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Abstract

Computational modeling has served a powerful tool for studying
cross-situational word learning. Previous research has focused on
convergence behaviors in a static environment, ignoring dynamic
cognitive aspects of concept change. Here we investigate concept
drift in word learning in story-telling situations. Informed by
findings in cognitive neuroscience, we hypothesize that a large
ensemble of sparse codes flexibly represents and robustly traces
drifting concepts. We experimentally test the population coding
hypothesis on children’s cartoon videos. Our results show that
learning the meanings of words over time is hard, especially when
the concept evolves slowly, but the sparse population coding can
handle the concept drift problem effectively while hypothesis
elimination and simplistic parametric models have difficulty.

Keywords: Cross-situational word learning; statistical
language learning; concept drift; meaning change; population
coding.

Introduction
Children learn the meaning of words rapidly and robustly
across multiple situations (Smith & Yu, 2008).

Computational modeling has served a powerful tool for
precise investigation of the hypothesized mechanisms of
word learning. Many computational models of word
learning have been used to simulate and account for the
observed patterns such as reference disambiguation,
blocking, and long-term memory (Frank et al., 2009,
Kachergis et al., 2010; Vlach & Sandhofer, 2010).

Existing computational models for word learning can be
broadly divided into hypothesis elimination and associative
learning (Fazly et al., 2010). In the hypothesis elimination
approach the learning process consists of eliminating
incorrect hypotheses about word meaning, on the basis of a
combination of a priori knowledge and observations of how
words are used to refer to aspects of experience, until the
learner converges on a single consistent hypothesis. For
instance, Siskind (1996) presented an efficient algorithm for
keeping track of just the necessary and possible components
of word-meaning hypotheses consistent with a set of
examples. A weakness of this approach is that some
logically possible hypotheses may be ruled out a priori or
the concepts cannot be recovered once they are eliminated.

Another approach to computational modeling of word
learning is associative learning. Yu (2005), for example,
studied a word-object association model in a unified
framework of lexical and category learning. This model
demonstrated the emergence of patterns observed in early
word learning. Xu and Tenenbaum (2007) proposed a

probabilistic model of word learning. The Bayesian account
aims to explain inductive learning at the level of
computational theory rather than to describe psychological
processes involved. Fazly et al. (2010) uses a probabilistic
framework to propose an incremental associative model that
deals with referential uncertainty. The proposed model is
demonstrated to converge over time on the most likely
meaning of the word in CHILDES data sets. However, this
model does not incorporate alignment ambiguity and it is
not clear how the model behaves if the concept drifts in the
course of learning.

Concept drift is a fundamentally important phenomenon
in language acquisition. Itmeans that the statistical
properties of the target concept, which the learner is trying
to learn, change over time (Widmer & Kubat, 1996). For
example, a child might think that all birds can fly until
he/she observes an ostrich, at which time the child revises
the concept of bird. This causes problems because the
learning process needs some mechanisms to unlearn or
revise the learned concepts. Simple hypothesis elimination
cannot account for this since it lacks a mechanism for
recovering the eliminated concepts. Both the associative
learning and its probabilistic versions have difficulties since
they strive to model global patterns, not modeling local
patterns that might be necessary at a later stage.

Here we propose a computational model of word learning
that deals with concept drift under alignment ambiguity and
referential uncertainty. The model borrows ideas from
neuroscience and uses a population coding (Pouget et al.,
2000; Ma et al., 2006). We propose a sparse population-
code network in which meanings of the words are
represented as a large collection of sparse microcodes. Since
each microcode is sparse, it describes a general concept.
There are many of the microcodes and, thus statistically,
only a few parts of them are updated on a single observation,
maintaining stability by the remaining microcodes in the
population. We test this population coding hypothesis on
naturalistic children’s cartoon video data. To make the
experiments more realistic, we use state-of-the-art image
processing techniques to represent the scene as a bag of
image patches. This is contrasted with the previous studies
of cross-situational word learning in which the scene
representation adopts hand-coded semantic features. Our
experimental results show that learning the meaning of
words over time is hard, especially when the concept is
drifting slowly. We demonstrate that the sparse population
coding can handle the concept drift problem effectively
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while simplistic parametric models have difficulty in
dealing with the problem.

Materials and Experimental Setup

Video Data Sets

We used a series of children’s cartoon videos, Maisy,
consisting of 6 episodes. Each episode plays for 48 to 105
minutes and the total play time is 475 minutes. From this
video set, we prepared a total of 972 utterance-scene pairs as
described in the following subsections. Cartoon videos
provide naturalistic story-telling situations that children face
in language acquisition (Zhang & Kang, 2011). An
additional advantage of cartoons is that its image processing
is relatively easy, allowing for automated generation of a
large data set to study the long-term learning behavior in
situated word learning.

Visual wonds

Original sentence-scene pairs Textual words

rabhit, followed,
home, maisy

75';-:?‘ forget, panda
L%
RN

good, night, bird
m.‘l- & see, thothing
NG

Figure 1: Examples of utterance-scene representation

Utterance-Scene Representation

The material for cross-situational learning consists of
utterance-scene pairs, where each pair is represented as a
vector of the form

X(t) = (W(t), V(t)) = (Wl, T M/]w(t)l,vl, oiny Vlv(t)l) .
Here, |w(¢) |and| v(¢)| are the number (vocabulary size) of

textual words and visual words in the #th example,
respectively. Figure 1 shows the examples of utterance-
scene pairs extracted from the original videos. The
following subsection describes how the textual words were
processed.

Language Processing

We collected all utterances in the text captions of the video
set, which amounts to approximately 2,800. Removing
simple utterances such as ‘Hi’ gives a total of 972 sentences.
We determined the vocabulary for textual words by
computing the standard TF-IDF (term-frequency and
inverse-document-frequency) values. TF-IDF gives higher
weights to the terms that frequently occur and are
uncommon between episodes. This results in 1,049 words.
We chose the top 448 textual words which defines the
utterance vocabulary. The sound modality was not used in
the experiments.

Image Processing

We extracted image frames from the video, one frame for
each of the 972 sentences extracted by language processing.
Out of a stream of image frames played for the duration of
speech of an utterance, we chose the image frame
corresponding to the start of the utterance. This results in an
image corpus of 972 scenes. Each scene was described by a
subset of 7,520 image patches (i.e., visual words), each
composed of the SIFT (scale-invariant feature transform)
features and the color histogram extracted as follows. To
define the visual words, we first used the MSER (maximally
stable extremal region) feature extractor to segment and
extract salient and informative regions from the images.
SIFT was then used to find salient features in the extracted
regions. The resulting features are grouped by K-means
clustering to remove redundancy.

Experimental Paradigm
Given the set of learning examples
Dy ={(w(),v(#)) |t =1,..., N}, the goal of the learner is to

form the concepts in the training set by finding the
relationships between the words and the visual words (i.e.
image patches). Learning proceeds incrementally, i.e. the
examples are presented in sequence. Each time an example
is presented the learner updates its model before the next
example comes in.

Figure 2(b) shows the paradigm we adopt in this study.
As indicated by the connections between textual words and
those between visual words, we consider the fully
interconnected relationship between different words and
visual words. Note that this paradigm is contrasted with the
standard paradigm shown in Figure 2(a), where the learner
is to learn the relationship between the words and the
referents or meanings, but do not attempt to learn the
relationship among the words or among the referents.

Utterance Scene

Utterance Scene

(words) (semantic Features) (sentence) {object images)

(a) Standard paradigm

Figure 2: Experimental paradigms in comparison

(b) Paradigm in this paper

The Model

Concept Representation

Meaning of words can be defined as a set of contexts in
which word occurs in running text (Burgess & Lund, 1998)
or represented in network connectivity revealed by
statistical analysis of a text corpus (Steyvers & Tenenbaum,
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2005). The textual domain can be extended to include the
visual domain by taking into account the full contexts in
which the word and images (visual words) co-occur in
scenes (Zhang, 2008). Figure 3 illustrates this type of
concept representation we adopt in this work. Here, the
concept of MOUSE, for example, is defined as a
collection of words (w-nodes), i.e. {yellow, run, dark,
tall}, and a collection of visual words or visual patches
(v-nodes) linked to the “mouse’-node in the figure. Thus,
we consider the learner to acquire the visually-grounded
linguistic concepts or the joint vision-language concepts,
similar to the perceptual symbol systems a /a Barsalou
(1999).

Concept map for MOTUSE

Figure 3: The concept of a word is defined by other words
w as well as visual words v. In this representation the
concepts are defined as a relationship among the primitives
(words and visual words).

Concept map for RABBIT

MOUSE . MOUSE
) i . = {HEAD,, BODY, ...}
! [ ﬁ HEADI = by BODY2 = hs
Z ey ={wy W v vt = {wy W v Vgl
@@ =

- ={mhs ]
- = {wy, w3, Ws vy, ¥, Ve Vs )

T
TAIL T~ FOOT

Microcodes

(sparse)

Population

code

= a collection
of sparse

“phite” “walk” “eye” “long” “big” “toe” T
microeodes

Figure 4: Sparse population coding scheme

Sparse Population Coding

We represent the joint vision-language concept using sparse
population codes. Figure 4 shows the basic units of the
coding scheme, i.e. microcodes. Each microcode represents
a prototype, exemplar, or common pattern for a set of
similar examples. For instance, a microcode # = {‘white’,
‘eye’, vi, w4} represents a class of objects (or concept
HEADL as indicated in the figure) that have white eyes and
image features of v, and v4, where v; and v, are image
patches. The textual words, ‘white’ and ‘eye’, and the visual
words, vy and vy, are instances of the textual and visual word
vocabulary, respectively. Since the number of words or
visual words chosen to define the specific microcode is
small compared to their vocabulary size, this is a sparse

coding scheme. Typically we use a large number of
microcodes to describe complex concepts.

The population of sparse microcodes can be considered as
a three-layer network as shown in Figure 4. The first
(bottom) layer consists of the w-nodes for words (e.g.
“white”) and the v-nodes for visual words (image patches).
The second (middle) layer represents the #-nodes for
microcodes or micro-concepts such as HEAD1. A formal
concept is represented as an ensemble of micro-concepts (or
microcodes), as indicated by c-nodes at the third (top) layer
of the network. This network can be learned from the data.
Before describing the learning procedure we see the
statistical background underlying this representation.

Finite Mixture Model Formulation

Formally, a large collection of microcodes represents the
empirical distribution of the concepts in the form of a finite
mixture model (McLachlan & Peel, 2000). To see this, we
suppose that the density of data x = (w,v) can be written in
the form:

M
P(x|0)=> a,f;(x|h) (1)
j=1

where fi(x|h;) are densities and ¢; are nonnegative quantities
that sum to one:

M
0<a,;<1 (j=1..,M) and Zaj =1
j=1
Equation (1) is called M-component finite mixture density.
Roughly, the configuration of the microcode defines the
shape of the mixture component f(x|#;) and the weight
associated with the microcode defines the mixing weight ¢;.
We denote the complete collection of all distinct parameters
occurring in the mixture model by 6 = (a,h), where a =
(et,...,aq) and h = (hy,...,hy,). We note that by designing
the microcodes #; appropriately to be the parameters of the
component density fi(x|#;), the mixture density can be
represented by the sparse population code.
In other words, if the microcode has an associated
component density f(x|4;), the distribution of the data set
Dy, ={x(2),..,x(N)}can be represented by the population

code:
P(w(),v(@),... w(N),v(N)|6)

N M
= P(x@),.. x(N)[0) =[ [ D, 1, (x() | ) )
=1 j=1
which is a sum of M" products of component densities.
Each term in the summation is interpreted as the probability

of obtaining a given one of the MN possible divisions of the
observations among the groups.

Learning Algorithm

Learning proceeds incrementally by observing each
utterance-scene pair in sequence. On each observation of an

1223



example (w,v) the learner predicts and updates the

meanings or concepts 8. This is an inductive process and
can be formally described as Bayesian inference:

P(W,V|0)P,4(6) -
P(w,v)

At each time step ¢, the prior distribution P,.;(6) of the

hypothesis @ is updated to the posterior distribution

P(0lw,v) of the hypotheses by computing the likelihood

function P(w,v|6) and normalizing by

B(O]w.v)=

P(w,v) = ZP(W,V |6 P_,(0) 4
=

to make P,(6lw,v) back to a probability distribution. The
posterior is then used as the prior for the next time step.
Making the data set explicit, we can rewrite (3) in a
recursive form:

PO|w(@),v(@),wl:t-1),v(L:t-1))
_ P(w(),v(@)|0)P_1 (0| w@:t-1),v(l:t-1)) 5)
Pw(),v()|wl:t-1),v(L:z-1)) '
where w(7) and w(1:#-1) denote the word vector at time step
¢t and the sequence of word vectors from time step 1 to #1,
respectively.  Expectation-maximization (EM)  style
algorithms are usually used to solve the estimation problem
(McLachlan & Peel, 2000). In the following we describe the
method we implemented as a sparse population coding
network. Recall that & = (o,h), i.e. the concepts are
represented as a collection of microcodes h with weights a
in the network. The population code is a mechanistic
representation for psychological processes since it describes
the memory encoding and decoding mechanisms more
explicitly than simplistic parameter tuning models.
We first describe the learning algorithm in pseudocode
and then explain it.

H* € Predict(H’) ; sampling prior P_;(6)
x’ € Generate(H’’) ; likelihood P(x|6)

10 H’” € Correct(H”’, x°, x(¢)) ; assimilation
(resampling)

1 HO €3 e €{d

2 1€1 ; prior B_1(6)

3 Perceive x(t) = (w(t), v(t))

4 E={h,..., h,} € Sample(x(t)) ; microcodes

5 Vp< Vy +{neww’s}, V; €<V, +{newv’s}

6 H € H+E : accommodation
7 Repeat

8

9

11 H<€H”

12 Until reconstruction_satisfactory(x(t))

13 H() € H ; posterior B (6]x(?))
14 t < t+1

15 Goto 3

Given an utterance-scene instance (line 3), a subset of
words and a subset of visual words are selected to build a

microcode (line 4). For each utterance-scene pair, a number
m of microcodes are generated randomly and repeatedly
(line 4). Duplications are permitted and, in fact, the number
of duplications represents the strength of the code (we will
use this later on in decoding the referents or meanings of the
words). The set £ of new microcodes is then added to the
existing set A of microcodes (line 6). This step is equivalent
to accommodating new memory elements. Then the model
is trained to tune or assimilate the incoming concepts into
the existing concepts (lines 7-12). First, a collection H’” of
the microcodes is sampled to be used to generate an
example x’. The generated example is then compared to the
training example. The difference is used to correct the
model H or the population code. This results in the update
of the posterior distribution (line 13).

The algorithm consists of basically three steps: i)
sampling new microcodes (line 4), ii) merging them with
the old (existing) population of microcodes (line 6), and iii)
resampling of the whole microcode population (line 10) to
correct the conflicts and interferences. To correct predictive
errors in an unsupervised way, the algorithm test-generates
the samples from the current model (lines 8 and 9) and
compare the resulting data with the perceived data (line 10).

Connection to Probabilistic Models of Cognition
and Monte Carlo

Recall that the population of sparse codes approximates the
probability distribution of the examples if the population
size is big. Recall also that the learning algorithm is
implemented by repeatedly sampling the sparse codes
(microconcepts or hypotheses) like a Monte Carlo
simulation does. In terms of Bayesian inference the learning
algorithm updates the distribution of the concepts from prior
to posterior distribution by Monte Carlo simulation. Shi et
al. (2010) suggested that exemplar models are a successful
class of psychological process models that can be used to
perform a sophisticated form of Monte Carlo approximation.
The similarity of the sparse coding representation with the
exemplar model suggests that our sparse population code
model offers a concrete process model of Bayesian
cognition.

Simulations and Results

Parameter Setting for Experiments

Experiments were performed using the following parameter
settings. Given a new observation, 10 new sparse codes
were sampled and added to the population. Each microcode
consists of three textual words and one visual word. 5
iterations of error correcting steps were executed to tune the
whole population code to the new observation. To see the
effects of memory capacity we experimented with two sizes
of populations: |H| = 100, 500. When the population size
exceeds the memory capacity, we replace 10 microcodes
with the lowest weight values by 10 new microcodes. We
define two scores for measuring the similarity between
visual and textual concepts as follows:
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(IH,))2- X ah) and S(w) = Y a(h)

—1 .

Z a(h) ’ heH, held,

heH

where a(h) is the weight of microcode 4, and H,, and H, are
the subsets of H consisting of the microcodes with textual
word w and visual patch v, respectively.

S(w,v) =

Vocabulary Growth

Figure 5 shows the growth of visual and textual
vocabularies as learning proceeds. When the memory size is
unlimited (left), the size of both visual words and textual
words increases continuously (linearly). When the
maximum memory capacity is set to be limited to 500
(right), the size of visual words increases first and then
decreases while the number of textual words grow
continuously but in two stages of fast growth and then
slow growth. The difference in vocabulary growth pattern
seems in part due to the difference in vocabulary size of
visual and textual words, i.e. in this experimental setting,
7520 visual words and 448 textual words were used for
candidates.

V] (x10) V1 (x109)
’ T textual
6 4 —visual
3
4
- textual 2
2 —visual 1 )
0 300 ¢ 600 900 0 300 ; 600 900

Figure 5: Growth of vocabulary. (left) unlimited memory
size. (right) limited memory size.

Word Learning in Concept Drift

Figure 6 shows the trace of concept memory for the 4
separate focus objects which appear in all episodes.

,} Patch 1

S0 50
05 —Patch1 —Patch 2
Patch 3 —Patch 4 Patch 3

Patch 1 Patch 2
—Patch 4

04 o
07 Patch 2

0.3

02 ! 2y Patch 3

" ’Mu 111

|
300 ; 600 900

0.1

0 300 ¢ 600 900

Figure 6: Emergence, extinction, and re-emergence of
concepts in drift. (left) larger memory capacity (JH| = 500).
(right) smaller memory capacity (|H| = 100).

The results show the emergence, extinction, and re-
emergence of different visual concepts as the video runs. If
the memory size is relatively big (500 in this case), the
concepts do not extinct totally and remain in the backend to
re-emerge when new similar observations are made. In
contrast, when the memory size is small (100 in this case),
the concepts disappear entirely from the memory,

suggesting the difficulty of the problem, especially if the
memory capacity is small. However, this problem can be
solved by dynamically varying the population size to
balance exploration and exploitation. In contrast to this
sparse population coding approach, a localist, eliminative
method would have a fundamental difficulty in recovering
once-eliminated concepts due to its lack of associative
connections between concepts.

50) 50
06 —Max(|H]) = 500 70 ; —rbqbdblt
- DIr
0.5 - Max(H]) = 100 &0 - = ---mause
so- |1 B *

04

0.3

0.2

i

o
}\:Q.‘.
i
SRS

300

o

0.1

0 QMY
0 300 ¢ 600 900

t 600 200

Figure 7: (left) Emergence patterns of concepts for
different memory size. Plotted are the weight values for the
specific visual concept shown. (right) Emergence of
different visual concepts for given three textual concept
(rabbit, bird, and mouse).

Figure 7 shows the change of concepts in the course of
learning. (left) shows the change of weight distribution for
the specific visual concept (patch 2 in Figure 6) shown.
(right) is the reverse, i.e. the query is given by a textual
word (rabbit) and the graph shows how the corresponding
image concept changes as learning proceeds. It can be
observed that, since the concept of rabbit drifts, different
types of rabbit images and, sometimes very different (and
wrong) images, are retrieved by the same word.

Concept Generalization and Specialization

Figure 8 shows the joint vision-language concept maps
around the ‘rabbit’ as they evolve over the 6 episodes. The
maps (a)-(d) are the snapshots after watching 1, 2, 4, 6
videos, respectively. Note that the map contains visual
words as well as textual words. We observe that the
connectivity of the visual-linguistic map grows as more
episodes are learned. Careful examination of the map shows
the role of visual words or concepts for the specialization
and generalization of the textual concepts and vice versa.
For example, in Figure 8(a) we observe that a visual word
connects the three textual words of ‘enjoy’, ‘lunch’, and
‘rabbit’ together. This adds an additional, visually-grounded,
connection (association) between the words ‘enjoy’ and
‘lunch’. We also observe that the word ‘rabbit’ is connected
to multiple images, again grounding and refining the
meaning of the textual word. Formally, the former is the
one-image to many-words relationship and the latter is the
many-images to one-word relationship. This again shows
the effect of visual generalization of the textual words and
that of visual specialization, respectively, which cannot be
observed in language-only concept maps (Zhang & Kang,
2011).

1225



(c) episodes 1-4

(d) episodes 1-6

Figure 8: Evolution of the vision-language concept map
for “rabbit’.

Discussion

We have presented a sparse population code model of cross-
situated word learning in concept drift. The sparse
population coding was utilized to flexibly represent and
learn the meanings of words over time. We examined the
concept drift in word learning using the story-telling
situations in cartoon videos. The experimental results
demonstrate that the model is effective in learning the
dynamically changing meanings of the words.

We adopted a distributed, relational representation of
word meaning which is naturally realized as a population of
sparse codes. The learning process constructs visually-
grounded linguistic knowledge structure from a series of
cross-situational  language experience. This situated
conceptualization process (Barsalou, 1999) is known to
build a foundational mechanism in language learning
(Zwaan & Kaschak, 2008). We analyzed the “evolution” of
joint vision-language maps and compared them to the
language-only concept maps. We found that the visual
modality adds additional semantics to the linguistic
concepts as well as generalizing and/or specializing the
linguistic terms.

There are several directions of future research that can
extend the current work. One is to define the vocabulary
incrementally. The current experiments have used a set of
words and visual words which are defined at the outset.
Children learn the new words on the fly. A more natural
approach would employ a component that evaluates the
novelty and decide the introduction of new terms. Another
direction involves extending the current population-code
network model by introducing another layer of latent
variables. This layer can be learned to build more abstract
concept categories using, for example, non-parametric
Bayesian methods.
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