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Abstract

The words that children learn can be characterized as a
semantic network, with links connecting related words.
Recent analyses have shown these networks to have small-
world structure, with a few highly-connected hub words
facilitating short paths between otherwise distant words. This
structure contributes to network robustness, and differences in
structure can predict differences in language learning
outcomes. While previous studies have shown that semantic
network structure reflects linguistic input structure, we
provide the first evidence that it is related also to children’s
own language learning biases. Two-year old children who
show a mutual-exclusivity bias have significantly more hub-
like networks than children who do not, even when they know
the same number of words. This finding contributes to our
understanding of both semantic networks and the origins of
mutual exclusivity.
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Introduction

Although the earliest analyses of human memory and
learning concerned the learning of lists of unrelated words
(Ebbinghaus, 1885/1962), researchers quickly discovered
that the words people learn in more natural contexts are
intricately connected. Vocabularies were conceptualized as
richly structured networks, with links connecting
semantically related words (Collins & Loftus, 1975). These
connections play an important role in both learning and
memory, and can be observed empirically in semantic
priming experiments. Because activation spreads from
words to their semantic neighbors, presenting a word, even
subliminally, leads to faster processing of related words
(Anderson, 1983). Even two-year old infants show semantic
priming, suggesting that vocabularies have network
structure early in language learning (Arias-Trejo & Plunkett,
2009).

Recently, the application of graph-theoretic methods to
the study of these networks has begun to provide insight
into their structural properties. For instance, Hills, Maouene,
Maouene, Sheya, & Smith (2009a) analyzed the semantic
network structure of 130 nouns typically learned before 30
months. Compared to randomly-connected control
networks, these semantic networks showed significant
small-world structure, in which most words are sparsely
connected, but a few are highly-connected hubs. This kind
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of structure results in networks robust to malfunction (e.g.
forgetting a word; Albert, Jeong, & Barabési, 2000), and can
help to explain some of the remarkable efficiency of human
semantic memory (Raaijmakers & Shiffrin, 1981). Further,
semantic networks lacking this structure are associated with
slower language-learning, characterizing the vocabulary
structure of late talkers (Beckage, Smith, & Hills, 2011).
But why do children learn these words? Why do semantic
networks have this structure?

Undoubtedly, one answer to this question is that structure
comes from the environment. Because children learn words
from the language they hear, language input is a strong
predictor of the words that children will learn. For instance,
the frequency with which a child hears a word in isolation
can predict how likely a child is to learn that word (Brent &
Siskind, 2001). Similarly, the semantic networks
constructed from corpora of both adult-directed and child-
directed language have many of the same structural
properties as networks constructed from the words 30-
month-old children are likely to know (Hills, et al., 2009g;
Steyvers & Tenenbaum, 2005).

But perhaps a more complete explanation of the origin of
semantic network structure is that it emerges from an
interaction between structure in the linguistic environment
and the child’s own learning system. Because children are
not unbiased samplers of linguistic input, their attentional
and learning biases mediate the link between language input
and language learned (Hudson Kam & Newport, 2005;
Smith, 2000). For instance, children who learn to attend to
shape are likely to learn shape-based categories, and those
who learn to attend to other properties (e.g. material) learn
other kinds of words (Colunga & Sims, 2011; Smith, Jones,
Landau, Gershkoff-Stowe, & Samuelson, 2002). Can word-
learning biases predict and explain semantic network
structure? In this paper, we consider the case of
disambiguation through mutual exclusivity.

In the disambiguation task, a child is presented with a
novel object among one or more familiar object competitors.
The child then hears a novel label (e.g. ‘can you find the
dax?’) and is asked to select an object. Both toddlers and
adults reliably select the novel object as the target of the
novel label (Markman & Wachtel, 1988; Golinkoff, Hirsh-
Pasek, Bailey, & Wenger, 1992), and studies with infants suggest
that this disambiguation may arise as early as 18 to 22.5 months
(Halberda, 2003; Mather & Plunkett, 2009). Preferential
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mapping of novel labels to novel objects over known objects,
which we will refer to as mutual exclusivity (ME), could arise for
a number of reasons, and its mechanism of action is the topic of
significant debate (e.g. Diesendruck & Markson, 2001;
Golinkoff et al., 1992; Markman & Wachtel, 1988). We explore
this question in the general discussion, but will sidestep it here
and instead consider the potential consequences of mutual
exclusivity for semantic network structure.

Mutual exclusivity is a mechanism by which children can
leverage prior knowledge to learn new words in the context
of known objects. Consequently, children who show mutual
exclusivity should have vocabularies that echo this kind of
contextual structure. For these children, learning fork should
ease the acquisition of spoon, bowl, and plate. In contrast,
learning fork should have little effect on the acquisition of
dog and coat. Thus, we propose that mutual exclusivity can
help explain small-world structure of semantic networks,
and those children who show mutual exclusivity will have
more hub-like networks than those who do not. We begin by
reporting empirical data from a disambiguation task with
24-month-old children, continue by describing a semantic
network analysis of these children’s vocabularies, and
conclude with a discussion of how these results inform our
understand of the relationship between mutual exclusivity
and vocabulary development, as well as the origins of
mutual exclusivity itself.

Experiment

Method

Participants. Forty two-year-olds (M = 24.75 months;
range = 24-26; 20 female) participated. All were typically
developing children from households in which parents
reported English to be the dominant language. A subset of
34 infants (M = 24.9 months; range = 22.4-27.5; 16 female)
participated in the followup analysis (explained below).

Stimuli. Nine familiar objects (e.g. boat, glasses) were used
in the warm-up trials. Twenty-five familiar (e.g. brush, cup)
and 8 novel objects (e.g. massager, platypus) were used in
the referent-selection task.

Procedure. Parents first completed the MCDI (Fenson,
Dale, Reznick, Bates, Thal, & Pethick, 1994) and an SES
measure (Hollingshead, 1975). After this, each child
participated in three warm-up trials. On warm-up trials, the
experimenter set a tray containing three familiar objects on
the table, initially covered by an occluder. The experimenter
asked for the target object (e.g. “which one is the dog?”)
three times: once while the items were occluded, again after
lifting the occluder, and again three seconds later while
pushing the tray towards the infant. The first reach, point, or
grab, was scored as a response. On these trials, infants were
praised for correct responses and corrected when necessary.
Subsequently, each child participated in sixteen referent-
selection trials. On each trial, the experimenter presented a
tray containing two familiar objects and one novel object.

The procedure was identical except that children received
neutral feedback on all trials. On half the trials, the
experimenter asked for a familiar object, while on the other
half she asked for a novel object (e.g. modi, taju).

Results and Discussion

Each participant made a total of 16 choices, picking 8
targets on familiar trials, and 8 targets on novel trials. Any
trial on which the child did not know the label for the
familiar target, or the label for one of the familiar
distractors, was excluded from analysis. The proportion of
targets correctly chosen on these remaining trials was then
analyzed to determine the child’s success in the task.
Overall, children performed quite well, selecting the correct
target on both familiar (M; = .83, t(39) = 15.31, p < .001)
and novel trials (M, = .545, t(39) = 5.87, p < .001) at greater
than chance levels. Thus, as a group, 24-month-old children
used mutual exclusivity for disambiguation. Familiar trial
performance, however, was significantly higher than novel
trial performance (t(39) = 6.88, p <.001).

Because the central question in this study is about the
relationship between learning mechanisms and vocabulary
development, we measured both vocabulary size (MCDI -
Fenson, et al., 1994) and mother’s education (Hollingshead,
1975), a potential correlate of rich language input. Mother’s
education was reliably correlated with performance on
familiar trials (r = .33, p < .05), but not novel trials (r = .01,
n.s.), and vocabulary size was not significantly correlated
with performance on either kind of trial (r; = .19, n.s.; r, =
15, n.s.). In the semantic network analysis to follow, we
show that vocabulary structure is reliably related to novel
trial performance. Because neither mother’s education nor
vocabulary size predict ME in this data set, the relationship
between ME and structure is likely to be quite robust.

But perhaps this analysis is unfair. While most of the
children had high levels of success on familiar trials, a few
children did not perform as well. Since these children knew
the words for all three objects on these familiar trials, their
low levels of performance indicate that they may not have
understood the task. Thus, for the same reason that response
time analysis typically uses only correct response trials,
excluding these children from individual-level analyses may
give clearer correlations. In order to determine whether a
child’s performance was significantly better than expected
by chance, we modeled chance behavior on each trial as
random selection of one of the three objects.

The probability of success expected by chance is given by
a binomial distribution with probability ¥5. Consequently, a
child should be counted as performing differently from
chance if he or she made enough correct selections to be
outside the 95% confidence interval for a binomial
distribution. A child who made 8 choices, for instance,
needed to make at least 5 correct choices to be counted as
performing better than expected by chance. Each child’s
number of correct selections on familiar trials was thus
submitted to a binomial test. Six of the 40 children were
found to have performance levels on the familiar trials
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indistinguishable from chance, and were thus excluded from
further analysis. This left a subset of 34 children who could
confidently be assumed to have understood the task. Figure
1 shows novel and familiar trial performance for children
both from the full set, and from this reduced subset.

We also performed a similar analysis on novel trials,
dividing children into two categories: those who reliably
showed evidence of using mutual exclusivity (ME), and
those who did not. Seventeen children were classified as
ME users, and seventeen were classified as Nonusers. We
are not arguing that ME is a binary phenomenon, but rather
perform this binary split for technical reasons. Binarization
loses some information separating children within the ME
users category, but it also cleans up noise that may not
meaningfully separate nonusers. Quantitative differences at
or below chance levels are more likely to be generated by
noise than they are to be generated by meaningful process
differences, and thus are likely to dilute linear correlations.
In subsequent analyses, because mutual exclusivity is
analyzed as a binary phenomenon, we use Spearman’s p, a
non-parameteric measure of correlation. In all cases,
correlations were stronger for this binary measure.

In this subset, mother’s education was still correlated with
performance on familiar trials (r = .36, p < .05), as was
vocabulary size (r = .39, p < .05). Neither mother’s
education nor vocabulary size predicted performance on
novel trials (p = -.11, n.s.; p = .08, n.s.). In the analyses that
follow, we compare the semantic network connectivity of
ME users and nonusers. Because use of mutual exclusivity
was uncorrelated with vocabulary size, differences in
network connectivity are unlikely to be a simple reflection
of network size. Further, because mother’s education
predicted performance on familiar, but not novel, trials, a
relationship between ME and vocabulary structure arising
from language input must come from more specific
properties not indexed by mother’s education in this sample.

Correct Referent Selection by Trial Type

1 Bl Complste Sample
B Subset

Prop. Correct

Novel

Familiar

Figure 1: Proportion of correct choices by participants in
both the familiar and novel conditions. Dark blue bars show
the complete sample, light red bars the subset. Error bars
indicate +/-1 standard error.

Semantic Network Analysis

To understand how use of mutual exclusivity contributes to
the structure of children’s vocabularies, we formalize these
vocabularies as semantic networks. In semantic networks,
vertices represent the words that children know, and edges
represent semantic relationships among these words. In any
such analysis, the first step is to formalize ‘semantic
relatedness’ — the relationship used to link two words.

Previous analyses have used a number of successful
metrics of connectivity: co-occurrence in CHILDES (e.g.
Beckage, Hills, & Smith, 2011), frequency of free-
association by adults (e.g. Steyvers & Tenenbaum, 2005),
and common perceptual and conceptual features (e.g. Hills,
et al., 2009b). In our analysis, we adopt and extend the last
approach, connecting two words if they share a number of
common semantic features. Features were drawn from the
set of McRae feature norms (McRae, Cree, Seidenberg, &
McNorgan, 2005). McRae and colleagues asked 725 adults
to freely list up to 14 features of 541 English nouns. The
number of features shared by two words gives a measure of
their semantic relatedness.

Although participants could generate any features they
liked, McRae et al. (2005) subsequently divided the
generated features into 4 categories: perceptual features
accessible to the 5 senses (e.g. “has fur,” “tastes sweet”),
functional features (e.g. “used for writing,” “is edible”),
encyclopedic features (e.g. “is expensive”), and taxonomic
features (e.g. “a crustacean”). Following Hills et al. (2009b),
we analyze only features of the first and second kind, as
these are the features likely to be available to two-year-old
children. We create two different networks for each child:
one in which connectivity is defined by perceptual feature
overlap, and one in which connectivity is defined by
functional feature overlap. This is because overlapping
perceptual features indicate a very different kind of
relatedness than overlapping conceptual features.

Hills et al. (2009b) analyzed the clusters produced by
each of these kinds of networks to quantify these different
kinds of relatedness. Defining connectivity by perceptual
feature overlap produced networks that were dense, highly
connected, put words into more than one category, and
produced categories that were overly inclusive relative to
human judgments (e.g. MCDI categories, Fenson, et al.,
1994). In contrast, functional feature overlap produced
networks that were sparser, had smaller, better defined
categories, and were better at discriminating among near-
category members. In general, words connected in the
functional network are more likely to be encountered in a
relational context, facilitating learning by mutual exclusivity
(e.g. cake-carrots, boots-coat). In contrast, words connected
in the perceptual networks are less likely to be encountered
in such situations, and learning one is thus less likely to
facilitate learning the other through mutual exclusivity (e.g.
sheep-sofa, pencil-stick). Thus, we can test a specific
prediction about how mutual exclusivity builds vocabulary
structure: it facilitates the acquisition of functionally related
words.
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Figure 2: Two 7-vertex networks with different connectivity
structures. The left network has a high clustering
coefficient and a low degree centrality. The right network
has a low clustering coefficient, but a high degree centrality.

In addition to using these two kinds of features to define
connectivity, we measure their resulting structure in two
different ways. These different connectivity measurements
represent different ways in which mutual exclusivity could
build structure. Consider the networks in Figure 2.

The first network (2a) has many local clusters, triangles in
which any vertices with a common neighbor are likely to be
neighbors themselves. One might predict mutual exclusivity
to facilitate this kind of structure because using one word
(e.g. scarf) to learn a semantic neighbor (e.g. sweater)
should make a common neighbor even easier to learn (e.g.
coat). This structure is measured by clustering coefficient
(Equation 1), which has previously been used to distinguish
the vocabulary structures of early and late talkers (Beckage,
Hills, & Smith, 2011).

vi
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In contrast, the second network (2b) does not have any
local clusters, but rather has a single highly salient hub: a
single vertex with many neighbors. This kind of structure
might be even more likely to arise through mutual
exclusivity, as learning the hub word (bowl) makes each of
its neighbors easier to learn (spoon, tray, cup). This kind of
structure is measured by degree centrality (Equation 2).
This measure is new to semantic network analyses, but is a
mainstay of social network science (Freeman, 1979), and
measures the structural property intuitively most likely to be
related to learning words through exclusion.
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Thus, we test two hypotheses in the following analysis:
mutual exclusivity should predict connectivity structure in
functional but not the perceptual networks, and it should
manifest more strongly in high degree centrality should than
in clustering coefficient.

Method

To construct semantic networks for each child, we used all
words which are both measured by the MCDI, and for
which McRae and colleagues collected feature norms. This
resulted in a list of 130 nouns, encompassing animals, food,
clothing, vehicles, etc. For a full list, see Hills et al. (2009b).
Each child’s semantic network was constructed by adding
one vertex for each word on that child’s productive MCDI.
Vertices were connected if they shared a minimum number
(w) of semantic features. To be consistent with Hills et al.
(2009Dh), we set this features threshold to all possible values
1-4. At w = 3, for instance, two words were connected only
if they shared three or more semantic features. However,
networks become increasingly sparse as w increases, and we
thus urge caution in interpreting results at high thresholds.
Two networks were created for each child, one network in
which only perceptual features defined connectivity, and
one network in which only functional features were used to
define connectivity (see above). Networks were defined by
their set of vertices VV and the set of edges E that connected
them. A vertex’s degree (d(v)) is defined as the number of
other vertices to which it is connected by an edge. These
connected vertices are called neighbors, and together define
a node’s neighborhood (N).

Once each network was constructed, two properties of its
connectivity structure were measured. The first, clustering
coefficient (C), measures the proportion of vertices with a
common neighbor that are also neighbors of each other.
(Equation 1). The second, degree centrality (D), measures
the proportion of edges connected to a single dominant hub
vertex (Equation 2). These measures of structure trade off,
with high degree centrality necessitating a low clustering
coefficient. Both measures always range between 0 and 1,
and thus are independent of the size of a child’s vocabulary.
They are measures of structure independent of size.

Results and Discussion

As in the analysis above, children were divided into two
groups: Mutual Exclusivity Users who performed better
than chance on the novel trials of the disambiguation task,
and Nonusers who did not. Again, we reiterate that this is
not a theoretical commitment, but rather a tool for noise
reduction. The structure of each child’s individual semantic
networks — both perceptual and functional — was used to
predict that child’s category of mutual exclusivity usage.

Before presenting the results of network analyses, we
recapitulate that vocabulary sizes were quite comparable
between these groups. The 17 ME Users produced an
average of 408.3 words on the MCDI while the 17 Nonusers
produced an average of 388.1 (t(32) = .37, n.s.). They also
did not differ in the number of words they knew from the set
of 130 used in the network analysis (M, = 92.6, M, = 88.1,
t(32) = .51, n.s.). However, the particular words they knew,
and the semantic relationships among them, proved to be
importantly different.
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Figure 3 shows correlations between measures of network
structure and the mutual exclusivity category to which each
individual child belonged. For perceptual networks,
constructed by connecting words by shared perceptual
features (e.g. “has fur,” “tastes sweet”), neither clustering
coefficient nor degree centrality were related to use of
mutual exclusivity at any feature overlap threshold (Figure
3, left column). As predicted, perceptual networks, in which
connections are not a good proxy for words likely to occur
in contrastive contexts, have structures not well predicted by
use of mutual exclusivity.

In contrast, for functional networks, those constructed by
connecting words by shared relational, functional features,
mutual exclusivity was a significant predictor of degree
centrality when 2 or more overlapping features defined a
connecting edge (w = 2). At this threshold, children who
used mutual exclusivity at above-chance levels had semantic
networks with higher degree centrality (p = .34, p < .05;
Figure 3, bottom right). This same threshold is shown by
Hills et al. (2009a) to best separate semantic categories in
this set of words. Use of mutual exclusivity did not reliably
predict clustering coefficient, but did show a positive trend,
particularly at overlap threshold 3 (p = .28, p = .1; Figure 3,
top right). This trend should be interpreted cautiously,
however, as conceptual networks were quite sparse at
w = 3, having at most 12 edges.

Perceptual Features Functional Features &
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Figure 3: Correlation between network structure and mutual
exclusivity performance. The top row shows correlations
clustering coefficient, the bottom row for degree centrality.
The left column shows perceptual features, the right shows
functional. Individual bars shows correlations when
particular thresholds (w) define the minimum number of
overlapping semantic features required to connect two
words. Error bars show +/-1 standard error as measured by
1000 samples of bootstrap resampling (Lunnenborg, 1985).
Mutual exclusivity was significantly correlated with degree
centrality in the functional networks and showed a non-
significant trend towards correlation with correlation
coefficient in these same networks. As predicted, ME was
uncorrelated with perceptual network structure.

Thus, the semantic network structures of children who
reliably exhibit mutual exclusivity are predictably different
from those of children who do not. Even though these
children know the same number of words, the words they
know are different. Semantic networks of ME users are
characterized by more hub-like structure, a consequence of
the kind of word learning facilitated by exclusion.
Importantly, these differences are likely to matter (Beckage,
Smith, & Hills, 2011). Differences in connectivity structure
lead to differences in network robustness, with the networks
of mutual exclusivity structure perhaps protecting them
against forgetting and aiding future learning (Albert, Jeong,
Barabasi). These results represent a first step in
understanding how children’s own learning mechanisms
build the structure of their semantic networks.

General Discussion

While the words that children learn are, of course, a
function of the linguistic input to which they are exposed
(Brent & Siskind, 2001; Hills et al., 2009a), this link is
likely to be moderated by children’s own attentional and
learning mechanisms (Hudson Kam & Newport, 2005;
Smith, 2000). For instance, children learn to extend newly-
learned object words to categories on the basis of particular
feature dimensions. Normatively, children learn a bias to
attend to shape, and this bias leads them to learn more
categories organized by shape (Smith et al., 2002).
However, children may learn a different bias, and
consequently learn different words in the future (Colunga &
Sims, 2011). We show that use of mutual exclusivity may
play a similar role. Children who robustly use mutual
exclusivity are likely to learn new words functionally
related to words they already know. As atypical semantic
network structure is related to slower language learning
(Beckage, Smith, & Hills, 2011), these results point to a
potential intervention for late-talking children. Learning to
disambiguate the meanings of new words through exclusion
could help late-talkers to catch up.

These results also lead to two further insights about
mutual exclusivity and its role in vocabulary development.
While mutual exclusivity is often thought to be critical to
early word learning, its relationship to vocabulary size is
unclear. For every study that finds a significant correlation
between mutual exclusivity and vocabulary size (e.g. de
Marchena, Eigsti, Worek, Ono, & Snedeker, 2011; Mervis
and Bertrand, 1994), another finds no correlation between
the two (e.g. Halberda, 2003; Mather & Plunkett, 2009).
These results help to shed light on this inconsistency by
pointing out that the relationship between vocabulary
development and mutual exclusivity may be found not in
size but in structure. While we do not mean to argue that
mutual exclusivity is required for rapid word learning, we
do suggest that their relationship can be better understood
by considering semantic network structure.

Finally, these results may shed light on the origins of
mutual exclusivity itself. Thus far, we have argued that
mutual exclusivity builds vocabulary structure. But
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vocabulary structure may also build mutual exclusivity. One
can think of mutual-exclusivity as an overhypothesis, a
probabilistic rule about the general structure of word-object
mappings derived from the structure of individual word-
object mappings (Kemp, Perfors, & Tenenbaum, 2007;
Mervis & Bertrand, 1994). For instance, mutual exclusivity
may have its roots in an understanding that labels are often
contrastive, pointing to differences between otherwise
similar objects. If this is true, vocabularies that make this
overhypothesis more probable should lead to stronger
mutual exclusivity biases. Thus, one can think of the hub-
like structures characteristic of ME users in our sample as
not only arising from mutual exclusivity, but helping to
construct it as well. Hub words, which are connected to
many semantically-related neighbors, may play an important
role in discovery of this higher-order regularity. Thus,
mutual exclusivity may operate much like the shape bias:
being both built from regularities in the structure of
linguistic input, and helping children to discover further
regularities (Smith, et al., 2002). A deep understanding of
the connection between mutual exclusivity and vocabulary
structure, then, will come from understanding a three part
relationship: how ME contributes to structure, how structure
contributes to ME, and language input contribute to both.
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