson & Gilbert, 2003).

At the normative level, the Bayesian doctrine (1) is sup-
ported by the considerations mentioned in the introduction,
yet it remains contentious (see, e.g., Bacchus, Kyburg, and
Thalos (1990)). Recent work has begun to provide a nec-
essary critique of Bayesian inference (Jones & Love, 2011).
The Bayesian doctrine may also prove to be unsuited to sit-
uations in which the agent, albeit rational, loses track of her
position in time or space (Arntzenius, 2003). But the debate
about (1) might be of limited relevance to the typical transi-
tion from one probability distribution to another. Such tran-
sitions need not depend on adding an event B to one’s beliefs
without probabilistic qualification. Rather, experience might
lead us to revise our confidence in B without driving it to zero
or one. The rule proposed by Jeffrey (1983) is suited to this
kind of case. Recent work has begun to examine Jeffrey’s rule
from the psychological point of view (Over & Hadjichristidis,
2009; Zhao & Osherson, 2010).
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