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Abstract

The study of cognitive development hinges, largely, on the
analysis of infant looking. But analyses of eye gaze data
require the adoption of linking hypotheses: assumptions about
the relationship between observed eye movements and
underlying cognitive processes. We develop a general
framework for constructing, testing, and comparing these
hypotheses, and thus for producing new insights into early
cognitive development. We first introduce the general
framework — applicable to any infant gaze experiment — and
then demonstrate its utility by analyzing data from three
studies investigating the role of attentional cues in infant
learning. Finally, we discuss general implications for
construction and testing of quantitative linking hypotheses.
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Introduction

The study of infant cognitive development hinges,
largely, on the analysis of infant looking data (Aslin, 2007).
Since Fantz’s (1964) landmark demonstration of visual
memory in 2-month-old infants, researchers have used his
habituation technique, and other eye-movement methods, to
ask deep theoretical questions about the ontogeny and
development of human cognition. But analysis of eye-
movements, like analysis of other high-dimensional
cognitive measures (e.g. fMRI, EEG) carries particular
challenges (Yu, Yurovsky, & Xu, 2012). In order to connect
observed eye-movements to underlying cognitive processes,
one must define a linking hypothesis that relates them
(Aslin, 2007; Teller, 1984).

Every eye gaze paradigm used to study infant cognition
commits to a particular linking hypothesis. In habituation
studies, decreased looking is hypothesized to indicate
encoding, and recovery of looking indicates discrimination
of a novel stimulus (Gilmore & Thomas, 2002). In violation
of expectation studies, increased looking is hypothesized to
indicate noticing a surprising event. Intermodal preferential
looking studies hypothesize that a difference in looking time
to one sound-object mapping over another indicates a
difference in their associations. Critically, these linking
hypotheses are qualitative; they assert that a relationship
exists, but do not specify its quantitative, metric properties.

Why should we prefer quantitative linking hypotheses?
They help us, in several ways, to move from asking if a
phenomenon occurs, to asking how and why. First,
quantitative linking hypotheses allow researchers to clearly
and unambiguously specify the assumptions and
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mechanisms in their theories. As theories grow in
complexity, correctly  deriving their  (sometimes
counterintuitive)  predictions can become difficult.

Formalizing theories makes such prediction tractable
(Shiffrin, 2010). Second, without quantitative predictions it
can be impossible to distinguish competing theoretical
accounts of the same data, fueling debates about “rich”
(conceptual) vs. “lean” (perceptual) theoretical explanations
(e.g., Spelke, 1998). Third, quantitative linking hypotheses
allow researchers to test the same theoretical model across
experiments, integrating multiple datasets within one self-
consistent framework (Aslin, 2007; Schoner, & Thelen,
2006; Shiffrin, 2010).

Developmentalists who  measure  eye-movements,
however, face several challenges to the construction of
quantitative linking hypotheses. First, control of eye-
movements is complex, and saccades are moderated by
multiple systems (Aslin, 2007). Thus, quantitative linking
hypotheses may need to integrate interacting mechanisms.
Second, although fixation duration is likely related to
learning, their relationship may not be a simple linear one.
Instead, learning and looking may be linked non-
monotonically, with a preference for familiarity appearing
first, and a preference for novelty developing with further
experience (Hunter & Ames, 1988). Linking hypotheses
must be flexible enough to accommodate this kind of
complexity. Third, early development is a time of rapid
change, and the variability among infants of the same age
may be surprisingly high. Thus, using the same linking
hypothesis for each infant may distort true relationships in
the data (Siegler, 1987). Because one cannot know apriori
whether one’s data is best analyzed as one group, or two, or
three or more, construction of linking hypotheses must
adaptively accommodate this kind of variability.

Building on a growing body of statistical tools in
Bayesian non-parametrics, this paper presents a rigorous,
principled, empirically successful framework for the
construction of quantitative linking hypotheses that meets
the three challenges reviewed above. To demonstrate the
utility of this framework, we analyze data from a set of
experiments investigating the role of social and non-social
cues in infant multi-modal learning (Wu & Kirkham, 2010).
This analysis shows how quantitative linking hypotheses
can provide leverage in understanding the development and
operation of infant learning mechanisms. We begin by
presenting the general framework, demonstrating its
robustness in simulation studies, and then present the
empirical data.
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General Model Framework

In any eye-tracking experiment, infants are exposed to
stimuli that encode some structure of theoretical interest,
and the researcher measures the influence of this structure
on their behavior. For instance, in word-learning
experiments, infants are exposed to consistent pairings
between words and objects, and their discrimination for
consistent vs. inconsistent mappings is measured (e.g. Yu &
Smith, 2011). However, we are typically interested not in
the change in observed behavior, but rather in the cognitive
processes it implicates (Aslin, 2007). Quantitative linking
hypotheses let us describe these processes directly.

For each infant, on each trial, the researcher observes
some eye-gaze data (D), and the researcher’s goal is to
determine the model (M) that best explains these observed
eye-movements (P(M|D)). This can be formalized as a
problem of Bayesian inference. The researcher can specify
several possible models, each making different predictions
about the gaze data likely to be observed (P(D|M)). The
researcher may also prefer simpler models apriori, in accord
with Ockham’s razor (P(M)). These properties can then be
combined via Bayes’ rule to infer the model that best
describes the infants’ cognitive processes (Equation 1).

P(M|D) < P(D|M)P (M) 1)

We present a graphical model (Figure 1) for connecting
hypothesized cognitive models to observed eye gaze data.
On each trial of an experiment, an infant (i) is exposed to
some experimental stimuli (e) and produces observed eye
movements (d). This observed gaze data is encoded as
proportion of dwell time over a set of hypothesized areas of
interest (AOIls). The inference framework discovers the set
of underlying cognitive processes (s) that operate on the
stimuli to generate the observed data. Intuitively, this is
essentially a regression problem: inference finds the
relationship between predictor variables (s,e) and observed
outcomes (d). Because gaze data are a distribution over
AOIs rather than a single continuous variable, we connect
predictors to outcomes via the Dirichlet distribution (8).

Figure 1: A graphical model for inferring the cognitive
processes (s) responsible for generated eye movements (d)
under particular experimental conditions (e).

The introduction identified three challenges for
quantitative linking hypotheses: multiple processes may
drive eye-movements, linking functions may be complex,
and a group of infants may be heterogeneous. This
framework meets all three challenges. Because s can encode
any hypothesized cognitive model, the contributions of
multiple processes can be estimated together without forcing
a dichotomy (Anderson, 2011). Nonetheless, if a process
has little effect, this is found via the prior on parameter
values o (Figuerido, 2002). Second, cognitive processes and
observed eye movements need not be linked in a simple,
linear way. In this framework, the cognitive model s can
encode any functional link. For simplicity, and to minimize
assumptions, we do so through arbitrary degree polynomials
(see Jackson & Sirois, 2009). Again, the model parameter
prior (o) facilitates discovery of the most parsimonious
linking function, penalizing complex polynomials.

Formally, each cognitive model parameter s is modeled as
a draw from a 0-mean normal distribution whose standard
deviation has a non-informative prior, making high values
unlikely (Jeffreys, 1961). Each infant’s data are modeled as
a draw from a Dirichlet distribution over the AOIs whose
parameters are defined as the exponentiated product of the
cognitive model parameters and experimental settings e
(Equations 2). This allows model parameters to be negative.
A specific formulation is presented in the next section.

s~N(0,a2) )

d~Dir(6,)

Finally, infants in a sample may come from two or more
different kinds of groups, (e.g. slow and fast learners: Yu &
Smith, 2011). This framework automatically and adaptively
determines the number of groups of infants, and the infants
who belong to each group. Each distinct group is best
represented by a different cognitive model. The estimation
of unique groups is performed using the Chinese restaurant
process (Aldous, 1985), which has been used successfully to
determine unique groups in adult experiments (Navarro,
Griffiths, Steyvers, & Lee, 2006). Clusters are discovered in
this process by treating participants by analogy to customers
in a Chinese restaurant. As each customer enters, he sits at
each occupied table (z) with probability proportional to the
number of occupants, but also chooses a new table with
some small probability (a). This implements a rich-get-
richer scheme in which groups that account for the behavior
of many infants become favored, and the most parsimonious
number of groups is discovered. A hyper parameter (y)
prevents us from having to make a direct decision about the
probability of choosing a new table (Equations 3). Each
cluster has different cognitive parameter values (s).

a~Exp(y)
z~CRP(a) ®)

1204



Case Study: Attentional Cues and Infant Learning

To demonstrate how this framework’s utility in a concrete
case, we applied it to data from a set of studies investigating
the role of attentional cues in infant multi-modal learning. In
each experiment, 8-month-old infants watched videos in
which sounds and objects’ on-screen locations were reliably
related. When objects appeared in the top-left and bottom-
right boxes, one sound was heard. When they appeared
instead in the top-right and bottom-left boxes, a different
sound was heard (Figure 2). In some conditions, infants
were cued to one of the two objects. Subsequently, infants
were exposed to test trials on which they heard a sound from
training, but all four boxes were blank. If infants had
learned sound-location regularities, they were expected to
attend preferentially to locations consistent with each sound.

Submitting these test preferences to ANOVAs, Wu and
Kirkham found reliable multi-modal learning only in the
presence of the Face cue (2a), but not when infants were
cued with a flashing square (2b) or received no cue (2c). We
reanalyze this data to reveal significantly more structure,
and to provide new insights into infant learning.

To this end, we define quantitative linking hypotheses for
these experiments, formally specifying the connection
between the observed eye-movement data (d), observable
experimental conditions (e), and the unobservable,
hypothesized cognitive processes (s). By analogy to
regression, the data are the dependent variable, experimental
conditions are the independent variables, and the cognitive
processes parameterize these independent variables. On
each trial of the experiment — whether training or testing —
infants saw a black screen containing four boxes, one in
each corner of the screen (Figure 2). Thus, we define five
areas of interest (AQls): one for each of the four boxes, and
a fifth to capture all other looks (including off-screen looks).

Figure 2: Training and testing trials from Wu & Kirkham
(2010). In the Face condition (2a), a centrally-located face
directed infants’ attention to one of the boxes. In the Square
condition (2b), a red flashing square highlighted one of the
boxes. In the No Cue condition (2c) only the multi-modal
regularity was present. On test trials (2d), all boxes
remained empty while infants heard a sound from training.

The total data (d) for an individual infant is thus the entire
set of gaze proportions observed on each trial. Formally, this
is a matrix in which rows correspond to trials, columns to
AOls, and each cell to the proportion of looking to a
particular AOI on a particular trial. This whole matrix is the
outcome to be predicted from the experimental conditions
(e) and hypothesized cognitive processes (s).

Next we specify the experimental conditions on each trial.
While all four boxes were empty on test trials, on training
trials two of the four boxes contained pictures of animals
(Figure 2a-c). These are coded with binary indicator
variables salient specifying whether a box (b) contains a
picture. Further, in the Face and Square conditions (Figure
2a-b), one of the boxes was highlighted by an attentional
cue. We similarly define an indicator variable cued.

1 box b contains stim

salient(b) = {0 otherwise

4
1 box b cued )

cued(b) = {0 otherwise

In addition to the visual stimuli, each trial also included a
sound that could alter looking patterns if infants learned
sound-location contingencies. To formalize this learning
process (below), we encode infants’ experience with these
contingencies in the experimental conditions (e). Thus, we
let contingent be the cumulative time an infant has fixated
a given box (b) in the presence of a particular sound (n). So,
on trial t that plays sound n, and on which we observe data
d., where 6 (i, j) is Kronecker’s delta function,

t—-1

contingent,(b,n;) = é(n,,ny) - d.(b) 5)
=1

T

Last, we define cognitive processes that act on
experimental condition variables to produce observed gaze
data. First, infants may have a baseline preference for some
locations over others. Thus, we include a preference
constant p, for each AOI, allowing the contributions of the
other variables to be estimated relative to proper baselines.
Second, an infant’s preference for a box may be altered by
the presence of an object (salient), or the presence of an
attentional cue (cued). We let the strength of these factors
be linearly scaled by parameters [ and c respectively, which
function like slope terms in linear regression.

Finally, in these experiments, the question of interest is
whether infants learn to associate sounds with
objects/locations. We define the effect of association
between a sound and location as a change in preference for
that location through exposure to the contingent sound.
Specifically, we define association between a sound and
location as a function of time spent fixating that location in
the presence of that sound (contingent). To avoid making
assumptions about the association function (e.g. that it is
linear, or monotonic), we let association between box b and
sound n on trial t be an arbitrary degree polynomial
function of cumulative looking time to b while hearing n.
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Since polynomials can approximate any functional form,
this is a general solution (Jackson & Sirois, 2009). As in
testing for higher-order terms in standard regression,
polynomial coefficients are pushed down to zero by model
priors if they do not contribute to predictive power.

0
assoc.(b,n) = Z a, * [contingent.(b,n)]° (6)

o=1

After formally specifying the experimental conditions and
hypothesized cognitive process that act on this input, we can
infer the effect of each hypothesized factor on infant the
gaze data. As in regression, differences in parameters across
conditions help us understand whether and how different
cues affect infant multi-modal learning. To infer parameter
values, we perform Bayesian inference in the model
specified in Figure 1. Because this model has non-conjugate
priors, we use an MCMC sampling algorithm that alternates
Metropolis-Hastings updates with Split/Merge steps for
cluster assignment (Jain & Neal, 2007). Sampling estimates
the true distribution for each of these parameters, producing
a set of credible intervals (similar to confidence intervals)
that can be used to determine the likelihood that parameters
are non-zero, as well as their likely range (Kruschke, 2011).
Clustering was relatively insensitive to y, so we lety = 1.

Simulations

In order to ensure that it behaves as expected, we validate
the analysis in a set of simulation studies by generating gaze
data from a known cognitive model and trying to recover its
parameters. In these simulations, we show that this
framework can deal with all three challenges for
quantitative linking hypotheses: non-homogenous samples
of infants, interactions among multiple cognitive processes,
and non-linear functions linking learning to looking.

Infants in Wu & Kirkham’s (2010) study were simulated
in training and testing trials like those in their experiments.
Each simulated infant was exposed to four consecutive
blocks, each consisting of six training trials and a test trial.
On each training trial, objects appeared in two of the boxes
(top-left and bottom-right, or top-right and bottom-left), and
the lower box was cued. Each configuration of objects also
co-occurred with a unique sound. Each of the two
configurations occurred three times in each block of training
trials, and order was randomized within a block. After all
six training trials, infants saw one test trial where the screen
was empty, but one of the two sounds was heard. Simulated
infants then saw three more blocks, and each sound was
tested twice in random order across the four test trials.

Simulation 1

In Simulation 1, we generated gaze data from known
models in which the infants in a sample were drawn from a
mixture of one, two, three, or four distinct groups. Formally,
the 30 infants on each run were drawn from a multinomial
distribution with equal probability for each group.

Parameters for each group were drawn randomly without
replacement from cued —c: (0, 1, 2, 3), salient —
1:(0, 1, 2, 3), and contingent —a;:(0, .2, .4, .6).
Baseline AOIl preferences for each box were drawn
uniformly from [—2,—1] and off-screen preference was
drawn from [.5,1.5]. These values were representative of
those found in the empirical analysis (next section).

Across all 120 simulations (30 runs at each group size),
the correct number of groups was identified in all but 1. On
one run at group size 4, the analysis identified only 3
clusters. Further, individual infants were almost always
assigned to the right group. Group assignment was perfect
when the number of true groups was 1 or 2, and less than a
quarter of one percent (<.0025) of infants were misclassified
at the higher group numbers. Thus, this framework deals
well with heterogeneous groups of infants.

Simulation 2

Simulation 2 tested the framework’s ability to recover
correct quantitative parameter values when multiple
processes interacted to produce eye movements. This time,
all infants were drawn from one group, but group
parameters were parametrically manipulated to sample the
space of parameters recovered in the analysis of Wu &
Kirkham’s empirical data. Six unique parameter values were
chosen for each hypothesized cognitive processes, and one
simulation was run at each combination. Baseline
preferences on each run were drawn as in Simulation 1.
Figure 3 (next page) shows parameter estimates and true
values for each combination of parameter values. Inference
was successful: 72 values were exceedingly high.

Cue
S T T T T
= 2-3_ y=101x +-0014
2 15[ RP=00981
e 1+
[}
£ 05
€ . . . . .
0 05 1 15 2 25
True Values
Salience
8 T T T T
= 2-3_ ¥ =0.943x +-0.029
2,5l R?=0988
e 1+
[}
£ 05
€ 0 : . . . . .
0 05 1 15 2 25
True Values
Association
w T T T T
L 05t _ 4
3 y=1x+-0011
04t .
2 03l R?=097 ]
g 02t .
£ 01} .
e 0 W ; . . . . ]
0 0.1 0.2 03 0.4 0.5
True Values

Figure 3: Best fit lines for true and inferred parameter
values for each of the three factors hypothesized to affect
infant gaze patterns in the experimental data.
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Figure 4: True functions (solid) and 30 inferred functions
(dashed) for each learning function tested in Simulation 3.

Simulation 3

Simulation 3 tested the framework’s ability to recover non-
monotonic learning functions, for instance, a preference for
familiarity followed by novelty. On each run of the
simulation, 30 infants were generated with one of four
possible learning functions: linear increasing, linear
decreasing, u-shaped up, and u-shaped down (Figure 4). All
other model parameters were drawn as in Simulation 2.
Bayesian 95% credible intervals for estimated parameters
were analyzed to determine how often a 0-valued parameter
was estimated to be non-zero (0%) and how often a non-
zero parameter was estimated to be 0 (2.5%). Thus, both
Type | and Type Il error rates were low (Kruschke, 2011).

Empirical Analysis
We now apply the same inference procedure to gaze data
from real infants. Instead of comparing the effects of
different attentional cues on raw looking patterns, as in
standard analyses (e.g. ANOVAsS), inferring cognitive
model parameters for each condition lets us analyze the
effects of cues directly on attention and learning.

Method

Inference was performed using the same model as in the
Simulations above. Infants each saw a series of training and
testing trials, and gaze data on each trial were coded as a
proportion of looking to each on-screen box as well as a
fifth AOI for all other looks (Figure 2). As before, inference
recovered the joint distribution for all parameters (S)
explaining looking as a function of experimental conditions.
Full parameter descriptions are in the Simulation section.
Gaze data included 26 infants in the No Cue condition, 29
infants in the Face condition, and 30 infants in the Square
condition (see Wu & Kirkham, 2010 for full details).

Before presenting the results, we review Wu & Kirkham’s
ANOVAs for test trial looking. These analyses showed
associative learning only in the Face condition. In contrast,
infants in the No Cue condition showed no learning, and

infants in the Square condition preferred the cued locations,
but did not learn to sound-location associations.

Results and Discussion

Inference yields full posterior distributions for all cognitive
model parameters, estimating the contribution of each factor
in the context of all other factors. We focus on two key
factors: attention to the cue (c) and the association function
(assoc). Figure 5 shows estimated parameter values for
both factors for infants in each experimental condition.

First, in no condition were infants best described as a
single homogeneous group. Two distinct groups were
identified in the Face and No Cue conditions, and four
groups were found in the Square Condition. Thus, even
within one condition, infants learned and used cues
differently. Second, all learning functions were linear;
credible intervals for all association coefficients >2
overlapped 0 in all conditions. Thus, Figure 5 shows the
first-order association coefficient (a,) for each group.

Finally, we turn to the parameter values and their
implications. First, all infants in the No Cue condition
appeared to be learning (a; > 0), although approximately %
had low association values, indicating that they learned
slowly. The Face condition had a comparable number of
equally fast learners, and these fast learners did not show
evidence of using the cue (¢ = 0). However, the larger, slow
group of learners did use the cue, and learned faster than the
slow learners in the No Cue condition. Learners had two
routes into learning the regularity: quickly and directly, or
slowly and indirectly. This detailed level of structure
underlies and explains Wu & Kirkham’s coarser analysis.

The Square condition also had a small group of fast
learners who used the cue. However, in contrast to the other
conditions, approximately % of the infants did not learn, and
these infants all used the cue (c > 0). These results directly
confirm Wu and Kirkham’s hypothesis that the flashing
square may interfere with learning by competing for
attention, and that only the fastest learners may be able to
learn from these kinds of competing cues. Together, these
results both confirm the major findings from the standard
analysis and provide deeper insight into how attentional
cues guide (or interfere with) infant multi-modal learning.

Parameter Posterior Distributions

S 2';1: -----  — —— | NoCue
= 07 LA Face [
'g 0.2 o E— - |- Square |4
g 01} +- 1 )
< o} . . ""'I'.'"" . . . o
0.2 0 0.2 0.4 0.6 0.8 1 12 14

Cue
Figure 5: Posterior distributions for cue (c) and association
(a;) parameters for infants from Wu & Kirkham (2010).
Each circle indicates a cluster, and its size indicates the
proportion of infants in that condition in that cluster. Circles
are centered at median parameter values, and dashed lines
indicate 68% credible intervals, akin to +/-1 SE.
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Non-monotonic learning functions. Simulation 3 showed
that this framework can recover non-monotonic functions
linking learning to looking when appropriate for the data
(Hunter & Ames, 1988). However, no such functions appear
in the Empirical Analysis above. Why? One possibility is
that non-monotonic linking functions arise in a different
kind of experiment or at a different age. An alternative
possibility is that non-monotonic linking functions are seen
when infants’ baseline preferences are not controlled. In our
analyses, we included a set of parameters p, to encode
baseline preferences for each location. When these
parameters were not included, we did find non-monotonic
linking functions in all conditions. Thus, we propose that, at
least in some cases, observation of non-monotonic linking
functions may be an artifact of different baseline preference
rather than a core property of the learning system itself.

Competing Hypotheses. One strength of quantitative
linking hypotheses is that they facilitate direct comparison
of competing theories for the same data. In the previous
sections, we argued that changes in looking preferences over
the course of these experiments arise from associations
between heard sounds and fixated locations, and modeled
this learning with the assoc function. Alternatively,
preferences could change over time through habituation;
infants’ preferences could change as a function of looking to
a location independent of the concurrent sound. We tested
this directly, by modeling habituation as an arbitrary-degree
polynomial function of cumulative looking time to a
location (Equation 7). However, 95% credible intervals for
habit parameters overlapped O in all conditions, out this
explanation for the data. Thus, quantitative looking
hypotheses allowed us to directly compare two hypothetical
explanations of this data and to choose the best alternative.

habit, (b) = i h, - ( Hldr(b)) %)

r=

General Discussion

Infant researchers have made tremendous progress by using
eye gaze data to ask questions about early cognition and
development. The majority of this work has used qualitative
linking hypotheses, but we propose that even faster progress
can be made through model-based analyses using
quantitative linking hypotheses (Aslin, 2007; Teller, 1984).
While quantitative linking hypotheses have been proposed
for specific experiments (e.g. Gilmore & Thomas, 2002; Yu
& Smith, 2011), this paper presents a general framework
applicable to all eye movement experiments. We hope this
work will facilitate asking and answering future questions
about early cognitive processes and their development.
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